
Tutorial: A Unified Modeling and Algorithmic
Framework for Optimization under Uncertainty

StochMod 2018
Lancaster, UK

June 13, 2018

Warren B. Powell

Princeton University
Department of Operations Research

and Financial Engineering

© 2016 Warren B. Powell, Princeton University

Learning problems

Materials science
» Optimizing payloads: reactive

species, biomolecules,
fluorescent markers, …

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity

Learning problems

Health sciences
» Sequential design of

experiments for drug discovery

» Drug delivery – Optimizing the
design of protective
membranes to control drug
release

» Medical decision making –
Optimal learning for medical
treatments.

Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the
behavior of the molecule. We approximate the performance using
a linear belief model:

0

ij ij
sites i substituents j

Y X    

» How to sequence experiments to
learn the best molecule as quickly
as possible?

R
eg

re
t

Ride sharing
Uber/Lyft
» Provides real-time, on-demand

transportation.
» Drivers are encouraged to enter or leave

the system using pricing signals and
informational guidance.

Decisions:
» How to price to get the right balance of

drivers relative to customers.
» Real-time management of drivers.
» Policies (rules for managing drivers,

customers, …)

Ride sharing

RidersCars

t t+1 t+2

Ride sharing

t t+1 t+2

Ride sharing

t t+1 t+2

Ride sharing

Matching buyers with sellers
Now we have a logistic curve for
each origin-destination pair (i,j)

Number of offers for each (i,j) pair
is relatively small.
Need to generalize the learning
across hundreds to thousands of
markets.

0

0(, |)
1

  

  


 

 




a
ij ij ij

a
ij ij ij

p a
Y

p a

eP p a
e

Buyer Seller

Offered price

Emergency storm response

Hurricane Sandy
» Once in 100 years?
» Rare convergence of events
» But, meteorologists did an

amazing job of forecasting
the storm.

The power grid
» Loss of power creates

cascading failures (lack of
fuel, inability to pump water)

» How to plan?
» How to react?

XX

X

X

X

X

12
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.26 0.38 0.78 0.6 0.6

0

0

0
0.02

0.03

0.04

0.04

0.05

0.064

0.0640.064 0.064

0.502 0.502

0.502 0.502 0.502

0.603 0.603

0.670.670.05

0.05

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

Emergency storm response

XX

X

X

X

X

13
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.0 0.0 0.0 0.0 0.0

0

0

0
0.032

0.048

0.05
6 0.056

0.08

0.0604

0.06040.0604 0.0604

0.51 0.51

0.51 0.51 0

0.62 0.62

00.990.08

0.08

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

Emergency storm response

XX

X

X

X

X

14
cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

cal
l

0.0 0.0 0.0 0.0 0.0

0

0

0
0.0

0.0

0.0
0.0

0.06

0.060.06 0.06

0 0

0 0

0 0

000.0

0.0

0.503
0.5

0.76

0.5030.503

0.540.54

0.503
0.5030.503

00.0

Emergency storm response

Meeting variability with portfolios of generation
with mixtures of dispatchability

Storage applications
How much energy to store in a battery to handle the
volatility of wind and spot prices to meet demands?

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

Canonical problems

Decision trees

Canonical problems

Stochastic search (derivative based)
» Basic problem:

» Stochastic gradient

» Asymptotic convergence:

» Finite time performance

max (,)x F x W

1 1(,)n n n n
n xx x F x W   

*lim (,) (,)n
n F x W F x W  








Manufacturing network (x=design)
Unit commitment problem (x=day ahead decisions)
Inventory system (x=design, replenishment policy)
Battery system (x=choice of material)
Patient treatment cost (x=drug, treatments)
Trucking company (x=fleet size and mix)

,max (,) where is an algorithm (or policy)nF x W
 

Canonical problems

Ranking and selection (derivative free)
» Basic problem:

» We need to design a policy that finds a design
given by

» We refer to this objective as maximizing the final
reward.

 1 ,...,max (,)
Mx x x F x W 

()nX S

 ,max ,NF x W
 

,Nx

Canonical problems

Multi-armed bandit problems
» We learn the reward from playing each

“arm”

» We need to find a policy for
playing machine x that maximizes:

where

We refer to this problem as maximizing
cumulative reward.

