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Abstract Multi-armed bandit problems (MABPs) are a special type of optimal
control problem that has been studied in the fields of operations research, statistics,
machine learning, economics and others. It is a framework well suited to model
resource allocation under uncertainty in a wide variety of contexts. Across the
existing theoretical literature, the use of bandit models to optimally design clinical
trials is one of the most typical motivating application, where the word “optimally”
refers to designing the so-called patient-centric trials, which would take into account
the benefit of the in-trial patients and thus are by some researchers considered more
ethical. Nevertheless, the resulting theory has had little influence on the actual design
of clinical trials. Contrary to similar learning problems arising for instance in digital
marketing where interventions can be tested on millions of users at negligible cost,
clinical trials are about “small data”, as recruiting patients is remarkably expensive
and (in many cases) ethically challenging. In this book chapter, we review a variety
of operations research and machine learning approaches that lead to algorithms to
“solve” the finite-horizon MABP and then interpret them in the context of designing
clinical trials. Due to the focus on small sizes, we do not resort to the use of the normal
distribution to approximate a binomial distribution which is a common practice for
large samples either “for simplicity” or “for ease of computation”. Solving a MABP
essentially means to derive a response-adaptive procedure for allocating patients to
arms in a finite sample experiment with no early stopping. We evaluate and compare
the performance of these procedures, including the traditional and still dominant
clinical trial design choice: equal fixed randomization. Our results illustrate how
bandit approaches could offer significant advantages, mainly in terms of allocating
more patients to better interventions, but still pose important inferential challenges,
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particularly in terms of their resulting lower statistical power, potential for bias in
estimation and existence of closed-form tests distributions or asymptotic theory. We
illustrate some promising modifications to bandit procedures to address power and
bias issues and we reflect upon the open challenges that remain for an increased
uptake of bandit models in clinical trials.

1 Introduction

Multi-armed bandit problems (MABPs) define a special class of an optimal control
problem. The MABPs is a well studied and a well suited framework to model resource
allocation under uncertainty in a wide variety of contexts. As Whittle (1980) put
it: The multi-armed bandit problem (as it has become known) is important as one
of the simplest non-trivial problems in which one must face the conflict between
taking actions which yield immediate reward and taking actions (such as acquiring
information, or preparing the ground) whose benefit will come only later. It has
proved difficult enough to become a classic, and has now a large literature.

The MABP has developed over its history as a key example of a problem that
has attracted considerable attention both from the Operations Research (OR) and
Machine Learning (ML) literature, thus having an exceptional potential to act as a
bridge between these two communities. As well, the MABP had its origins in the
medical statistics literature, when Thompson (1933) published his work back in the
1930s, and one can easily argue today that its potential to improve health applications
is high (Villar et al., 2015; Press, 2009).

However, despite the great theoretical attention from both OR and ML literature
and the considerable potential of its application in practice, both the links between
OR and ML as well as the uptake in practice remain relatively under-explored. The
potential of the MABP to act as bridge between the OR and ML communities remains
low because the perspective in tackling the problem has had a markedly different
focus in the two fields. While in OR, formulations based on optimizing expected
discounted (or average) rewards are the most common, in ML the dominant goal is
that suggested by Robbins where the average regret is minimized. In both cases, the
most common horizon considered is infinite and the focus usually is on asymptotic
forms of optimality. Second, the uptake of so-called bandit methods in health care
practice, and specially in clinical trials, is still virtually non-existing. This may very
well be surprising to the reader as across all of this theoretical literature, the use of
bandit models to optimally design clinical trials is posited as the typical motivating
application. Yet, as it was explored in Villar et al. (2015) and we will further discuss
in this chapter, little of the resulting theory has ever been used in the actual design
and analysis of clinical trials. The focus on infinite horizon problems for OR and
ML is one of the reasons for lack of practical impact but (as we will discuss later)
not the only one.

At this point the reader may also wonder why could a MABP be a perfect fit
to optimize the design of clinical trials. The development of a drug or medical
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therapy follows a regulated and lengthy process which may take between 10 and 15
years (from discovery to being available for patients). Drugs are tested in humans
only after laboratory testing and it is divided into a series of successive clinical
trials traditionally known as phase I, II, III, and IV trials. These phases are usually
separate clinical studies, and each has a unique objective. Typically, phase I trials
establish safety and tolerability in healthy volunteers; phase II trials study the drugs’
efficacy and adverse effects at different dosages in patients; phase III trials establish
the effectiveness and safety of the drug compared with placebo or standard of care;
and phase IV trials determine general risks and benefits after approval.

A clinical trial is an experiment designed to produce data in order to answer
a specific question about a medical intervention (e.g., a drug’s superiority versus
a standard of care). A typical Phase III clinical trial would compare a single new
intervention to a standard of care (which could be simply placebo) with the aim
of establishing superiority (or non-inferiority) in terms of a certain efficacy metric.
Many Phase 1II trials compare multiple variants of the same intervention (e.g., drug
dosages, treatment durations, or treatment combinations), while some recent Phase
II trials include and compare multiple (independent) interventions in one trial. Cur-
rently, there is a growing number of trials which might not be easily categorized
into these four phases, and even the regulators seem to tend to move away from such
strict definitions, and instead, talk about exploratory and confirmatory trials. Some
trials might even answer several questions and/or run across various phases, such as
the so-called seamless phase II/III trials or platform trials.

Bandit problems formalize the tension between two goals when collecting data
to aid decision making under uncertainty. Those goals are, the desire to learn (or
explore) about the different alternatives (i.e. to learn about the new interventions) and
that to earn (or, exploit) from that learning to achieve a certain overall objective (i.e.
to treat more patients effectively). Therefore, one could argue that in a confirmatory
clinical trial there could be an aim of balancing two separate goals: (i) to correctly
identify the best intervention (learning) and (ii) to treat patients as effectively as
possible during the trial (earning). These two goals may appear to some as naturally
complementary, but for those familiar with the MAPB it should be clear that this is
not the case. If one is considering the case of a finite population of patients, then
correctly identifying the best intervention requires some patients to be allocated to
all interventions, and therefore the former acts to limit the possibility of treating
more patients with a superior intervention.

As we will describe in this chapter, designing a clinical trial using a MABP
solution will entail defining a so-called response-adaptive allocation procedure,
which (together with specification of other aspects, e.g. statistical analysis methods
to be used at the end of the trial) would be part of an adaptive design of a clinical
trial. Traditional clinical trials, which have been the dominant design paradigm until
the very last decade, follow a linear schematic: design, conduct and analysis of data
according to a pre-specified plan. This approach allows for no form of change to
the experiment based on the accumulated data. In contrast to this, adaptive designs
permit pre-planned changes (or adaptations) to occur after interim looks of the trials
data. The key element is that while one can be flexible and adapt based on the
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observed data this should be done without undermining its integrity or validity.
This latter part and the difficulties it poses for new designs will play a key role
explaining the lower uptake of bandit results in practice. The interested reader may
read Pallmann et al. (2018); Burnett et al. (2020) for a non-technical introduction to
adaptive designs.

While adaptive designs broadly defined have generated a lot of interest in the
clinical trials community recently, particularly after the COVID-19 crisis (Stallard
et al., 2020), bandit models, methods and algorithms as a class of procedures poten-
tially very useful to deliver adaptive designs for patient-centric trials remain largely
unused in practice. Recent work has discussed the reasons for this lower uptake in
detail (Villar et al., 2015), discussing what the potential benefits of their use can be
as well as the challenges to its application in clinical trial practice. In this chapter,
we revisit the ideas presented in the work above and build on them to explain what
has changed since and what still calls for further research.

