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A Little History

What are we talking about?
Models and methods for the dynamic allocation of a single key
resource among a collection of stochastic reward generating
projects (bandits) which are competing for it. Solutions which
make use of simple project-based measures (indices) to guide
decision-making;

Three historic papers

JC Gittins and DM Jones (1974) ”A dynamic allocation index for
the sequential design of experiments”, North-Holland, Amsterdam
(Presented at EHS, Budapest, 1972)

P. Whittle (1988) ”Restless bandits: Activity allocation in a
changing world”, J.Appl. Prob

DP Bertsimas and J Niño-Mora (1996) ”Conservation laws,
extended polymatroids and multi-armed bandit problems: A
polyhedral approach to indexable systems”, Maths of OR.
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Multi-Armed Bandit Allocation Indices
Gittins, Glazebrook & Weber (2011)
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Problem 1: Dynamic Resource Allocation
with Hodge, Kirkbride, Minty

N stochastic reward generating/cost incurring projects are
driven by the application of some divisible resource.

At each decision epoch (state transition) an action
a = (a1, a2, . . . , aN) is applied to the system.

Admissible actions:

A =
[
a; an ∈ {0, 1, . . . ,S}, 1 ≤ n ≤ N, and

∑N
n=1 an ≤ R

]
.

System state: x = (x1, x2, . . . , xN) ∈ NN .

Project n:

{
Reward rate earned, dn(xn),
Transition rates, qn (x ′n | an, xn)

Construct a policy for resource allocation to maximise the
average return per unit time from all projects.

S = 1,R < N : Whittle’s RB Model

S = 1,R = 1 and no resource ⇒ no transition: Gittins’ MAB

Take S = R in what follows.
5 / 25



Problem 1: Index Policies (1)

Optimisation Goal:

Dopt = max
u

N∑
n=1

Dn(u) (admissible policies)

↓
Lagrangian Relaxation (LR):

D(W ) = max
u

N∑
n=1

{Dn(u)−WRn(u)}+ WR

(constraint
∑

an ≤ R abandoned)

D(W ) ≥ Dopt , W ∈ R+

min
W

D(W ) achieved at W ∗. (”Soft” problem)
↓

Projectwise Decomposition:

D(W ) =
N∑

n=1

Dn(W ) + WR, where

Dn(W ) = max
un
{Dn(un)−WRn(un)} (problem P(n,W ))
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Problem 1: Index Policies (2)

(Full) Indexability:
Project n is fully indexable if there exist stationary policies
{un(W );W ∈ R+} such that

(a) un(W ) is optimal for P(n,W ), and
(b) un(xn,W ) is decreasing in W ∀ xn

↓
Indices:
If project n is fully indexable, define indices

Wn(an, xn) = inf{W ; un(xn,W ) ≤ an} (index as fair charge)
↓

Index Solution to LR:
If all K projects are fully indexable the above Lagrangian
Relaxation is solved by the policy u(W ) such that ∀ x

u(W , x) = a ⇐⇒ Wn(an − 1, xn) >W ≥Wn(an, xn), ∀ n.

In words: accumulate resource at each project until the fair charge
for adding further resource falls below the prevailing charge W .
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Problem 1: Index Policies (3)

Index heuristic for the original problem:
Increase resource levels at the projects in decreasing order of the
appropriate indices/fair charges until the resource constraint is
violated.

Example:
Let N = 2, x = (5, 2)

0 W1(4, 5) W1(3, 5)W1(2, 5) W1(1, 5) W1(0, 5)

W2(4, 2) W2(3, 2) W2(2, 2) W2(1, 2)W2(0, 2)

W

0

∗ ∗

∗ ∗ ∗

Optimal action for Lagrangian Relaxation: (a1, a2) = (2, 4).
If S = R = 5, greedy index heuristic ∗ chooses (a1, a2) = (2, 3).
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Problem 1: A Queueing Control Example

A team of R servers provides service at N stations. Station n
has finite waiting room of size Bn. Completed services at
station n earn a return dn. Arrivals at full stations are lost.
How to dynamically allocate the R servers among the stations
to maximise the aggregate return rate?
Dynamics at station n with an servers:

0 xn − 1 xn xn + 1 Bn

µn(an) λn

Service rate µn(an) is strictly increasing and strictly concave
in an.
Reward rate: dn(xn) = dnλnI (xn < Bn)

Station n is fully indexable.
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Problem 1: Queueing Control (continued)

Analysis of problems with N = 2, S = R = 25, d1 = d2 = 1,

µn(an) = anµn(an + νn)−1, n = 1, 2

and a range of choices for λ1, λ2, µ1, µ2, ν1, ν2, B1, B2.