()nX S

1
1

0

max ((),)
N

n n

n

F X S W








1 "winnings"
State of knowledge

()

 





n

n

n n

W
S
x X S Choose next “arm” to play

New information

What we know about each slot machine

Canonical problems

(Discrete) Markov decision processes
» Bellman’s optimality equation

» This is also the same as solving

where the optimal policy has the form

  1 1

1 1 1
'

() min (,) () |

min (,) (' | ,) ()

t

t

t t a t t t t t

a t t t t t t t
s

V S C S a V S S

C S a p S s S a V S





  

   

 

 
   

 


A

A



{ }()1 1() arg min (,) () | ,
tt x t t t t t tX S C S x V S S xp

+ += +

  0
0

min , () |
T

t t t
t

E C S X S S




 
 
 


Canonical problems

Optimal stopping I
» Model:

• Exogenous process:

• Decision:

• Reward:

» Optimization problem:

where is a “stopping time” (or “ܨ௧ െmeasurable function”)

1 If we stop and sell at time
()

0 Otherwise t

t
X 


 


 1 2, ,..., Sequence of stock pricesTp p p  

Price received if we stop at time tp t

max p X  


Canonical problems

Optimal stopping II
» Model:

• Exogenous process:

• State:

• Policy:

» Optimization problem:

1
(|)

0 Otherwise
t t

t t

p p
X S




 
 


 1 2

1

, ,..., Sequence of stock prices
(1)

T

t t t

p p p
p p p


 

 

  

0 0
max (|) max (|)

T T

t t t t
t t

p X S p X S 
  

 

  

1 if we are holding asset, 0 otherwise.
(, ,)

t

t t t t

R
S R p p

=

=

Canonical problems

Linear quadratic regulation (LQR)
» A popular optimal control problem in engineering

involves solving:

» where:

» Possible to show that the optimal policy looks like:

where is a complicated function of Q and R.

 
0 ,...,

0
min () ()

T

T
T T

u u t t t t
t

x Qx u Ru




1

State at time
Control at time (must be measurable)

(,) (is random at time)

t

t t

t t t t t

x t
u t F

x f x u w w t


 
 

*()t t t tU x K x

tK

Canonical problems

Stochastic programming
» A (two-stage) stochastic programming problem

where

» This is the canonical form of stochastic programming,
which might also be written over multiple periods:

0 0 0 0 0 1min (,)x X c x Q x  

1 10 1 () () 1 1(, ()) min () ()x XQ x c x    

0 0
1

min () () ()
T

t t
t

c x p c x


  
 

  

Canonical problems

Stochastic programming
» A (two-stage) stochastic programming policy

where

» This is the canonical form of stochastic programming,
which might also be written over multiple periods:

1min (,)
t tx X t t t tc x Q x  

1 11 () () 1 1(, ()) min () ()
t tt t x X t tQ x c x    
    

' '
' 1

min () () ()
t t

t H

t t t tt tt
t t

c x p c x


  


  

  

() argt tX S 

Canonical problems

A robust optimization problem would be written

» This means finding the best design x for the worst
outcome w in an “uncertainty set”

» This has been adapted to multiperiod problems

()min max (,)x X w F x w W

0 1 0,..., (,...,) () ' ' '
' 0

min max ()
T

T

x x w w t t t
t

c w x



()

,..., (,...,) () ' ' '
'

min max ()
t t H t t H

t H

x x w w t t t
t t

c w x 





() argt tX S 

Canonical problems

Why do we need a unified framework?

» The classical frameworks and algorithms are fragile.

» Small changes to problems invalidate optimality
conditions, or make algorithmic approaches
intractable.

» Practitioners need robust approaches that will provide
high quality solutions for all problems.

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies problem classes
Modeling uncertainty
Designing policies

Modeling
How much energy to store in a battery to handle the
volatility of wind and spot prices to meet demands?

Modeling

Before we can solve complex problems, we have
to know how to think about them.

The biggest challenge when making decisions
under uncertainty is modeling.

Min E {cx}
Ax = b
x > 0

Mathematician

Software

Organize class
libraries, and set up

communications and
databases

Modeling

For deterministic problems, we speak the language
of mathematical programming
» Linear programming:

» For time-staged problems

min x cx

0
Ax b

x



1 1

0

t t t t t

t t t

t

A x B x b
D x u

x

  



0 ,...,
0

min
T

T

x x t t
t

c x



Arguably Dantzig’s biggest
contribution, more so than the
simplex algorithm, was his
articulation of optimization
problems in a standard format,
which has given algorithmic
researchers a common
language.

Stochastic
programming

Markov
decision
processes

Reinforcement
learning

Optimal
control

Model
predictive

control

Robust
optimization

Approximate
dynamic

programming

Online
computation

Simulation
optimization

Stochastic
search

Decision

analysis

Stochastic
control

Simulation
optimization

Dynamic
Programming

and
control

Optimal
learning

Bandit
problems

Stochastic
programming

Markov
decision
processes

Reinforcement
learning

Optimal
control

Model
predictive

control

Robust
optimization

Approximate
dynamic

programming

Online
computation

Simulation
optimization

Stochastic
search

Decision

analysis

Stochastic
control

Simulation
optimization

Dynamic
Programming

and
control

Optimal
learning

Bandit
problems

Modeling

We lack a standard language for modeling
sequential, stochastic decision problems.
» In the slides that follow, we propose to model problems

along five fundamental dimensions:

• State variables
• Decision variables
• Exogenous information
• Transition function
• Objective function

» This framework draws heavily from Markov decision
processes and the control theory communities, but it is
not the standard form used anywhere.