The structure of this chapter is as follows. In the following section we introduce
terminology, assumptions and notation. In this chapter we shall follow the convention
(for simplicity of presentation only) that two-arm clinical trials represent typical
Phase III (confirmatory) trials while multi-armed trials reflect Phase II (exploratory)
trials. This is an oversimplification as one could imagine two-armed trials that are
exploratory or multi-armed ones that are confirmatory but it would aid presentation
of statistical and design concepts that are relevant in one case more than in another.

2 The Bayesian Beta-Bernoulli MABP

In this section we present a Bayesian formulation of a finite-horizon multi-armed
problem with binary outcomes as a collection of Markov decision processes (MDPs),
which provides a framework for finding the Bayes-optimal allocation procedure by
dynamic programming. Our problem of interest has the following defining elements:
time, arms (interventions), and each arm is modelled as an MDP with states (in-
formation), actions (allocations), transition probabilities and expected one-period
rewards (patient outcomes).

Time.

Patients arrive (i.e., are recruited) sequentially (i.e., one by one) at random moments
in continuous time. Since we do not discount the future, we can without loss of
generality focus only on the moments of patients’ arrivals, which we call discrete
time epochs and see as regularly spaced. That is, equivalently, we can consider that
patients arrive at time epochs t € 7 := {0,1,2,...,T — 1}, where T < +co is the
number of patients in the trial, i.e., the trial size. To clarify, the (¢ + 1)-st patient
arrives at time epoch ¢. Note that # = T is the time epoch denoting the end of the
trial, when the outcome of the last patient is observed and no patient arrives.
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Arms.

We consider arms (or, interventions) labelled by k € K := {0,1,...,K}, where
arm k = O refers to a control intervention (typically, a standard of care for the
studied disease), and arms k =1, ..., K refer to novel (experimental) interventions.
A patient must be allocated to exactly one intervention (although this intervention
may well be defined as a combination therapy), and such allocation results in a binary
type of outcome from that intervention: 0 (failure) or 1 (success). The outcome set is
denoted by O = {0, 1}. Inaclinical trial context, the success outcome represents, e.g.,
response to intervention, remission of tumor, etc. Patient outcomes are uncertain,
i.e., modelled as Bernoulli-distributed with parameter py (the success probability),
independent across arms. Taking the Bayesian approach, the initial prior for the
success probability of arm k is Beta distribution with parameters (5% (0), ﬁ(O)),
which can be interpreted as the number of pseudo-successes and pseudo-failures
observed before making the first allocation in the experiment. The rewards are
immediate, meaning that the outcome of an allocated patient is observed before the
next decision needs to be made.

States.

The state space for arm k, X; = {xx = (st fx) € (T U{TH? : sp + fx <
T}, represents all the possible two-dimensional vectors of available information
on the unknown parameter pj at any time during the trial. Note that we exclude
the prior information (i.e., pseudo-observations) from the state definition because
it does not change over time and because in this way the model is as small as
possible, which is beneficial from the computational point of view. However, to
simplify some expressions, we also define the pseudo-state Xy := (Sk, fi) with
Sk = 5k(0) + sk, fi .= fi(0) + fr.

Actions.

The action set Ay for arm k is a binary set representing the action of drawing a
sample observation from arm k (ax = 1) or not (a;x = 0). In a clinical context, the
action variable stands for the choice of allocating next patient to arm k or not.
Transition Probabilities.

The Markovian transition law Py (x; |xk, ax) describing the evolution of the infor-

mation state variable on arm k in state x; under action a; from one time epoch to
the next, is given by:
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where w.p. stands for ‘with probability’. Note that under action 1, the transition
probabilities are defined by the mean of the current posterior distribution, which,

due to conjugacy, is a Beta distribution with parameters ('svk, ﬁ()

Expected One-period Reward.

The expected reward on arm k in state x; under action ay is:

S
R = ——ay, 2)
Sk + fx

where in accordance to the above specified dynamics, expected reward is the Bayes-
expected number of successes from the current patient, computed using the current
posterior Beta distribution.

Note that both the transition law and the rewards depend on the prior distributions,
although we do not indicate it in the notation. The system dynamics is captured by
the joint state process (x ())xex forall € 7 U {T} and by the joint action process
(ar(t))reg for all t € 7. The actions are restricted by the fact that every patient
in the trial must be allocated to one and only one arm, i.e., X ;e ar(?) = 1 for
all + € 7. This restriction implies a restriction on the joint state process so that
Dkex(sk(®) + fr(r)) =tforallt € T U {T}.

A rule is required to operate the resulting (sometimes called weakly-coupled)
MDP, which indicates which action to take for each arm k& € K for every possible
combination of states of the arms at every time ¢ € 7 . Such a rule forms a sequence
of actions resulting in a joint action process (ax (¢))rex and it is known as a policy,
denoted by 7 € I1, where I1 is the set of all the feasible policies satisfying the above
action constraint.

To complete the specification of the multi-armed bandit model as an optimal
control model, the problem’s objective function must be selected. The typical perfor-
mance objective in the Bayesian Beta-Bernoulli MABP in a trial with T patients is
to maximize the Bayes-expected number of successes. For a feasible policy m € II,
the Bayes-expected number of successes is, i.e., the total value function conditional
on the initial joint prior parameters x (0),

2, 2 Risio | =

teT keK
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where E ) [-] denotes Bayesian expectation with joint Beta prior parameters X (0) :=
(X% (0)) g eg under policy n. The multi-armed bandit optimal control problem is
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mathematically summarized as the problem of finding an optimal policy n*, i.e.,
a feasible policy (n* € II) that optimizes the performance objective. Formally, the
optimal policy is
" = argmax ENS§(O), )
mell

and the optimal Bayes-expected number of successes is
ENS;(O) = r;lglg[c ENSE(O). o)

Note that the right-hand side of (4) suggests that 7* should depend on the prior x (0),
but the MDP theory implies that there is an optimal policy which is stationary (i.e.,
it prescribes joint action (ag(f))xcg only as a function of the posterior joint state

x(1) := (Fk (1), ﬁ (t))k without a direct dependence on ¢), and thus we assume 7*
€

is such and drop its dependence on the prior parameters.

The optimal policy 7* is, nevertheless, in general different for different trial sizes
T, because larger T tends, for a given state, to lead to an allocation that provides a
larger amount of learning about the arms’ unknown success probability parameters
in order to increase the expected number of successes from the remaining patients.

2.1 Discussion of the Model

The above model is probably the simplest model for the multi-armed bandit problem
cast as an optimization problem. Analogous modelling approach can in theory be
employed for other distribution of outcomes (discrete, continuous, etc.), although
the state would need to be redefined as an appropriate sufficient statistic, and the
transition law and reward would need to be adjusted correspondingly (see, e.g.,
Williamson and Villar, 2020). However, in practice, these often quickly become
computationally unfeasible to be solved by dynamic programming, and approximate
approaches need to be employed.

The action set can be generalized by making the actions randomized and/or
by specifying an action to take when the original two actions are equivalent. In
some states, one could modify the action set to either have a single action (for
instance, allowing only allocation to a pre-specified arm or allowing only equal fixed
randomization in the initial stage of the trial), or have more actions (for instance,
allowing for stopping of the trial if the treatment difference seems to be large).

The model can be extended to include discounting of the future patients’ outcomes
and/or to be optimized over an infinite horizon using standard approaches from the
theory of Markov decision processes, but we believe that the undiscounted finite-
horizon formulation is the most relevant for healthcare applications.

