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This Talk

• Two treatments

• Binary endpoints

• “Immediate” responses

• Trial of n patients

• Response-adaptive clinical trial design

. is a (possibly randomized) allocation strategy that

specifies which treatment the i-th patient receives

. can be frequentist or Bayesian

. includes designs with fixed randomization
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Randomised Controlled Trial

• The gold standard design: randomised controlled trial

. 50% vs 50% fixed equal randomisation

. avoids many types of biases

. in use since 1948 (advocated since Hill 1937)

• Its main goal is to learn about treatment effectiveness

with a view to prioritising future outside patients

. maximises power of a treatment effect difference

. if approved, future patients are, say, 95% confident

that the novel treatment is better than the control

• A half of trial patients gets the inferior treatment
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Randomised Controlled Trial

• Advantages of randomised controlled trial

. best possible for estimating the treatment effect

. “easy” to understand by trial statisticians, physicians

− basic statistical knowledge

. “quick” to design

− trial size formulae available

. “straightforward” to implement

− no computation needed during the trial

. “easy” to understand by in-trial patients (?)

. “easy” to interpret the results by regulators

. “easy” to interpret the results by physicians (?)

. “easy” to interpret the results by patients (?)
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Randomised Controlled Trial

• Disadvantages of randomised controlled trial

. cost: 20% error of not approving a better treatment

− development and approval processes: $ billions

. faith: once approved, no (simple) way to retract the

treatment

− worse treatment approved by 5% chance

− unforeseen long-term secondary effects

. feasibility: requires hundreds of patients for a trial

. stationarity: approval process takes years

− inappropriate for new diseases and epidemics

. ethics: patients join a trial expecting to get a

possibly better (unapproved yet) treatment
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Randomised Controlled Trial

• Statistical testing based on randomised equal

allocation is a widespread state-of-the-art approach in

the design of experiments, under different names:

. randomised controlled trial in biostatistics

. between-group design in social sciences

. A/B testing in Internet marketing

• In other fields however the disadvantages are usually

less severe
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Bayesian Decision-Theoretic Trial

“...there can be no objection to the use of data,

however meagre, as a guide to action required before

more can be collected ... Indeed, the fact that such

objection can never be eliminated entirely—no

matter how great the number of

observations—suggested the possible value of seeking

other modes of operation than that of taking a large

number of observations before analysis or any

attempt to direct our course...”

• Proposed in Thompson 1933 (pre-dates Hill 1937)
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Health Benefit Approach

• The goal is to provide higher health benefit to both

in-trial patients and after-trial patients

. healing patients is the ultimate goal of new

treatment development

• As opposed to RCT’s learning goal of reliable

treatment effect estimation

. the estimate will never be accurate

. the treatment will be replaced by a new one in future
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Bayesian Decision-Theoretic Trial

• Bayesian decision-theoretic model

. optimally solving learning/healing trade-off

. both learning and healing takes place during the trial

• It is done by deciding the allocation, i.e., the

randomisation probabilities for every patient

. Bayesian response-adaptive: decisions based on the

responses accumulated so far
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Bayesian Decision-Theoretic Trial

• In theory, can be solved to optimality by decision theory

. it is often believed tractable only for small trials

• In general known as the multi-armed bandit problem

• Milestones IMHO

. Thompson (Biometrika 1933)

. Glazebrook (Biometrika 1978)

. Gittins & Jones (Biometrika 1979)

. Armitage (ISR 1985)

. Cheng, Su & Berry (Biometrika 2003)

. Berry (Nature 2006), Cheng & Berry (Biometrika 2007)

. Villar, Bowden & Wason (Statistical Science 2015)
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Multi-Armed Bandit Problem
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Multi-armed Bandit Problem

• Optimally solving learning/earning trade-off

• Studied in other scientific disciplines including

probability, statistics, operational research, economics,

marketing, machine learning, computer simulation,

computer science, and communications engineering

• Many formulations: i.i.d., Markovian, Bayesian, etc.