MIN LQ MED UQ MAX #problems

Greedy
Index

0.0023 0.0148 0.0235 0.0336 0.1199 5250

Optimum
Static

17.9544 23.4628 25.4526 27.4720 33.8567 5250

Percentage reward rate deficit compared to optimum
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Problem 1: (Full) Indexability

Indexability is guaranteed for Gittins’ MAB model;

Indexability is NOT guaranteed for Whittle’s RB model.

Usually established (when true) using direct arguments for

particular models. General approaches based on conservation

laws/polyhedral ideas espoused by Niño-Mora (2001);
(Full) indexability for the general DRA model has only been
established for projects with birth-death dynamics exhibiting
diminishing returns as the resource increases. DP-based proofs
are tough.

Numerical tests for full indexability may be available;
Full indexability may be available locally but not globally -
Hodge and Glazebrook (2011);
Can use policy improvement to explore good (but sub-optimal)
solutions to the Lagrangian relaxation which have an indexable
structure - Glazebrook et al. (2014).
See Graczová and Jacko (2014).
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Problem 1: Performance of Policies

Gittins’ index policies are optimal for Gittins’ MAB model,

index-based performance bounds on general policies available;

Strong empirical performance of Whittle’s index policy observed

widely;

Under mild conditions, Whittle’s index policy is optimal for

Whittle’s RB model in a limit as the amount of resource (R)

and the number of bandits (N) scale in proportion - Weber and

Weiss (1990); see also Verloop (2016);

Polyhedral approaches to performance bounds based on

Niño-Mora’s indexability work sometimes available for RBs -

e.g. Glazebrook et al (2009);

Other forms of asymptotic optimality have been established for

specific (queueing) RB models - Glazebrook et al. (2009);

Weber and Weiss (1990) asymptotic optimality results extend

to the general DRA model - Hodge and Glazebrook (2015).
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Problem 2: Optimal Two-Speed Search
with Clarkson, Lin

Goal: Determine a policy to minimise the expected time to find
the object.
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Problem 2: Some History

Single-speed problem first solved in 1962 (Blackwell): search box
with maximal p′i qi/ti with p′i the current posterior;

Kelly (1979) argues that the single-speed problem can be modelled
as a MAB, with Blackwell’s policy the Gittins index policy;

The two-speed problem can be modelled as a family of alternative
superprocesses, a variant of the MAB in which bandits have
several active actions. Notion of strong indexability (Whittle,
1980): for given (box, state)

If within-box subsequences of search modes Ai = {ai,n; n ∈ Z+} are

pre-specified for each box i , optimal policy is a Gittins index policy

with indices Gi (•,Ai ), 1 ≤ i ≤ N.
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Problem 2: Main Result

Theorem

(a) If any box j satisfies

qj,s
tj,s
≥ qj,f

tj,f
(j ∈ S)

then an optimal search sequence exists where box j is only searched slowly.

(b) If any box j satisfies

qj,f · (1− qj,s)

tj,f
≥ qj,s

tj,s
(j ∈ F)

then an optimal search sequence exists where box j is only searched fast.
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Problem 2: Main Result

Theorem

(a) If any box j satisfies

qj,s
tj,s
≥ qj,f

tj,f
(j ∈ S)

then an optimal search sequence exists where box j is only searched slowly.

(b) If any box j satisfies

qj,f · (1− qj,s)

tj,f
≥ qj,s

tj,s
(j ∈ F)

then an optimal search sequence exists where box j is only searched fast.

Write H = {1, 2, . . . ,N} \ {S ∪ F}. How to search H-boxes?
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Problem 2: Building Intuition

Notion of immediate benefit from search mode • ∈ {s, f }
given by IB• = q•/t•;

Notion of future benefit from search mode · given by

FB• =
d

dx

{
1− p

p(1− q•)x/t• + 1− p

}∣∣∣∣
x=0

=
−p(1− p) log(1− q•)

t•

;

For S-boxes we have IBs ≥ IBf and FBs ≥ FBf while for

F-boxes we have IBf ≥ IBs and FBf ≥ FBs ;

For H-boxes we have IBf ≥ IBs . Trade off IB-advantage of fast

against (possible) FB-advantage of slow:

α =

(
IBf

IBs
− 1

)
> 0; β =

FBs

FBf
− 1.

Natural choice of threshold satisfies

p̃α = (1− p̃)β ⇒ p ≥ p̃ = β
α+β search H-box fast.
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Problem 2: (Approximate Invariance)

Two-box problem. Box 1 has two search modes with q1,f = 0.4,
t1,f = 1, q1,s = 0.64 and t1,s = 1.7. Box 2 has one mode. We take
q2 ∈ {0.3 (upper), 0.6 (middle), 0.9 (lower)} and 0.5 ≤ t2 ≤ 2.5;
Proposed threshold p̃ = 0.738 for this example
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Problem 2: A Two-Speed Heuristic Policy

For each i ∈ H, consider searching box i fast if pi is above the

threshold p̃i .