The rewards can be generalized, for instance, by including penalties in some
undesirable states in order to improve a particular statistical operating characteristic,
such as in those that would lead to an extremely unbalanced allocation in order to
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improve power and estimation (as in Williamson et al., 2017, 2021) or by using any
other utility function of interest.

The above-defined model thus requires only the horizon 7" and the prior parameters
to be set by the trial designer. The standard choice in the bandit literature is to set
the horizon equal to the size of the trial, but in clinical trials it may sometimes be
more reasonable to optimize over the size of the patient population, assuming that
one of the arms is chosen at the end of the trial and is applied to the after-trial
patients. The standard choice for the prior parameters is the so-called Bayes’ prior

(Ek (0), f~k (0)) = (1, 1), which is considered non-informative, although other priors

with mean 0.5 are also considered uninformative, e.g. Jeffrey’s prior (0.5,0.5) or
Haldane’s prior (0, 0). Note that Haldane’s prior essentially reduces the optimization
problem to a frequentist objective, where the posterior mean equals the sample mean,
which is the maximum likelihood estimator of the mean, as shown in Bowden and
Trippa (2017).

3 Metrics for Two-armed Problem (Confirmatory Trials)

The two-armed bandit problem with binary outcomes is probably the most studied
version of all the bandit problems, intriguing researchers from several disciplines
for almost a century (for a review, see, e.g., Jacko, 2019b). At the same time,
clinical trials with two arms is probably the most common setup of clinical trials in
practice, especially used for confirmatory trials which are typically defined with an
objective of generating convincing evidence of efficacy (and safety) in order to seek
regulatory approval. These are traditionally referred to as the randomized controlled
trials, where “controlled” indicates that a novel intervention is being concurrently
compared to another one (typically, the current standard of care), i.e., there are at
least two arms, in order to control for seasonality effects, time trends, population
changes and other shocks, and “randomized” indicates that patients are allocated to
interventions using a procedure which ensures that patients and their doctors are not
able to predict with certainty which intervention will be allocated next, in order to
help avoiding the selection bias and other types of biases (see, e.g. Rosenberger and
Lachin, 2015, for a discussion of importance of randomization). Throughout this
section, we assume K = 1, having a control arm k = 0 and an experimental arm
k=1.

Traditionally, the randomization ratio is taken as 1:1, called the equal fixed
randomization (EFR). This is done without any rigorous justification, often relying
on a widespread myth that the 1:1 ratio maximizes statistical power, which is however
true only under the assumption of equal variances of the efficacy of the two arms. That
might be a somewhat reasonable assumption in some cases of continuous outcomes
modelled using the normal distribution, but it is not appropriate for binary outcomes
as the variance of the Bernoulli distribution is dependent on its mean (Robertson et al.,
2021) and also for other types of outcomes such as time-to-event (Sverdlov et al.,
2011). Clinical trials might also be too small to invoke the recommended conditions
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for approximation of binomial samples by the normal distribution. Understanding
of that and consideration of patient outcome (e.g. for deadly diseases that have no
current treatment) leads some clinical trial designers to implement other fixed ratios
in an ad hoc manner, e.g. 2:1, typically allocating higher probability to the novel
intervention. Note that the 1:1 randomization ratio is often interpreted in the academic
literature as that every patient’s allocation is randomized with probability of 0.5 to
either arm, but the ratio is in practice implemented essentially as a permutation of
allocations within blocks of patients, e.g. in every block of 60 patients there are 30
patients allocated to each arm, i.e., in practice it is a per-block allocation ratio rather
than a per-patient randomization probability.

Several stakeholders are involved in confirmatory trials and thus several metrics
are of interest: the regulatory agencies would constrain the Type I error (typically
at the one-sided level of 0.025), intervention sponsors would require high statistical
power (typically at the level of 0.8 or 0.9) and small trial size (or, more generally,
a good balance of expected trial costs and expected post-approval revenues), patient
organizations would require high patient benefit (i.e., health benefit for in-trial pa-
tients), and health economics agencies and clinicians would require accurate and
precise estimation of the interventions efficacy (or of their difference).

3.1 Accurate and Precise Estimation

Unequal fixed (i.e., not adaptive to observed successes and failures on each arm)
randomization is well understood in the biostatistics literature, but the researchers
in other disciplines and practitioners seem to be largely unaware of those results.
For the two-armed setting there are closed formulae that give ratios that are optimal
for different objectives. Any fixed procedure that allocates at least one patient to
each intervention provides basis for an unbiased estimation of the efficacy of each
arm using the maximum likelihood estimator (MLE) which equals to the mean of
observed successes, and for statistical testing (Rosenberger et al., 2019).

While perfect accuracy (i.e., unbiased estimation) can be achieved by fixed ran-
domization, using the MLE after an adaptive procedure always leads to a bias
(Bowden and Trippa, 2017), which is typically negative, but can also be positive
(Nie et al., 2018). In that case, improving accuracy by using other estimators that
are unbiased can be done at a cost of decreased precision (e.g., the mean-squared
error). To the best of our knowledge, maximization of the precision using adaptive
procedures is not well understood, but there are some promising recent research lines
(Hadad et al., 2021), although existing estimation methods typically do not apply to
deterministic allocation procedures. Note also that it is linked to the maximization
of statistical power. In practice, the block-randomization is sometimes implemented
in a stratified way and/or using the so-called minimization algorithms that balance
the covariates in order to increase the precision of estimators.
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3.2 Statistical Errors

Statistical hypothesis testing is usually required by the regulators at the end of a
confirmatory trial in order to apply for a marketing approval. This is usually done in
a frequentist approach (but Bayesian approaches are also sometimes allowed after
a discussion with the regulator). For one-sided test comparing two proportions, we
specify the null hypothesis and the alternative hypothesis as follows:

Hy:p1 < po (6)
Hi:p1>po @)

One-sided testing is more appropriate than two-sided testing whenever the regulator
is interested in limiting the probability of approving the novel intervention (arm 1)
despite being worse or equal than the control intervention (arm 0), which is called
the Type I error, formally defined as the probability of rejecting the null hypothesis
if it is true. On the other hand, the sponsor of the novel intervention is interested in
achieving a high probability of getting the novel intervention approved if it is indeed
better than the control intervention, which is called the statistical power, formally
defined as the probability of rejecting the null hypothesis if it is false.

A variety of tests have been proposed for a comparison of proportions of two
binomial distributions, including z-tests (unpooled or pooled; with or without conti-
nuity correction), Fisher’s exact test (and its modifications such as Boschloo’s test),
or simulation-based randomization tests. However, there is no consensus on which
test is the most appropriate, because they all have certain disadvantages. The z-tests
are based on approximation of binomial distribution by normal distribution, and
therefore are suitable for large samples; typically it is suggested that there should
be a minimum number of both successes and failures on each arm (5 or 10). The
Fisher’s exact test is considered too conservative, yielding the Type I error sometimes
notably below the given significance level. Other tests, including randomization tests
become computationally intractable for large samples.