Modeling dynamic problems

The state variable:

 

Controls community
 "Information state"
Operations research/MDP/Computer science
 , , System state, where:
 Resource state (physical state)
 Loca

t

t t t t

t

x

S R I B
R



 



tion/status of truck/train/plane
 Energy in storage
 Information state
 Prices
 Weather
 Belief state ("state of knowl

t

t

I

B



 edge")
 Belief about traffic delays
 Belief about the status of equipment











The state variable

Illustrating state variables
» A deterministic graph

1

2

3

4

5

6

7

8

9

10

11

12.6

8.4

9.2 3.6

8.1

17.4

15.9

16.5 20.2

13.5

8.9
12.7

15.9

2.34.5

7.3

9.6
5.7

?tS  () 6t tS N 

The state variable

Illustrating state variables
» A stochastic graph

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

13.5

8.9

12.7
12.6

8.4

9.2

15.9

?tS 

The state variable

Illustrating state variables
» A stochastic graph

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

13.5

8.9

12.7
12.6

8.4

9.2

15.9

?tS       , ,, 6, 12.7,8.9,13.5
tt t t N j j

S N c 

tR


tI


The state variable

Illustrating state variables
» A stochastic graph with left turn penalties

1

2

3

4

5

6

7

8

9

10

11

3.6

8.1

13.5

8.9

12.6

8.4

9.2

15.9

?tS       , , 1, , 6, 12,7,8.9,13.5 ,3
tt t t N j tj

S N c N  

tR


tI


12.7(.7)

The state variable

Variant of problem in Puterman (2005):
» Find best path from 1 to 11 that minimizes the second

highest arc cost along the path:

» If the traveler is at node 9, what is her state?

1 3

2

4

6

5

7

8

8

12
12

14

8
7

3

11
14

11

8

9

8

10

1
12

4

5
10

15

8
15

(, highest,second highest) (9,15,12)t tS N ?tS 

The state variables

What is a state variable?
» Bellman’s classic text on dynamic programming (1957)

describes the state variable with:
• “… we have a physical system characterized at any stage by a

small set of parameters, the state variables.”

» The most popular book on dynamic programming
(Puterman, 2005, p.18) “defines” a state variable with
the following sentence:

• “At each decision epoch, the system occupies a state.”

» Wikipedia:
• A state variable is one of the set of variables that are used to

describe the mathematical ‘state’ of a dynamical system

The state variable

My definition of a state variable:

» The first depends on a policy. The second depends only on the
problem (and includes the constraints).

» Using either definition, all properly modeled problems are
Markovian!

Modeling dynamic problems

Decisions:
Markov decision processes/Computer science
 Discrete action
Control theory
 Low-dimensional continuous vector
Operations research
 Usually a discrete or continuous but high-dimensional

t

t

t

a

u

x







 vector of decisions.











At this point, we do not specify to make a decision.
Instead, we define the function () (or () or ()),
where specifies the type of policy. " " carries information
about the type of functi

how
X s A s U s  

 
.on , and any tunable parameters ff  

The decision variables

Styles of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1(,...,), K kx x x x 

1(,...,), K kx x x x 

1(,...,), is a category (e.g. red/green/blue)I ix a a a

Modeling dynamic problems

Exogenous information:











 
New information that first became known at time

ˆ ˆ ˆˆ = , , ,

ˆ Equipment failures, delays, new arrivals
 New drivers being hired to the network

ˆ New customer demands

t

t t t t

t

t

W t

R D p E

R

D






ˆ Changes in prices
ˆ Information about the environment (temperature, ...)
t

t

p

E





Note: Any variable indexed by t is known at time t. This convention,
which is not standard in control theory, dramatically simplifies the
modeling of information.

 
1 2Below, we let represent a sequence of actual observations , ,....

 refers to a sample realization of the random variable .t t

W W
W W




Modeling dynamic problems

The transition function











1 1

1 1

1 1

1 1

(, ,)
ˆ Inventories
ˆ Spot prices
ˆ Market demands

M
t t t t

t t t t

t t t

t t t

S S S x W

R R x R
p p p

D D D

 

 

 

 



  
 

 

Also known as the:
“System model”
“State transition model”
“Plant model”
“Plant equation”
“State equation”

“Transfer function”
“Transformation function”
“Law of motion”
“Model”
“transition function”

For many applications, these equations are unknown. This
is known as “model-free” dynamic programming.