• Many extensions, mainly in machine learning

• Appropriate model for trials: finite horizon

. after the end of the horizon we will not be able to

influence the allocation
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Bayesian Bernoulli Bandit Model

• Finite horizon: n sequentially arriving patients

• Two-armed: treatment C or D for each patient

• Binary endpoints: success (1) or failure (0)

• Let Xi and Yi denote patient i’s response from

treatment C and D respectively (for i = 1, ..., n).

Then,

Xi ∼ Bernoulli(1, θC) and Yi ∼ Bernoulli(1, θD),

where θC and θD are the unknown success probabilities

of treatments C and D respectively



13

Bayesian Approach

• Beliefs θ̂C and θ̂D to be updated over the trial

• Prior Distribution: θ̂C ∼ Beta(a, b), θ̂D ∼ Beta(c, d)

where we take a = b = c = d = 1 (uninformative)

• Posterior Distribution: After observing i (j) successes

(failures) on treatment C, and k (l) successes

(failures) on treatment D, the posterior distribution is

represented by another Beta distribution (by

conjugacy)

θ̂C ∼ Beta(a+ i, b+ j), θ̂D ∼ Beta(c+ k, d+ l)
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DP Design

• We use dynamic programming (DP) to obtain an

optimal adaptive treatment allocation sequence

• Optimal in the sense of maximising the expected total

number of successes in the trial

• Specifically, we use backward recursion algorithm

• Let Fm(i, j, k, l) be the expected total number of

successes under an optimal policy after m patients

• If m = n, there is nothing to do: Fn(i, j, k, l) = 0

∀i, j, k, l
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Backward Recursion

• If m = n− 1 (one patient left):

1. If treatment C, we compute the expectation

FC
n−1(i, j, k, l) =

i

i+ j
· 1 + j

i+ j
· 0

2. If treatment D, we compute the expectation

FD
n−1(i, j, k, l) =

k

k + l
· 1 + l

k + l
· 0

• We wish to choose the optimal allocation such that

Fn−1(i, j, k, l) = max{FC
n−1(i, j, k, l), FD

n−1(i, j, k, l)}



16

Computational Tractability

Publication T Tmax SW, HW, RAM

Steck (1964) 25 N/A N/A, UNIVAC 1105, 54 kB

Yakowitz (1969) 5 N/A Fortran, N/A, N/A

Berry (1978) 100 N/A Basic (?), Atari (?), N/A

Ginebra and Clayton (1999) 150 180 N/A, N/A, N/A

Hardwick et al. (2006) 100 200 N/A, N/A, N/A

Ahuja and Birge (2016) 96 240 N/A, Mac 4GB

Williamson et al. (2017) 100 215 R, PC, 16GB

Villar (2018) 100 N/A Matlab, PC, N/A

Kaufmann (2018) 70 N/A N/A, N/A, N/A



17

Computational Tractability

Publication T Tmax SW, HW, RAM

Steck (1964) 25 N/A N/A, UNIVAC 1105, 54 kB

Yakowitz (1969) 5 N/A Fortran, N/A, N/A

Berry (1978) 100 N/A Basic (?), Atari (?), N/A

Ginebra and Clayton (1999) 150 180 N/A, N/A, N/A

Hardwick et al. (2006) 100 200 N/A, N/A, N/A

Ahuja and Birge (2016) 96 240 N/A, Mac 4GB

Williamson et al. (2017) 100 215 R, PC, 16GB

Villar (2018) 100 N/A Matlab, PC, N/A

Kaufmann (2018) 70 N/A N/A, N/A, N/A

This talk 4440 4440 Julia 1.0.1 & BB, PC, 32GB
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Computational Tractability