For a given Type I error, the ratio that maximizes the statistical power if using
the (unpooled) z-test is the Neyman’s allocation ratio y/6¢c (1 —6c) : v/6p (1 — 6p)
(Melfi and Page, 1998), which is the ratio of standard deviations of Bernoulli dis-
tributions with means ¢ and 6p (we remark a connection with optimal designs
of ranking and selection problems presented in Ryzhov (2021, equation (4))). We
can see that the Neyman’s allocation coincides with 1:1 when the efficacies of the
two interventions are either equal (i.e., 6c = 6p) or equally distant from 0.5 (i.e.,
6c =1 —0p). The monotonicity properties of the standard deviation formula imply
that the intervention whose efficacy is closer to 0.5 is allocated more patients. So, the
inferior intervention, which might be considered undesirable from the patient-benefit
perspective, is allocated more patients if and only if 6c > 1 — 6p. For instance, if
0c = 0.5 and 6p = 0.2 (or 0.8), the ratio that maximizes the statistical power is
5:4, while 6p = 0.1 (or 0.9) gives the ratio 5:3; ratio 2:1 is optimal for instance if
6c = 0.5 and 0p ~ 0.067 (or 0.933) or if ¢ = 0.2 (or 0.8) and 8p =~ 0.042 (or
0.958). However, as the Neyman'’s allocation ratio depends on the efficacies of the
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two arms, which are unknown, it needs to be implemented adaptively in a “learn-
ing by doing” fashion, typically by adaptively estimating the efficacies using the
accumulating observations (Rosenberger et al., 2001).

3.3 Patient Outcome

In order to measure the benefit for patients in the trial, we define the expected number
of successes under procedure x if the probabilities of success are p,

T-1 K
Z Zpkak(l)
10 k=0

where Ej[-] denotes expectation under procedure & € II prescribing the vector a(7)
of allocation processes ay(t) € {0, 1} if the probabilities of success are p. (Note
the slight abuse of notation, with (3) being a Bayesian expectation depending on
the prior parameters, while (8) being a frequentist expectation depending on the
true success probabilities.) An alternative measure of patient benefit is the expected
proportion of allocations on the superior arm under procedure 7 if the probabilities

of success are p,
T-1
> ak*m] : ©)

t=0

ENS7 = Ej , ®)

1
EPASA] = —E;

where k* := minargmax, . gy P« is the lexicographically first of all the superior
arms in the trial. The means of EPASA and ENS are linear transformations (so,
produce an equivalent performance ordering of procedures) in the case of two arms,
but their variability is not so easily linked (and they are not equivalent in the case of
more than two arms because EPASA does not capture how the allocations are split
among the non-superior arms).

Kelly (1981) derived an allocation procedure which is optimal to be used at the
beginning of a trial (assuming an infinite trial size) with the objective of providing the
maximum Bayes-expected patient benefit. It is known as the least failures first (LFF)
rule, and it sequentially allocates patients to the intervention with fewer observed
failures, breaking the ties in favour of the intervention with more observed successes
(breaking the double ties arbitrarily). It is easy to see that this procedure continues
allocating patients to the same intervention as long as observing successes and it
switches to the other intervention after the first or after the second observed failure
since the last switch. See also (Jacko, 2019b) for a discussion of its similarity to the
“stay-with-a-winner&switch-on-a-loser” rule known in the biostatistics literature as
the “Play-the-winner” rule (Zelen, 1969). This procedure in the long term converges
to the ratio (1 — 6p) : (1 — O¢), which is the same asymptotic ratio as of the “Play-
the-winner” rule (Zelen, 1969) and of a specific configuration of the “Randomized
play-the-winner” with its parameter @ = 0 (Wei and Durham, 1978; Rosenberger,
1999). For instance, if 8¢ = 0.5 and 8p = 0.2 (or 0.8), the ratio is 8:5 (or 2:5),
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while 8p = 0.1 (or 0.9) gives the ratio 9:5 (or 1:5); ratio 2:1 is optimal for instance
if 6c =0.5and 8p =0.0 orif 8¢ = 0.8 and 6p = 0.6.

For a finite trial size, the maximum Bayes-expected patient benefit can be obtained
only computationally, using dynamic programming (DP) methods such as the exact
(optimal) method of backward recursion or approximate (near-optimal) methods
such as the Whittle index rule and the Gittins index rule. All these methods result
in allocation procedures which are not only adaptive (to observed successes and
failures on each arm) but also non-myopic meaning that they depend on the trial
size T. The backward recursion and the Whittle index rule have this dependence
direct by defining the (remaining) time horizon of the optimization problem at every
moment by the (remaining) trial size. The Gittins index rule has this dependence
only indirectly by choosing the discount factor which should reflect the trial size.
Jacko (2019b); Pilarski et al. (2021) illustrated that efficient coding in performance-
oriented programming languages (such as Julia and C++) allows for using these
computational methods for offline calculation of the allocation procedures (stored in
lookup tables) for trials sizes of up to several thousand on standard computers. The
backward recursion method is only practical when the number of arms is small, but
the sub-optimality of some index rules is practically negligible (see Section 4).

Other allocation ratios that are patient-benefit optimal given a constraint on the
variance of a function comparing the two interventions were developed in (Rosen-
berger et al., 2001).

3.4 Trial Size

While all the above approaches try to optimize a metric for a given trial size, a very
common approach in practice is actually to minimize the trial size given (some of)
the above metrics as constraints. This is because shorter trials are cheaper (recent
studies report a cost of over $100, 000 per in-trial patient for some diseases) and, if
approved, lead to a longer patent-protected marketing period.

3.5 Multiple Metrics

Besides the single-metric optimization, typically subject to a single constraint, re-
searchers have developed procedures that come close to optimizing several metrics.
These are usually tunable procedures, in which some parameters can be set to (di-
rectly or indirectly) give higher or lower weight to a particular metric. We will discuss
two such families of procedures: the tunable Upper Confidence Bound (¢ UCB) proce-
dures and the Constrained Randomized Dynamic Programming (CRDP) procedures.

Following Bubeck and Cesa-Bianchi (2012, Section 2), we consider the popular
aUCB procedure which allocates each arm once in the initial two periods, and then
deterministically allocates every patient to the arm with currently the largest index
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Crit. Hy: po=p1 =03 H,:pp=03, p1=0.5
Value|Type I E EPASA (SD) ENS (SD) |Power EPASA (SD) ENS (SD)
EFR 1.645| 0.052 0.500 (0.04) 44.34 (5.62)[0.809 0.501 (0.04) 59.17 (6.03)
TS 1.645| 0.066 0.499 (0.10) 44.39 (5.58)|0.795 0.685 (0.09) 64.85 (6.62)
2UCB 1.645 | 0.062 0.499 (0.10) 44.30 (5.60)0.799 0.721 (0.07) 66.03 (6.57)
RBI 1.645| 0.067 0.502(0.14) 44.40 (5.57)(0.763 0.737 (0.07) 66.43 (6.54)
RGI 1.645| 0.063 0.500 (0.11) 44.40 (5.61)|0.785 0.705 (0.07) 65.46 (6.40)
CB F, 0.046  0.528 (0.44) 44.34 (5.55)|0.228 0.782 (0.35) 67.75 (12.0)
WL F, | 0048 0.499 (0.35) 44.37(5.59)|0.282 0.878 (0.18) 70.73 (8.16)
Gl F, 0.053 0.501 (0.26) 44.41(5.58)|0.364 0.862 (0.11) 70.21 (7.11)

Table 1 Comparison of procedures in a two-arm trial of size T = 148 by simulation. 1.645: the
critical value used in z-test (two-sided; confidence level approximately 0.9); F,,: Fisher’s adjusted
test (two-sided). TS: Thompson sampling; RBI: Randomized belief index; RGl: Randomized Gittins
index; CB: Current belief; WI: Whittle index; Gl: Gittins index (with discount factor 0.99. Re-printed
(adapted) from Villar et al. (2015, Table 5).