Objective functions

» Cumulative reward (“online learning”)

• Policies have to work well over time, which means fast
convergence, and possibly fast learning (if there is a belief
state).

» Final reward (“offline learning”)

• We only care about how well the final decision ݔగ,ே works,
not how well we do while finding it.

 1 0
0

max , (), |
T

t t t t t
t

C S X S W S
 



 
 
 


Modeling stochastic, dynamic problems

 ,
0

ˆmax (,) |NF x W S
 

The complete model:
» Objective function

• Cumulative reward (“online learning”)

• Final reward (“offline learning”)

» Transition function:

» Exogenous information:

 1 0
0

max , (), |
T

t t t t t
t

C S X S W S
 



 
 
 


Modeling stochastic, dynamic problems

 1 1, , ()M
t t t tS S S x W  

 0 1 2, , ,..., TS W W W

 ,
0

ˆmax (,) |NF x W S
 

Modeling
Deterministic
» Objective function

» Decision variables:

» Constraints:
• at time t

• Transition function

Stochastic
» Objective function

» Policy

» Constraints at time t

» Transition function

» Exogenous information

 1 0
0

max , (), | 
 



 
 
 


T

t t t t t
t

E C S X S W S
0 ,..., 0
min

T

T

t tx x t
c x




()t t t tx X S 

1 1t t t tR b B x    1 1, ,M
t t t tS S S x W 

0 1 2(, , ,...,)TS W W W

0
t t t

t

A x R
x


 t





 0 ,..., Tx x :X S  

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

An energy storage problem

Consider a basic energy storage problem:

» We are going to show that with minor variations in the
characteristics of this problem, we can make each class
of policy work best.

An energy storage problem

A model of our problem

» State variables

» Decision variables

» Exogenous information

» Transition function

» Objective function

An energy storage problem

State variables

» We will present the full model, accumulating the
information we need in the state variable.

» We will highlight information we need as we proceed.
This information will make up our state variable.

E

G

B

L

An energy storage problem

Decision variables

» Constraints;

E

G

B

L

 , , , , ,EL EB GL GB BL
t t t t t tx x x x x x

An energy storage problem

Exogenous information

E

G

B

L

 
' '

' '

ˆ Change in energy from wind between 1 and

Noise in the price process between 1 and

Forecast of demand provided by vendor at time

 Provided exogenously

Differenc

t
p

t
D

tt t

D D
t tt t t
D
t

E t t

t t

f D t

f f






 

 





 e between actual demand and forecast

tW






 





An energy storage problem

Transition function

E

G

B

L

1 1

1 0 1 1 2 2 1 1

1 , 1 1

1

ˆ

()
t t t

p T p
t t t t t t t t t t t

D D
t t t t

battery battery
t t t

E E E

p p p p p

D f

R R x

     



 

    

  



 

     

 

 

1

2

t

t t

t

p
p p

p




 
   
 
 

Learning in stochastic optimization

Updating the demand parameter
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least
squares equations:

1 1
1

1
t t t t t

t

B pq q e
g+ +

+

= -

()
1 1

1
1

1

(|) ,
1 ()

1 ()

price
t t t t t

T
t t t t t t

t

T
t t t t

F p p

B B B p p B

p B p

e q

g

g

+ +

+
+

+

= -

= -

= +

0 1 1 2 2(|) ()price T
t t t t t t t t t t tF p p p p p        

An energy storage problem

Types of learning:
» No learning (ᇱ are known)

» Passive learning (learn from price data)

» Active learning (“bandit problems”)

1 0 1 1 2 2 1
p

t t t t tp p p p         

1 0 1 1 2 2 1
p

t t t t t t t tp p p p         

1 0 1 1 2 2 3 1
GB p

t t t t t t t t t tp p p p x           

Buy/sell decisions

An energy storage problem

Objective function

E

G

B

L

 (,) GB GL
t t t t tC S x p x x 

1 0
0

min (, (),) |
T

t t t t t
t

C S X S W S
 



 
 
 


1 0 1 1 2 2 1

1 , 1 1

1 1
1

1 ()

p
t t t t t t t t

D D
t t t t

t t t t t
t

p p p p

D f

B x

   



   


   

  

 


   

 

 

An energy storage problem

State variables
» Cost function

» Decision function
Constraints:

» Transition function

Price of electricitytp 

1 2, , , (, ,) , , (,)D
t t t t t t t t t tS E L R p p p f B 

 
 
 
 
  

Outline

Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

Solution strategies and problem classes
Special structure
» There are special cases where we can solve

exactly. But not very many.

