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Everyday Decision-Making
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Questions to Answer

• [Economic] For a given joint goal, is it possible to

define sound dynamic quantities for each task that can

be interpreted as priorities? And if yes,

• [Algorithmic] How to calculate such priorities quickly?

• [Mathematical] Under what conditions is there a

priority rule that achieves optimal resource capacity

allocation?

• [Experimental] If priority rules are not optimal, how

close to optimality do they come? And how do they

compare to alternative policies?
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The Scheduling Problem
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Need for Generalisations

• Contact centres

. customers are impatient

• Wireless networks

. customers move and signal time-varies due to fading

• Retail industry

. products are perishable and not homogeneous

• Healthcare

. unknown novel treatments appear over time
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Approach

• Problems intractable for finding an optimal solution

• Use of (dynamic) priorities in decision making

. easy to interpret

. easy to implement

. often well-performing

• A divide and conquer solution approach

• Model: constrained stochastic dynamic programming

. optimizing under the discounted or average criterion

. subject to a sample path resource capacity constraint

. e.g.: multi-armed restless bandit problem
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Multi-Armed Restless Bandit Problem
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Index Rules
• Priorities defined by (dynamic) index values

• Index rule: assign the resource to the customer with

highest actual index value

• Proposed in increasingly more general settings by

. Smith (1956): job scheduling (optimal)

. Gittins (1970’s): classic bandits (optimal)

. Whittle (1988): restless bandits (asympt. optimal)

. Glazebrook et al., Jacko et al. (2005–): dynamic

resource allocation (asympt. optimal)

− index-knapsack heuristic

• Index rules are often tractable solutions
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Multi-disciplinary Bandits

• Different terminology across disciplines

Anecdotic strategy choice pull arms

OR policy allocation resource projects

CS/ML algorithm decision time step actions

Biometrics design randomisation patient treatments

Telecom scheduler allocation server jobs

Universal (?) design allocation subject interventions
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Clinical Trials

• The gold standard design: randomised controlled trial

. 50% vs 50% fixed equal randomisation

. avoids all types of biases

. in use since 1948 (advocated since Hill 1937)

• Its main goal is to learn about intervention effectiveness

with a view to prioritise future outside subjects

. maximises power of an intervention effect difference

. if approved, future subjects are, say, 95% confident

that the novel intervention is better than the control

• A half of trial subjects gets the inferior intervention
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Randomised Controlled Trial

• Statistical testing based on randomised equal

allocation is a widespread state-of-the-art approach in

the design of experiments, under different names:

. randomised controlled trial in biostatistics

. between-group design in social sciences

. A/B testing in Internet marketing
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Bayesian Decision-Theoretic Trial

“...there can be no objection to the use of data,

however meagre, as a guide to action required before

more can be collected ... Indeed, the fact that such

objection can never be eliminated entirely—no

matter how great the number of

observations—suggested the possible value of seeking

other modes of operation than that of taking a large

number of observations before analysis or any

attempt to direct our course... This would be

important in cases where either the rate of

accumulation of data is slow or the individuals

treated are valuable, or both.”
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Bayesian Decision-Theoretic Trial

• Proposed in Thompson 1933 (pre-dates Hill 1937)

• The goal is to provide higher benefit to both in-trial

subjects and after-trial subjects

. as opposed to the RCT’s learning goal of reliable

intervention effect estimation

• It is done by deciding the allocation, i.e., the

randomisation probabilities for every subject (or for a

group of subjects)

. response-adaptive: decisions based on the responses

accumulated so far, i.e. Bayesian
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Bayesian Decision-Theoretic Trial

• In theory, can be solved to optimality by decision theory

• In practice, optimal decisions are computed numerically

. it is often believed to be tractable only for small trials

• Milestones IMHO (w.r.t. clinical trials)

. Thompson (Biometrika 1933)

. Glazebrook (Biometrika 1978)

. Gittins & Jones (Biometrika 1979)

. Armitage (ISR 1985)

. Cheng, Su & Berry (Biometrika 2003)

. Berry (Nature 2006), Cheng & Berry (Biometrika 2007)

. Villar, Bowden & Wason (Statistical Science 2015)
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Health Benefit Approach

• Important because healing patients is the ultimate goal

of new treatment development

• Bayesian decision-theoretic model

. optimally solving learning/healing trade-off

. both learning and healing takes place during the trial

• This kind of general problem became known as the

multi-armed bandit problem
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Bayesian Bernoulli Bandit Model

• Finite horizon: n sequentially arriving subjects

• Two-armed: intervention A or B for each subject

• Binary endpoints: success (1) or failure (0)

• Let Xi and Yi denote subject i’s response from

intervention A and B respectively (for i = 1, ..., n).

Then,

Xi ∼ Bernoulli(1, θA) and Yi ∼ Bernoulli(1, θB),

where θA and θB are the unknown success probabilities

of interventions A and B respectively
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Bayesian Approach

• Beliefs θ̂A and θ̂B to be updated over the trial

• Prior Distribution: θ̂A ∼ Beta(a, b), θ̂B ∼ Beta(c, d)

where we take a = b = c = d = 1 (uninformative)

• Posterior Distribution: After observing i (j) successes

(failures) on intervention A, and k (l) successes

(failures) on intervention B, the posterior distribution

is represented by another Beta distribution (by

conjugacy)

θ̂A ∼ Beta(a+ i, b+ j), θ̂B ∼ Beta(c+ k, d+ l)
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DP Design

• We use dynamic programming (DP) to obtain an

optimal adaptive intervention allocation sequence

• Optimal in the sense of maximising the expected total

number of successes in the trial

• Specifically, we use backward induction algorithm

• Let Fm(i, j, k, l) be the expected total number of

successes under an optimal policy after m subjects

• If m = n, there is nothing to do: Fn(i, j, k, l) = 0

∀i, j, k, l
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Backward Recursion

• If m = n− 1 (one subject left):

1. If intervention A, we compute the expectation

FA
n−1(i, j, k, l) =

i

i+ j
· 1 + j

i+ j
· 0

2. If intervention B, we compute the expectation

FB
n−1(i, j, k, l) =

k

k + l
· 1 + l

k + l
· 0

• We wish to choose the optimal allocation such that

Fn−1(i, j, k, l) = max{FA
n−1(i, j, k, l), FB

n−1(i, j, k, l)}
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Optimal Designs

• The designs computed using DP are optimal, i.e.

provide the maximum benefit given their respective

restrictions

• For the two-armed case (on a standard laptop):

. a basic R code can design trials of size up to 200

. an efficient Julia code up to 1, 500

. a during-the-trial computation allows even larger

trials

• Longer trials can be designed on a workstation/cloud

• More complex trials with much smaller sizes
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Optimal Designs: Memory

Trial size
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Optimal Designs: Runtime

Trial size
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Conclusion

• Powerful approach to omnipresent intractable problems

. elegant, easy to interpret/implement

. index rules optimal for relaxations

. suggests structure of (asymptotically) optimal policies

. valuable for both researchers and practitioners
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Conclusion

• Powerful approach to omnipresent intractable problems

. elegant, easy to interpret/implement

. index rules optimal for relaxations

. suggests structure of (asymptotically) optimal policies

. valuable for both researchers and practitioners

• Stochastic literacy

. priorities are better to use than stereotypes

. intuition what is probability

. very poor, including among mathematicians (!)

. more important than exact mathematical literacy (?)
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Thank you for your attention

Ďakujem za Vašu pozornost’