(breaking ties randomly) of the form

sk (1) a-In(t+1)
0+ @ T\ 50+ o) (10)

where o > 0. The original procedure introduced in Auer et al. (2002) used « = 2.
Theoretical upper bounds currently exist for @ > 1, but researchers have noticed
empirically that lower values of « typically lead to better performance and some
used @ = 1, see, e.g., Cserna et al. (2017). Numerical experiments of finite trials
have revealed that approximately the best patient benefit is robustly achieved with
a = 0.18 (Jacko, 2019b) or @ = 0.19 (Pilarski et al., 2021). Note that setting @ = 0
recovers the (frequentist) myopic procedure which at every period selects the arm
with highest sample mean.

Williamson et al. (2017) proposed an extension of the DP procedure called CRDP
in which (i) the original identity between selected actions and arm allocations is
disrupted by a random perturbation (i.e., adding randomization), and (ii) it is allowed
to introduce penalties in undesirable end-of-trial states (i.e., adding constraining).
They proposed that a good trade-off between patient benefit and statistical properties
may be achieved by setting the randomization parameter to 0.9 and by penalizing
the states with less than 0.157 observations on either arm. Note that DP is recovered
by setting the randomization parameter to 1.0, while EFR is recovered by setting it
to 0.5 (and not penalizing any states).

4 Illustrative Results for Two-armed Problem

We re-examine the experimental setting presented in Villar et al. (2015, Section
5.1), and we re-print results from the original Villar et al. (2015, Table 5) in Table 1
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Hy:po=p1 =03 H,:pp=03, p;=0.5
z-test F-test  EPASA (SD) z-test F-test EPASA (SD) ENS (SD)
0.95/0.98 0.91/0.95 0.95/0.98  0.91/0.95
EFR 0.051/0.021 0.058/0.024 0.500 (0.041)|0.805/0.676 0.755/0.589 0.500 (0.041) 59.200 (5.960)
LFF 0.054/0.023 0.057/0.024 0.500 (0.029)|0.804/0.672 0.746/0.567 0.586 (0.033) 61.735 (6.199)
2UCB 0.063/0.031 0.068/0.033 0.500 (0.101)|0.786/0.637 0.707/0.497 0.727 (0.077) 65.915 (6.543)
1UCB 0.073/0.038 0.079/0.040 0.500 (0.142)|0.751/0.581 0.652/0.432 0.785 (0.090) 67.638 (6.724)
0.5UCB  [0.089/0.049 0.095/0.050 0.500 (0.199)|0.650/0.442 0.547/0.308 0.838 (0.103) 69.219 (6.894)
0.25UCB  [0.097/0.051 0.105/0.051 0.500 (0.271)]0.462/0.243 0.379/0.173 0.872 (0.134) 70.221 (7.299)
0.18UCB  [0.091/0.047 0.101/0.047 0.500 (0.308)|0.356/0.158 0.308/0.104 0.877 (0.163) 70.356 (7.740)
oUcB 0.001/0.000 0.001/0.000 0.500 (0.483)|0.012/0.007 0.011/0.004 0.692 (0.445) 64.883 (14.51)
37C+0.8RDP |0.063/0.030 0.068/0.031 0.500 (0.181)[0.746/0.600 0.663/0.478 0.714 (0.060) 65.527 (6.240)
22C+0.9RDP |0.077/0.040 0.085/0.040 0.500 (0.259)(0.650/0.492 0.565/0.371 0.801 (0.097) 68.116 (6.696)
15C+0.95RDP|0.091/0.048 0.101/0.049 0.500 (0.298)[0.580/0.412 0.504/0.314 0.840 (0.118) 69.270 (7.021)
0.95RDP  |0.090/0.047 0.104/0.048 0.500 (0.313)|0.511/0.346 0.454/0.264 0.856 (0.144) 69.726 (7.455)
0.99RDP  [0.077/0.031 0.097/0.034 0.500 (0.344)|0.323/0.170 0.308/0.123 0.882 (0.166) 70.504 (7.849)
37C+DP  |0.063/0.030 0.068/0.031 0.500 (0.209)[0.715/0.575 0.634/0.461 0.734 (0.050) 66.128 (6.159)
30C+DP  |0.068/0.032 0.073/0.036 0.500 (0.244)[0.675/0.523 0.586/0.407 0.776 (0.066) 67.371 (6.320)
22C+DP  |0.076/0.040 0.086/0.039 0.500 (0.282)[0.604/0.453 0.522/0.344 0.820 (0.089) 68.682 (6.600)
15C+DP  {0.092/0.047 0.105/0.047 0.500 (0.313)]0.536/0.376 0.467/0.288 0.854 (0.114) 69.666 (6.962)
7C+DP 0.089/0.029 0.116/0.032 0.500 (0.343)|0.411/0.250 0.369/0.219 0.880 (0.151) 70.441 (7.590)
DP 0.073/0.026 0.094/0.028 0.500 (0.352)|0.263/0.116 0.262/0.078 0.888 (0.172) 70.696 (7.964)
Wi 0.065/0.022 0.090/0.024 0.500 (0.363)|0.233/0.102 0.240/0.069 0.887 (0.184) 70.667 (8.185)
OracLE  [0.000/0.000 0.000/0.000 0.500 (0.500)|0.000/0.000 0.000/0.000 1.000 (0.000) 74.000 (6.083)

Table2 Comparison of different two-arm procedures for a trial of size T = 148 by exact calculation;
all values are rounded to three digits. The first two columns report the Type I error under the
null hypothesis and Power under the alternative hypothesis, respectively, of one-sided tests. F-
test: Fisher’s exact test; {0.91,0.95,0.98}: one-sided confidence levels; SD: uncorrected standard
deviation. Note that ENS (SD) under the null hypothesis is 44.400 (5.575) for all procedures.

(adapting the notation and terminology to this paper) for easy reference. The table
shows the results for a variety of two-arm procedures under both the null and
alternative hypotheses. The size of the trial was set to be T = 148 to ensure that a
traditional balanced design with EFR attains at least 80% power when rejecting Hy
with a (maximum) one-sided 5% Type-I error rate using the z-test.

In Table 2 we re-evaluate the measures of the trials designed using some of these
procedures. The table presents results in the same scenarios as originally presented
in Table 1, but it makes several extensions, improvements and corrections. First, we
complement the results presented originally by including additional procedures, and
provide a more robust picture due to the employment of several statistical tests and
confidence levels. While the original table was obtained by simulations, the results
presented here are for all the procedures obtained by exact calculations using the
backward recursion (and are thus accurate up to acomputer’s numerical precision), as
proposed in Jacko (2019b). A few measures are also calculated slightly differently.
EPASA originally included the prior (i.e., 2 pseudo-allocations on each arm), so
it slightly underestimated the value of EPASA reported here, which is based on
observed (or realized) allocations only. Hypothesis testing is performed using both a
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z-test and a Fisher’s exact test for comparing two binomial distributions. The z-test
was originally based on uncorrected variances (in order to allow for calculation of the
variance even for arms with a single observation), while here we use it with corrected
variances (using Bessel’s correction to obtain an unbiased variance estimator); we
moreover require that each arm has at least one observed success and at least one
observed failure at the end of the trial in order for the z-test to be employed, otherwise
the null hypothesis is not rejected; and we use the exact critical value instead of the
rounded 1.645. The Fisher test was originally two-sided, while here we report a
one-sided variant, which might not be fully equivalent due to the asymmetry of this
test; moreover, the one-sided significance level was originally adjusted (increased)
to achieve the one-sided Type I error of around 0.05, while here we present results
for significance levels of 0.05 and 0.09 (i.e., confidence levels of 0.95 and 0.91).
Both the original and our table report standard deviation, even though the original
table in Villar et al. (2015) referred to it as "s.e.".