Sampled problems (SAA, scenario trees)
» If the only problem is that we cannot compute the expectation, we

might solve a sampled approximation

Adaptive learning algorithms
» This is what we have to turn to for most problems, and is the focus

of this tutorial.

max (,)x F x W

ˆmax (,)x F x W

Solution strategies and problem classes

State independent problems
» The problem does not depend on the state of the system.

» The only state variable is what we know (or believe) about
the unknown function , called the belief state ௧,
so ௧ ௧.

State dependent problems
» Now the problem may depend on what we know at time t:

» Now the state is ௧ ௧ ௧ ௧

 max (,) min(,)
x
F x W p x W cx  

(,)F x W

 0
max (, ,) min(,)

tx R t
C S x W p x W cx    

Solution strategies and problem classes

Offline (final reward)
» We can iteratively search for the best solution, but only

care about the final answer.
» Asymptotic formulation:

» Finite horizon formulation:

Online (cumulative reward)
» We have to learn as we go

max (,)
x
F x W

,max (,)NF x W
 

1
1

0

max ((),)
N

n n

n

F X S W








üïïïïïýïïïïïþ

“ranking and selection”
or

“stochastic search”

Solution strategies and problem classes

Solution strategies and problem classes

Solution strategies and problem classes

Learning policies:
Approximate dynamic programming
Q-learning
SDDP
…

Solution strategies and problem classes

“Online” (cumulative reward) dynamic programming is recognized as the
“dynamic programming problem,” but the entire literature on solving
dynamic programs describes class (4) problems. This appears to be an
open problem.

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

Modeling uncertainty

Observational uncertainty
Prognostic uncertainty (forecasting)
Experimental noise/variability
Transitional uncertainty
Inferential uncertainty
Model uncertainty
Systematic exogenous uncertainty
Control/implementation uncertainty
Algorithmic noise
Goal uncertainty

Modeling uncertainty in the context of stochastic optimization
is a relatively untapped area of research.

Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies

Designing policies

We have to start by describing what we mean by a
policy.
» Definition:

A policy is a mapping from a state to an action.
… any mapping.

How do we search over an arbitrary space of
policies?

Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact
of a decision now on the future.

  0(,)
0

max , (|) |f f

T

t t tf F
t

E C S X S S
 


  



 
 
 


*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty

(buffer stocks, schedule slack)

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

(|)PFA
t tx X S 

(|) ()PFA
t t f f t

f F
x X S S  



  

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies
Lookahead approximations – Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximations”)

  
  

 

*
1 1

1 1

() arg max (,) () | ,

() arg max (,) () | ,

arg max (,) ()

t

t

t

t t x t t t t t t

VFA
t t x t t t t t t

x x
x t t t t

X S C S x V S S x

X S C S x V S S x

C S x V S

 

 

 

 

 





*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

The ultimate lookahead policy is optimal
*

' ' ' 1
' 1

() arg max (,) max (, ()) | | ,
 

 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

Designing policies

The ultimate lookahead policy is optimal

Expectations that we
cannot compute

Maximization that we
cannot compute

Designing policies

The ultimate lookahead policy is optimal

» 2b) Instead, we have to solve an approximation called
the lookahead model:

» A lookahead policy works by approximating the
lookahead model.

*
' ' ' 1

' 1
() arg max (,) max (, ()) | | ,

 
 

            
t

T

t t x t t t t t t t t
t t

X S C S x C S X S S S x 

*
' ' ' , 1

' 1
() arg max (,) max (, ()) | | ,

t

t H

t t x t t tt tt tt t t t t
t t

X S C S x C S X S S S x





 

            


     

Designing policies
Types of lookahead approximations
» One-step lookahead – Widely used in pure learning

policies:
• Bayes greedy/naïve Bayes
• Expected improvement
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action
spaces

» Multistage scenario trees (stochastic linear
programming) – typically not tractable.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Po
lic

y
se

ar
ch

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

Lo
ok

ah
ea

d
ap

pr
ox

im
at

io
ns

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Fu
nc

tio
n

ap
pr

ox
.

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies

()
(|) arg max (, |)

t t

CFA
t t tx

X S C S x



 




X

,
' ',..., ' 1

() arg max (,) (,)




 

   
  

tt t t H

T
LA D
t t tt tt tt ttx x t t

X S C S x C S x

  () arg max (,) (,)
t

VFA x x
t t x t t t t t tX S C S x V S S x 

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

,
' '(),..., ' 1

() arg max min (,) ((), ())
ttt t t H

T
LA RO
t t tt tt tt ttw Wx x t t

X S C S x C S w x w





 

   
  

[()] 1t tP A x f W   

Im
be

dd
ed

 o
pt

im
iz

at
io

n

Learning problems

Classes of learning problems in stochastic
optimization
1) Approximating the objective