Software RAM T = 60 T = 120 T = 180 T = 240 T = 300 Tmax

Julia 0.6.2 & ad hoc 12 GB 2sec 22sec 108sec 331sec 789sec 420
Julia 1.0.1 & ad hoc 12 GB 1sec 17sec 82sec 262sec 643sec 420
R & ad hoc 16 GB 1sec 12sec 59sec 191sec N/A 240
Julia 1.0.1 & BB 31 GB 0.0036sec 0.046sec 0.23sec 0.73sec 1.6sec 1440

R & ad hoc 5 GB 1sec 6sec 26sec 84sec 209sec 420
Julia 1.0.1 & BB 31 GB 0.0040sec 0.056sec 0.27sec 0.91sec 2.8sec 4440
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Runtime

Trial size
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Memory Requirement

Trial size

12
0

24
0

36
0

48
0

60
0

72
0

84
0

96
0

10
80

12
00

13
20

14
40

15
60

16
80

18
00

19
20

20
40

21
60

22
80

24
00

25
20

26
40

27
60

28
80

30
00

31
20

32
40

33
60

34
80

36
00

37
20

38
40

39
60

40
80

42
00

43
20

44
40

1 MB

10 MB

100 MB

1 GB

10 GB

32 GB

100 GB

M
em

or
y 

re
qu

ire
m

en
t 

(l
og

 s
ca

le
)



21

Bayes Proportion of Successes

Trial size
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Bayes Regret Number of Successes

Trial size
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Other Designs

• For any other design, backward recursion can be used

for evaluation instead of simulation

. will be accurate (no simulation error)

• On the next slide we compare response-adaptive

designs to 1:1, using frequentist regret

. success probabilities θC = 0.7, θD = 0.9

. BM/FM: Bayesian/frequentist myopic (näıve)

. UCB: Upper Confidence Bound (machine learning)

. BKG: Bayesian Knowledge Gradient (ranking & sel.)

. BLFF: Bayesian Least Failures First
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Frequentist Regret Number of Successes
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0
12

0
18

0
24

0
30

0
36

0
42

0
48

0
54

0
60

0
66

0
72

0
78

0
84

0
90

0
96

0
10

20
10

80
11

40
12

00

15
00

18
00

21
00

24
00

1:1
DP
BM
FM
2UCB
1UCB
0.18UCB
BKG
BLFF
BMSF
BGDF
BLFF+BM
BLFF+2UCB
BLFF+1UCB
BLFF+0.18UCB
BLFF+BMSF
1:1+BMSF

Designs

0

5

10

15

20

25

30

35

40

45

50
M

ea
n 

re
gr

et
 n

um
be

r 
of

 s
uc

ce
ss

es



25

Thompson’s Posterior Sampling Design

• Thompson 1933 proposed a heuristic:

. randomise according to the posterior probability of

being the best arm

• This can be done by exact calculation or by sampling

• Recently, several trials have been designed in this way

. Don Berry (MD Anderson) and Berry Consultants

. e.g. I SPY-2, GBM Agile

• Several recent papers by a group at Harvard

• “Easy” to use, but quite suboptimal
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Conclusion about Designs

• Thompson’s posterior sampling is myopic

. randomisation decisions are bases on the assumption

that the next patient is the last one

• Equal Randomization is utopic

. randomisation decisions are bases on the assumption

that there is an infinite number of future patients

• Optimal design is not myopic, not utopic

. randomisation decisions take into account the

remaining trial size and the after-trial population size

. provides a significantly higher health benefit
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Optimal Design

• The optimal design has not been implemented in

practice yet

. will you be the first?
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Work in Progress

• I am working on a Julia package BinaryBandit (BB) to

evaluate the operating characteristics of designs

. more general settings will be considered

. coding work for several years!

• With F. Williamson and T. Jaki, we are studying the

(randomized) DP design if there are delayed responses

• With J. Wason, we are looking at when it is optimal to

add in a novel treatment to a platform trial
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Thank you for your attention

Group on Optimal Adaptive Learning (G.O.A.L.)

Lancaster University

http://www.lancaster.ac.uk/staff/jacko/goal/

http://www.lancaster.ac.uk/staff/ jacko/goal/
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