As discussed in Villar et al. (2015), if one compares a traditional EFR procedure
to response-adaptive procedures (including bandit procedures) in the two-armed
setting, the first realization is that power is always higher in EFR but its patient benefit
metrics are always lower. Adaptive procedures have their power reduced because they
induce correlation among intervention allocations; for the deterministic policies like
the DP and UCB this effect is the most severe because they almost permanently skew
intervention allocation towards an intervention as soon as one exhibits a certain
advantage over the other arms. This table shows the tension between learning (high
power) and earning (high EPASA and ENS) and how different procedures settle for
a different balance between these two objectives.

Both tables show that even EFR leads to an inflated Type I error using the z-test
because of not having at least a certain number of both successes and failures on
each arm in order for the normal distribution to be an acceptable approximation of
the binomial distribution. Academic literature typically recommends that number to
be 5 or 10. In this scenario, we would need to require to have at least 11 successes
and 11 failures on each arm in order to obtain a Type I error below the significance
level of 0.05 (giving Type I error 0.0497 and power 0.8033). Looking at Table 2, LFF
also leads to a slightly inflated Type I error under the z-test, but the power is almost
the same as that of EFR, while bringing a notable patient benefit of 2.535 additional
expected successes. Under the F-test, the Type I error of these two procedures is
practically equal and notably below the significance level, while the power of LFF is
slightly lower.

Table 2 also includes ORACLE, which is the procedure that assumes that the success
probabilities are known, so it allocates all the patients to the superior arm; in case of a
tie (i.e., under the null hypothesis), it randomly picks one of the arms at the beginning
of the trial and sticks to it. Under the alternative hypothesis, this procedure provides
an upper bound for EPASA and ENS, and a benchmark for SD of ENS (which is
almost the same as that of EFR). Under the null hypothesis, it leads to the highest
SD of EPASA of 0.500. Note that oUCB comes close to it (0.483), because this
procedure is essentially a (frequentist) myopic procedure allocating the patients to
the arm with the currently highest sample mean. A Bayesian version of the myopic
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procedure is CB in Table 1, which allocates using the current belief (the mean of the
posterior distribution). All the three procedures are extremely aggressive and they
almost never end the trial with at least 1 success and 1 failure on each arm, and
so their Type I error and Power are extremely low (unless the significance level is
adjusted). We also see that under the alternative hypothesis, both coUCB and CB are
outperformed by many other procedures, and their SDs of ENS and of EPASA are
notably larger than those of all the other procedures. It is thus clear that these two
procedures are not good choices.

In terms of patient benefit, we look at both tables and focus on ENS under
the alternative hypothesis (because EPASA was calculated slightly differently, as
described above). The highest ENS is achieved by DP (70.696), closely followed by
WI (70.667) in Table 2. We believe that WI (70.73) in Table 1 is better than DP only
due to simulation error, but we do highlight that WI is an excellent approximation to
the DP. There are several runners-up with less than 1% ENS suboptimality: 0.99RDP
(70.504), 7C+DP (70.441), 0.18UCB (70.356) and Gl (70.21). This patient benefit
suboptimality comes with higher Type I error and higher power, but there are notable
differences between these procedures, depending on the test and confidence level
used, with no overall winner. For instance: in three out of the four tests, 7C+DP
has lower Type I error than 0.18UCB, but notably higher power and higher ENS; in
three out of the four tests, 0.99RDP has higher or equal power and higher ENS than
0.18UCB, but notably lower Type I error; in the two tests at higher confidence level,
7C+DP has lower Type I error and higher power than 0.99gRDP, but lower ENS.

Table 2 illustrates the flexibility of each of the three families of procedures: UCB,
CRDP, and CDP. For the CDP family, we increase the constraining parameter by
approximately 0.057, penalizing if there are fewer than 7, 15, 22, 30, 37 observations
on each arm. For the CRDP family, we include 0.99RDP and 0.95RDP to illustrate the
performance of unconstrained procedures, and then we set the constraining parameter
by approximately 0.05 above the complement of the randomization parameter (e.g.,
for 37C+0.8RDP, the complement of the randomization parameter 0.8 is 0.2, so we
set the constraining parameter to 0.257"). Note that varying the parameters of CRDP
and CDP leads to a monotone change in ENS, but varying the « in the UCB leads
to a concave change, as there is a maximum around @ = 0.18, and lower values
quickly deteriorate the performance. For all three families, we can see that the Type
I error is concave, while Power is monotone. These non-monotonicities give scope
for parameter optimization if the designer knows the relative importance of the three
metrics.

In order to compare among these three families, note that 2UCB, 37C+0.8RDP
and 37C+DP are quite similar in the Type I error, under all four tests, and also
quite similar in ENS, but there seems to be a mild difference in the power, with
2UCB dominating the other two. Another triple for comparison would be 0.5UCB,
15C+0.95RDP and 15C+DP, for which the conclusion would be similar, except for
the F-test at 0.95 confidence level, at which 15C+0.95RDP becomes the best in
power. Finally, comparing 0.18UCB, 0.99RDP and 7C+DP, 7C+DP is the best in
power for all tests. Note however that 37C+0.8RDP 15C+0.9RDP and 0.99RDP are
randomized procedures, while the other two families are deterministic.
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We note that TS in Table 1 performs relatively poorly in ENS, outperforming
only EFR and LFF, while losing only a bit of power and inflating the Type I error
comparing to these two procedures. This may be surprising for the reader but we
note that the table reports a finite sample performance of this asymptotically optimal
procedure.

In terms of statistical testing (excluding oUCB and ORAcLE from this discussion
due to their extremely low Type I errors), there are important differences between
the z-test and F-test at confidence level 0.95. The Type I error (expected to be
0.05) of the z-test is inflated by all the procedures, from 0.051 (EFR) up to 0.097
(0.25UCB), while that of the F-test is controlled well (the only inflation is to 0.051
of 0.25UCB), showing its most extreme conservatism for EFR (0.024), LFF (0.024),
and DP (0.028). In general, there is a strong correlation of Type I errors between
these two tests, z-test achieving approximately twice the Type I error of the F-test.
There are also notable differences in power, as the F-test achieves power of between
0.185 and 0.342 lower than the z-test. For the z-test at 0.98, the Type I error is also
inflated by all the procedures, from 0.021 (EFR) up to 0.051 (0.25UCB). An attentive
reader however might notice that the Type I errors reported for z-test at 0.98 and for
F-test at 0.95 are very similar across all the procedures. In fact, except for 22C+DP,
for which the relation is opposite by 0.001, the former always leads to a lower or
equal Type I error. At the same time, it always leads to a higher power. Similarly,
z-test at 0.95 is better than F-test at 0.91 is it always results in a lower Type I error
and in a notably higher power. The F-test is often cited as conservative, however,
Table 2 shows that at 0.91 confidence level that is not always true, especially for
some of the more aggressive procedures, which can even inflate the Type I error.
To the best of our knowledge, this is the first time that inflation of the Type I error
by the Fisher’s exact test has been reported in the literature. These observations
suggest that in the null and alternative hypotheses scenarios we have presented, it
might be preferable to use z-test over F-test. However, we emphasize that we have
discussed only a single pair of scenarios of the null and alternative hypotheses, the
performance of statistical tests for binomial samples is very sensitive to the specific
scenario parameters and the appropriateness of using these tests is highly dependent
on the specifics of each procedure, so we would refrain from any generalizations. In
practice, the trial designer could replicate our analysis and study a variety of plausible
scenarios. In theory, inference with data obtained by adaptive procedures remains
an important open question and requires further research. Some recent examples of
work in this area include Hadad et al. (2021); Zhang et al. (2020); Deliu et al. (2021)

The tables do not include any measures related to estimation, because that on its
own has trade-offs between precision and accuracy, which has been left out of this
chapter.
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5 Discussion

In this section we close the chapter by discussing how (and when) bandit models can
be specified to design a clinical trial beyond the traditional assumptions considered
in here. These include: the presence or possibility of delayed responses, other prac-
ticalities such as dropouts (or patients lost to follow up) and/or missing responses,
safety concerns, early evidence of efficacy or futility, and unavailability of prior
distributions. We also discuss how bandit models as those reviewed here, which are
typically defined for binary outcomes, can be used in practice to accommodate for
a primary endpoint that is non-binary through the use of an appropriate surrogate
endpoint. Finally, we discuss how the computational limitations of optimal bandit
approaches (i.e., those like CRDP for finite size trials) can be mitigated by using
an efficient programming language and a more effective coding syntax to allow for
designing and evaluating trials with several thousands of patients.