.
2) Designing a policy గ .
3) A value function approximation

௧ ௧ ௧ ௧ .
4) Designing a cost function approximation:

• The objective function ̅ܥగ ܵ௧, ߠ|௧ݔ .
• The constraints ܺగሺܵ௧|ߠሻ	

5) Approximating the transition function
ெ

௧ ௧ ௧ାଵ
ெ

௧ ௧ ௧ାଵ

Approximation strategies

Approximation strategies
» Lookup tables

• Independent beliefs
• Correlated beliefs

» Linear parametric models
• Linear models
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks

Designing policies

Finding the best policy
» We have to first articulate our classes of policies

» So minimizing over means:

» We then have to pick an objective such as

or

   1
0 0

max , (|) (|),
T T

t t t t
t t

C S X S F X S W 
   

 

  

 , , ,

Parameters that characterize each family.f

f PFAs CFAs VFAs DLAs



 

 



 

 , ff    

 max , (,)T T TC S X F X W 
  

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Policy function approximations

Battery arbitrage – When to charge, when to
discharge, given volatile LMPs

0.00

20.00

40.00

60.00

80.00

100.00

120.00

140.00

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49 51 53 55 57 59 61 63 65 67 69 71

Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

We have to search for the best values for the policy
parameters

Discharge
Charge

Charge Dischargeand . 

Policy function approximations

Policy function approximations

Our policy function might be the parametric
model (this is nonlinear in the parameters):

charge

charge discharge

charge

1 if
(|) 0 if

1 if

t

t t

t

p
X S p

p




  



 
  
 

Energy in storage:

Price of electricity:

Policy function approximations

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max () , (|)
T

t
t t t

t
F C S X S

   


 

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Cost function approximations

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

99

Cost function approximations

Correlated beliefs: Testing one material teaches us about other
materials

1 2 3 4 4 5

Cost function approximations

Cost function approximations (CFA)
» Upper confidence bounding

» Interval estimation

» Boltzmann exploration (“soft max”)
• Choose x with probability:

log(|) arg max  
 

   
 

UCB n UCB n UCB
x x n

x

nX S
N

 (|) arg maxIE n IE n IE n
x x xX S     

0

n
xz

'

'

()



 



n
x

n
x

n
x

x

eP
e

101

Cost function approximations

Picking ூா means we are evaluating each choice
at the mean.

1 2 3 4 4 5

102

Cost function approximations

Picking ூா means we are evaluating each choice
at the 95th percentile.

1 2 3 4 4 5

Cost function approximations
Optimizing the policy
» We optimize ߠூா to maximize:

where

Notes:
» This can handle any belief model,

including correlated beliefs, nonlinear
belief models.

» All we require is that we be able to
simulate a policy.

 (|) arg max (,)n IE n IE n IE n n n n
x x x x xx X S S        

 ,max () ,IE
IE NF F x W


  

R
eg

re
t

Cost function approximations

Inventory management

» How much product
should I order to
anticipate future
demands?

» Need to accommodate
different sources of
uncertainty.

• Market behavior
• Transit times
• Supplier uncertainty
• Product quality

Cost function approximations

Imagine that we want to purchase parts from
different suppliers. Let be the amount of
product we purchase at time t from supplier p to
meet forecasted demand . We would solve

» This assumes our demand forecast is accurate.

tD

tpx

tD

 () arg min
tt t x p tp

p P
X S c x



 
subject to

 0

tp t
p P

tp p

tp

x D

x u

x











t









Imagine that we want to purchase parts from
different suppliers. Let be the amount of
product we purchase at time t from supplier p to
meet forecasted demand . We would solve

» This is a “parametric cost function approximation”

()

Reserve

buffer

 (|) arg min

subject to

t
t t p tpx

p P

tp t
p P

tp p

tp

X S c x

x D

x u

x

 

























()t

 








Cost function approximations

tD

tpx

Reserve

Buffer stock

A general way of creating CFAs:
» Define our policy:

subject to

» We tune by optimizing:

Cost function approximations

() arg min (, |)t x t tX C S x  



0
0

min () (, ()) |
T

t t
t

F C S X S 
  



   
 


()Ax b  

Parametrically
modified costs

Parametrically
modified constraints

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Value function approximations

Q-learning (for discrete actions)

» But what if the action a is a vector?