For pi lower than the threshold p̃i , try both policies searching

all fast and all slow

Choice of two thresholds above which we consider fast: 0 or p̃i .

Leads to up to 2|H| policies, let that with the lowest expected

search time be the best threshold (BT) policy.
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Problem 2: Numerical Results: N = 4
Results reported as percentage over optimal value estimate.

Simulated N × 1, 000 pairs of boxes, using a pre-selected 5 priors representing a
scenario.

Table: Test with N = 4 and |H| = 4.

Uniform Prior
Metric/Policy DR BSM BT

Mean 1.42 0.007 0.006
75th Percentile 2.11 0 0
95th Percentile 6.59 0.042 0.034

One Box Dominates Prior
Metric/Policy DR BSM BT

Mean 1.09 0.043 0.010
75th Percentile 1.42 0 0
95th Percentile 5.01 0.271 0.043

DR: Detection Rate, all boxes in H searched fast.

BSM: The best of the 2|H| single-mode policies.

BT: Best Threshold, our only two-speed heuristic.
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Problem 2: Numerical Results: N = 8
Results reported as percentage over optimal value estimate.

Simulated N × 1, 000 pairs of boxes, using a pre-selected 5 priors representing a
scenario.

Table: Test with N = 8 and |H| = 8.

Uniform Prior
Metric/Policy DR BSM BT

Mean 2.24 0.004 0.004
75th Percentile 3.45 0 0
95th Percentile 5.43 0.008 0.007

One Box Dominates Prior
Metric/Policy DR BSM BT

Mean 2.06 0.017 0.006
75th Percentile 2.98 0 0
95th Percentile 4.98 0.023 0.009

DR: Detection Rate, all boxes in H searched fast.

BSM: The best of the 2|H| single-mode policies.

BT: Best Threshold, our only two-speed heuristic.
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Problem 3: Intelligent Intelligence Gathering and Analysis
with Kirkbride, Marshall, Szechtman

Scenario: Copious amounts of data possibly related to an
intelligence question are available from a number of sources of
unknown quality/relevance. Analytical capability is limited as is
the time available. A processor makes an initial estimate of the
value/relevance of individual items drawn from the sources. Only
items of high value/relevance should be passed on for analysis.

Proposal: Model as a Multi-Armed Bandit Allocation (MABA)
model with finite horizon (T ), a variant of the MAB in which any
M (typically � T ) of the T observed rewards are claimed/realised.
Rewards are claimed (or not) immediately after observation. Goal
is to maximise aggregate reward claimed. Bayesian formulation.
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Problem 3: MABA Model

Active source/bandit transitions:

- Pre-Activation State: x (sufficient statistic for source quality)

↓
- Reward (r) sampled from {p(• | x), • ∈ Σ}, Σ a finite connected

subset of N. Reward r is claimed or not.

↓
- Post-Activation State: X (x , r) (new value of sufficient statistic)

Non-active source/bandits do not generate rewards nor change

state.

Bandits are activated one at a time over horizon T . No more

than M may be claimed.
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Problem 3: MABA Analysis

Approach: Relax MABA to MABA*. In MABA*, any number of
sources/bandits may be activated at t = 0, 1, . . . ,T − 1. Each
reward sampled may be claimed or not.
Constraints for MABA*:

E (total activations) ≤ T , E (total rewards claimed) ≤ M.

Plainly, value of MABA* ≡ V ∗ ≥ V ≡ value of MABA.

Idea: Solve MABA* by means of Lagrangian relaxation. This
induces a decomposition of the problem by source/bandit. Need to
solve a thresholding/stopping problem for each source/bandit.
Stopping problem has an index solution for any given reward
threshold.
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Problem 3: MABA Analysis (Contd.)

Consider a source/bandit which has been activated at
0, 1, . . . , t − 1 and which is in state x .
Consider stopping times on bandit activation from this point:

τ = min (min [s; s ≥ t and X (s) ∈ ωs ] ;T ) .

For given reward threshold C , we have associated index

ωt(x ,C ) = max
τ

E
{∑τ−1

s=t (rs − C )+ | x
}

E (τ | x)

Result: There exist W ∗, C ∗ such that MABA* is solved as
follows: at all epochs t activate all sources/bandits k for which
ωkt{Xk(t),C ∗}>

(−)
W ∗ and claim all rewards >

(−)
C ∗.

Remark: Construct a ‘single arm activation’ version of the above
policy for MABA* and thereby develop heuristics for P in the form
of admissible approximations to it.
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Some Open Issues

Problem 1: Major unresolved issues concerning (full)

indexability and index policy performance;

Problem 2: Game theoretic versions, two-speed search on a

graph, multi-speed search;

Problem 3: Most effective construction of admissible

approximations to index policy, competing approaches and

formulations.
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