For many of the practicalities discussed below, we discuss how the MDP model
of CRDP could be amended, as some of these have been recently explored in the
literature. We are not aware how other procedures perform in the presence of them
or how could they be adjusted to incorporate each practicality.

5.1 Safety Concerns

Many trials in practice are forced to stop recruitment due to safety concerns by
observing secondary endpoints or adverse events, which have nothing to do with
the observed (primary endpoint) outcomes on which a response-adaptive procedure
is typically based. A designer using a response-adaptive procedure may need to
incorporate the possibility of stopping for safety concerns to introduce more control
over the number of observations from each arm. This can be done by incorporating
the probability of such stopping in the MDP model of the DP and CRDP procedures
(which we jointly refer to as (CR)DP), and by specifying constraints or by keeping
the degree of randomization relatively balanced in early stages. We are not aware
how that could be incorporated to procedures, which are agnostic to the trial size,
apart from UCB in which we could perhaps adaptively change the parameter « as
the trial evolves.

5.2 Prior Distributions

All the results presented in this paper assume for each arm the Bayes’ prior
Beta(1, 1), which is the uniform distribution, and is commonly considered non-
informative. This is the standard choice for binary outcomes in methodological pa-
pers using Bayesian framework. Trial designers can however consider an informative
one based on data from previous trials. The (CR)DP easily allows also for imple-
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menting a decreasingly informative prior (Donahue and Sabo, 2021) by modifying
the rewards and transition probabilities between states.

In some situations there is no previous reliable data or willingness to specify the
prior distributions for each arm. In that case, the trial could have an initial phase
in which a non-adaptive randomization procedure is used, and bandit approach is
employed only after that phase accumulates sufficient amount of information, which
will be taken as the prior distribution for the (CR)DP procedures. In Williamson and
Villar (2020) some sensitivity analysis for different informative priors in a continuous
endpoint case paired with an randomized index procedure is illustrated.

5.3 Delayed Responses

Williamson et al. (2021) evaluated how the (CR)DP procedure performs in two-
armed trials with both fixed and random delays in responses (i.e., in observations of
outcomes). This is an important question in practice which is natural to ask about any
response-adaptive procedure. To summarize, they illustrated that one gains slightly in
terms of power and bias through the delay, so in that sense delay could be viewed as a
positive attribute from the statistical point of view (which seems somewhat counter-
intuitive), but one loses in terms of patient benefit which is the main advantage of
using such response-adaptive procedures over alternatives. However, this loss is not
overly concerning and for a relatively large fixed delay length, for example, one third
of the sample size 75, the percentage of patients on the superior arm when pg = 0.5
and p; = 0.1 is approximately 23% higher for CRDP and 30% higher for DP than
the traditional approach of EFR. Further, when compared to the performance of
the most commonly studied procedure for delayed responses scenarios (Hardwick
etal., 2006), namely the Delayed Randomized Play-the-Winner Rule (DRPWR), there
are still considerable improvements with respect to the patient benefit for (CR)DP.
Therefore, this evaluation has shown that the (CR)DP procedures perform well in
trials with delayed responses since they continue to dominate in terms of the patient
benefit over other procedures for a range of (expected) delay lengths.

The investigation in Williamson et al. (2021) leads to a conclusion that it may
not be necessary to adjust the CRDP optimization horizon (i.e., to decrease T by
the delay length d) if the delay is large enough to satisfy the desired constraints
already by the equal fixed-randomization of the first d + 1 patients, and essentially
such constraints may not need to be included in the optimization model at all. For
smaller delays, if the designer decides to adjust the horizon, it might be beneficial for
fine tuning of the procedure to also appropriately adjust the constraining parameters
taking into account the observations of the patients which will be revealed after the
recruitment of the last patient. Another option the designer has is to reach the desired
trial design objectives for statistical operating characteristics (high power, small bias)
by modifying the randomization probabilities, either for the early patients that are
fixed-randomized before the first observation or for the remaining patients that are
allocated using the CRDP procedure, or both.
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Special attention needs to be paid if there is a possibility of overly delayed
responses so that these are not observed by the time of the final analysis. In that case,
(CR)DP with non-adjusted horizon may not even reach the final stage in which the
constraints are specified, so adjusting the horizon seems to be a preferred approach.

5.4 Dropouts and Missing Responses

When designing a randomized controlled trial, the designer needs to account for
the possibility of dropouts and missing responses, i.e., patients who are recruited
and get allocated to one of the arms, but we fail to observe their response, either
because they leave the trial or their outcome is erroneous. A simple approach the
designers can take is to estimate the probability of missing responses and inflate
the trial size so that the expected number of observations excluding the missing
responses is the desired one. With (CR)DP we can take this possibility into account
by adjusting the procedure optimization horizon by a constant, e.g. for a trial size
T, taking the procedure horizon T' — m, where m is an estimate of the number of
missing responses, and correspondingly specify the constraints for the final stage
T — m. It is also possible to consider a random number of missing responses, which
would keep the procedure horizon T but would include constraints not only in the
final stage, but also in previous stages which we would like to avoid. In that case, the
state-transition probabilities of the MDP model of the (CR)DP procedure could be
modified to account for the probability of observed dropouts or erroneous outcomes.

5.5 Early Evidence of Efficacy or Futility

Although the trial size is usually planned based on existing data and/or expert opinion
about the expected intervention effect (i.e. difference between the two intervention
success probabilities), such estimates likely come with a large variance and bias.
Both frequentist and Bayesian concepts have been developed to identify situations
during the trial which would identify sufficient evidence of efficacy or futility of an
intervention. In case of evidence of futility of a novel intervention, recruitment to
this arm should be stopped to keep patient benefit for the remaining in-trial patients
at least at the level of thecurrent standard of care. In case of evidence of efficacy of
a novel intervention, there are two common design approaches: (1) a decision as a
result of an interim analysis is made to stop the recruitment to the novel arm, and
the intervention to “graduate” to another separate trial to confirm efficacy, or (2) the
trial seemlessly transforms to such a confirmatory trial without an explicit interim
analysis.