1
'

1
1 1

ˆ (,) (,) max (', ')
ˆ(,) (1) (,) (,)

n n n n n n
a

n n n n n n n n n
n n

q s a r s a Q s a

Q s a Q s a q s a

g

a a

-

-
- -

= +

= - +

Blood management

Managing blood inventories

Slide 111

Blood management

Managing blood inventories over time

t=0

0S
1 1

ˆ ˆ,R D
1S

Week 1

1x

2 2
ˆ ˆ,R D

2S

Week 2

2x
2
xS

3 3
ˆ ˆ,R D

3S
3x

Week 3

3
xS

t=1 t=2 t=3

Week 0

0x

O-,1

O-,2

O-,3

AB+,2

AB+,3

O-,0

,
ˆ

t ABD 

AB+,0

AB+,1

AB+,2


O-,0

O-,1

O-,2





,(,0)t ABR 

,(,1)t ABR 

,(,2)t ABR 

,(,0)t OR 

,(,1)t OR 

,(,2)t OR 

,
ˆ

t ABD 

,
ˆ

t AD 

,
ˆ

t ABD 

,
ˆ

t ABD 

,
ˆ

t ABD 

,
ˆ

t ABD 

AB+

AB-

A+

A-

B+

B-

O+

O-

x
tR





AB+,0

AB+,1

,
ˆ

t ABD 

Satisfy a demand Hold

tS   ˆ , t tR D

AB+,0

AB+,1

AB+,2

tR


O-,0

O-,1

O-,2



x
tR

AB+,0

AB+,1

AB+,2

AB+,3


O-,0

O-,1

O-,2

O-,3



AB+,0

AB+,1

AB+,2

AB+,3


O-,0

O-,1

O-,2

O-,3

1,
ˆ

t ABR  

1tR 

1,
ˆ

t OR  


ˆ

tD

,(,0)t ABR 

,(,1)t ABR 

,(,2)t ABR 

,(,0)t OR 

,(,1)t OR 

,(,2)t OR 

AB+,0

AB+,1

AB+,2

tR x
tR


O-,0

O-,1

O-,2

AB+,0

AB+,1

AB+,2

AB+,3


O-,0

O-,1

O-,2

O-,3




ˆ

tD

,(,0)t ABR 

,(,1)t ABR 

,(,2)t ABR 

,(,0)t OR 

,(,1)t OR 

,(,2)t OR 

()tF R

AB+,0

AB+,1

AB+,2

tR x
tR


O-,0

O-,1

O-,2

AB+,0

AB+,1

AB+,2

AB+,3


O-,0

O-,1

O-,2

O-,3




ˆ

tD

,(,0)t ABR 

,(,1)t ABR 

,(,2)t ABR 

,(,0)t OR 

,(,1)t OR 

,(,2)t OR 

Solve this as a
linear program.

()tF R

AB+,0

AB+,1

AB+,2

tR x
tR


O-,0

O-,1

O-,2

AB+,0

AB+,1

AB+,2

AB+,3


O-,0

O-,1

O-,2

O-,3




ˆ

tD

Dual variables give
value additional
unit of blood..

Duals

,(,0)t̂ AB 

,(,1)t̂ AB 

,(,2)t̂ AB 

,(,0)t̂ O 

,(,1)t̂ O 

,(,2)t̂ O 

Updating the value function approximation

Estimate the gradient at

,(,2)
n
t ABR 

,(,2)ˆn
t AB 

n
tR

()tF R

Updating the value function approximation

Update the value function at

,
1

x n
tR 

1
1 1()n x

t tV R
 

,
1

x n
tR 

,(,2)ˆn
t AB 

()tF R

,(,2)
n
t ABR 

Updating the value function approximation

Update the value function at ,
1

x n
tR 

,(,2)ˆn
t AB 

,
1

x n
tR 

1
1 1()n x

t tV R
 

Updating the value function approximation

Update the value function at ,
1

x n
tR 

,
1

x n
tR 

1
1 1()n x

t tV R
 

1 1()n x
t tV R 

Exploiting concavity

Derivatives are used to estimate a piecewise linear
approximation

()t tV R

tR

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain and dual variables .
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1.

, 1 ,
1 1 1 1 1 1 ˆ() (1) ()n x n n x n n

t t n t t n tV S V S v 
       

n
tS

()n
tW 

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

 ˆn
tiv

 1 ,max (,) ((,)) n n M x n
x t t t t t tC S x V S S x

n
tx

Slide 123

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain and dual variables .
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1.

, 1 ,
1 1 1 1 1 1 ˆ() (1) ()n x n n x n n

t t n t t n tV S V S v 
       

n
tS

()n
tW 

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

 1 ,max (,) ((,)) n n M x n
x t t t t t tC S x V S S x

 ˆn
tivn

tx

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain and dual variables .
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1.