Both cases can be incorporated in the MDP model of the CRDP procedure. For
instance, consider a state of the trial with 5 observations on each arm, with the most
extreme data: 5 successes and O failures on one arm, and O successes and 5 failures on
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the other arm. The Fisher’s exact test would give a one-tailed p-value of 0.004 based
on this data, showing evidence of difference between the two arms. In case of an
interim analysis which would stop recruitment for futility of the novel arm, the MDP
model of the CRDP procedure can be modified by assuming that all the remaining
in-trial patients will be allocated to the control arm, i.e., by modifying the reward of
that state and by modifying the state-transition probabilities to “jump” to the end of
the trial. In case of an interim analysis which would stop recruitment for efficacy of
the novel arm, the MDP model can be modified by assuming that all the remaining
in-trial patients will be randomized in the new separate trial, i.e., by modifying the
reward of that state and by modifying the state-transition probabilities to “jump” to
the end of the trial. In case of a seamless transformation of the trial, the degree of
randomization of the subsequent states can be defined differently from the degree of
randomization of the subsequent states that do not show such a strong evidence, so,
effectively, further generalizing the CRDP procedure to allow for randomization p
to depend not only on arm j and time stage ¢ as in Williamson et al. (2021) but also
on the state (i.e., numbers of successes and failures) itself.

5.6 Non-binary Outcomes

Development of an analogous randomization procedure to (CR)DP when the primary
endpoint is non-binary is theoretically possible, but computationally will become
infeasible for much smaller trial sizes than the current variant for binary outcomes.
The designer could still however employ the binary-outcomes (CR)DP by using a
dichotomization of the primary endpoint or by using an auxiliary endpoint correlated
with the primary endpoint. Although dichotomization may not lead to as high pa-
tient benefit as theoretically achievable using the original endpoint, if meaningfully
defined it could lose only a negligible amount and thus still bring important patient
benefit over alternative response-adaptive procedures. The degree of randomization
could be adjusted in order to reflect the designer’s confidence in the correlation be-
tween the primary and auxiliary endpoint. See, for instance, Williamson and Villar
(2020) for such an investigation for normally distributed outcomes.

5.7 Exploratory Trials

In a two-armed setting, we discussed and illustrated the conflict between patient
benefit (patient outcomes) and relevant statistical features (error levels and estimation
metrics). In the two-arm setting, there is little scope for a bandit procedure to be
superior to EFR in terms of the latter metrics. In a multi-armed setting (as for
example large platform trials are), this is not necessarily the case, and depending
on the main objective of the trial (e.g. the specific statistical power definition used)
and the type of bandit procedure, one can find alternatives that may be superior to
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EFR in both the statistical features and patient benefit. Exploratory trials, which are
often multi-armed, are moreover not meant to directly lead to a regulatory approval,
and thus may not need to perform in statistical operating characteristics as strictly as
confirmatory trials would need to.

This was illustrated in Villar et al. (2015, Table 6) reproduced here as Table 3
for easy reference. The results in there show how some randomized and semi-
randomized bandit procedures (i.e., TS, 2UCB, RBI, RGI) exhibit an advantage over
EFR both in the achieved power and in ENS. These procedures continue to allocate
patients to all arms during the trial while skewing allocation to the best performing
arm, hence, ensuring that by the end of the trial the control arm will have a similar
number of observations as with EFR while the best arm will (in expectation) have a
larger number. Among these procedures, TS and 2UCB exhibit the best performance
in power and ENS as they are both greater than those achieved by EFR, although
they cause a slight inflation of the Type I error. Whie RBI and RGI were performing
somewhat similarly to TS and 2UCB in the two-armed setting shown in Table 1, their
performance in ENS terms is notably inferior in the multi-armed setting shown in
Table 3.

The deterministic index-based procedures CB and Gl increase the advantage in
ENS over EFR even more, while the Type I error is controlled using an adjusted
Fisher test. However, this conservative test causes a severe reduction in power of
these procedures. A simple way to overcome the severe loss of statistical power of
the deterministic procedures in the the multi-armed setting introduced in Villar et al.
(2015) suggests to use a composite procedure in which the (random) allocation to
the control arm is protected and the allocation to experimental arms is guided by a
deterministic procedure. For example, in Table 3 results are shown for a procedure
in which one in every K patients (note that K is the number of experimental arms) is
allocated to the control group while the allocation of the remaining patients among the
experimental treatments is done using the Gittins index procedure. This procedure
was referred in there as the controlled Gittins index (CGl) procedure. Simulation
results show that a simple procedure like CGl manages to solve the trade-off quite
successfully, in the sense that it achieves the highest power, lowest Type I error and
an ENS very close to that achieved by the myopic CB procedure but with a third of
the variability that CB exhibits.

5.8 Large Trials

Williamson et al. (2017) developed the (CR)DP procedure in the context of rare
diseases, and thus focused on relatively small trial sizes. They provided an “efficient
algorithm” for (CR)DP implemented in the statistical software R and reported that
the maximum time horizon that “can be computed on a standard laptop using R is
T = 215” and that computations are “feasible on a standard performance workstation
(1 TB of RAM) for 215 < T < 600”. Jacko (2019b,a) however showed that much
larger horizons are possible to compute on standard computer (with 32 GB RAM)
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Crit.| Ho:po=p1=p2=p3=03 |H :po=p1=p2=03,p3=0.5
Value|Type I E EPASA (SD) ENS (SD) |Power EPASA (SD) ENS (SD)
EFR 2.128 | 0.047 0.250(0.02) 126.86 (9.41)[0.814 0.250 (0.02) 148.03 (9.77)
TS 2.128| 0.056 0.251(0.07) 126.93 (9.47)|0.884 0.529 (0.09) 172.15 (13.0)
2UCB 2.128| 0.055 0.251 (0.06) 126.97 (9.41)|0.877 0.526 (0.07) 171.70 (11.9)
RBI  2.128 | 0.049 0.250 (0.03) 126.77 (9.40)[0.846 0.368 (0.04) 158.34 (10.4)
RGI  2.128 | 0.046 0.250 (0.03) 126.80 (9.36)|0.847 0.358 (0.03) 157.26 (10.3)
CB F, 0.047 0.269 (0.39) 126.89 (9.61)[0.213 0.677 (0.41) 184.87 (36.8)
Gl F, | 0.048 0.248(0.18) 126.68 (9.40)|0.428 0.831 (0.10) 198.25 (13.7)
CGl  2.128 | 0.034 0.250(0.02) 127.16 (9.46)[{0.925 0.640 (0.08) 182.10 (12.3)
ORACLE 0.000 0.250 (0.43) 126.90 (9.42)[0.000 1.000 (0.00) 211.50 (10.3)

Table 3 Comparison of procedures in a four-arm trial of size T = 423 by simulation. F,: Fisher’s
adjusted test; Type I E: family-wise type I error; CGl: Controlled Gittins index. Re-printed (adapted)
from Villar et al. (2015, Table 6).

if using a more efficient programming language (Julia) and a more effective coding
syntax, with up to 7 = 4,500 for online calculation and 7 = 1,500 for offline
calculation (storing the whole (CR)DP procedure allocations in an array for saving
on a hard disk).

The (CR)DP procedure could be in theory generalized to more than 2 arms, but
in practice that might lead to computationally infeasible model. Alternatives which
closely approximate the DP procedure are the Whittle index and the Gittins index
(Villar et al., 2015; Villar, 2018; Jacko, 2019b). However, their modifications to
include constraints like in the CRDP procedure have not been developed yet and
may not always be possible, especially for constraints that depend on more than one
arm, because the Whittle and Gittins indices crucially function by decomposing the
trial-level optimization problem into single-arm optimization subproblems. Never-
theless, single-arm constraints such as about the number of observations from each
arm should be implementable. If constraints are not required, then the degree of
randomization can be easily implemented using the Whittle or Gittins index instead
of the DP procedure in the alternative interpretation described in Williamson et al.
(2021).
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