 1 ,max (,) ((,)) n n M x n
x t t t t t tC S x V S S x

n
tS

()n
tW 

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

 ˆn
tivn

tx

Approximate value iteration

Step 1: Start with a pre-decision state
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain and dual variables .
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of and
compute the next pre-decision state:

Step 5: Return to step 1.

n
tx

n
tS

()n
tW 

1 1(, , ())n M n n n
t t t tS S S x W  

Simulation

Deterministic
optimization

Recursive
statistics

 ˆn
tiv

 1 ,max (,) ((,)) n n M x n
x t t t t t tC S x V S S x

Iterative learning

t

Iterative learning

Iterative learning

Iterative learning

1200000

1300000

1400000

1500000

1600000

1700000

1800000

1900000

0 100 200 300 400 500 600 700 800 900 1000

O
bj

ec
tiv

e
fu

nc
tio

n

Iterations

Approximate dynamic programming

… a typical performance graph.

“I think you give a too rosy a picture of ADP….”
Andy Barto, in comments on a paper (2009)

“Is the RL glass half full, or half empty?”
Rich Sutton, NIPS workshop, (2014)

Approximate value functions can work very well, but you need
structure to guide the learning process. ADP needs
benchmarks and careful tuning.

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Lookahead policies

Planning your next chess move:

» You put your finger on the piece while you think about
moves into the future. This is a lookahead policy,
illustrated for a problem with discrete actions.

Lookahead policies

Decision trees:

Lookahead policies

Modeling lookahead policies
» Lookahead policies solve a lookahead model, which is an

approximation of the future.
» It is important to understand the difference between the:

• Base model – this is the model we are trying to solve by finding
the best policy. This is usually some form of simulator.

• The lookahead model, which is our approximation of the future
to help us make better decisions now.

» The base model is typically a simulator, or it might be the
real world.

Lookahead policies

Lookahead models use five classes of
approximations:
» Horizon truncation – Replacing a longer horizon problem

with a shorter horizon
» Stage aggregation – Replacing multistage problems with

two-stage approximation.
» Outcome aggregation/sampling – Simplifying the

exogenous information process
» Discretization – Of time, states and decisions
» Dimensionality reduction – We may ignore some variables

(such as forecasts) in the lookahead model that we capture
in the base model (these become latent variables in the
lookahead model).

Lookahead policies

Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

» All variables are indexed by t (when the lookahead
model is being generated) and t’ (the time within the
lookahead model).

 

, '

, '

, , 1 ,

Approximated state variable (e.g coarse discretization)
Decision we plan on implementing at time ' when we are

 planning at time , ' , 1,...,

, ,...,

t t

t t

t t t t t t t H

S
x t

t t t t t H

x x x x 





  







   


, '

, '

, '

Approximation of information process
Forecast of costs at time ' made at time

Forecast of right hand sides for time ' made at time

t t

t t

t t

W
c t t

b t t










Lookahead policies

We can use this notation to create a policy based
on our lookahead model:

» Simplest lookahead is deterministic.

*
' ' ' , 1

' 1
() arg max (,) max (, ()) | | ,






 

       
  
 


    

t H

t t t t tt tt tt t t t t
t t

X S C S x C S X S S S x 

Restricted/simplified set of policies

Simplified/discretized set of state variables

Simplified/discretized set of decision variables

Sampled set of realizations (or deterministic);
Aggregated staging of decisions and information

Limited horizon

Lookahead policies

Deterministic lookahead

Stochastic lookahead (with two-stage
approximation)

' '
' 1

() arg max (,) (,)
T

LA D
t t tt tt tt tt

t t

X S C S x C S x

 

    
xtt , xt ,t1,..., xt ,tT

' '
' 1

() arg max (,) () ((), ())
t

T
LA S
t t tt tt tt tt

t t
X S C S x p C S x



  

 

   


    
xtt , xt ,t1,..., xt ,tT

Scenario trees

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process

. . . .

Th
e

lo
ok

ah
ea

d
m

od
el

t 1t  2t  3t 

Lookahead policies

Stochastic lookahead
» Here, we approximate the information model by using a

Monte Carlo sample to create a scenario tree:
1am 2am 3am 4am 5am …..

Change in wind speed

Change in wind speed

Change in wind speed

Lookahead policies

We can then simulate this lookahead policy over
time:

. . . .

t 1t  2t  3t 

Th
e

lo
ok

ah
ea

d
m

od
el

The base model

. . . .

t 1t  2t  3t 

Lookahead policies

We can then simulate this lookahead policy over
time:

Th
e

lo
ok

ah
ea

d
m

od
el

The base model

. . . .

t 1t  2t  3t 

Lookahead policies

We can then simulate this lookahead policy over
time:

Th
e

lo
ok

ah
ea

d
m

od
el

The base model

. . . .

t 1t  2t  3t 

Lookahead policies

We can then simulate this lookahead policy over
time:

Th
e

lo
ok

ah
ea

d
m

od
el

The base model

Learning damaged networks

XX

X

150
callcall

call

call

15
0

call

call

Which way should the truck go? X

X

X

call

Decision Outcome Decision Outcome Decision

Lookahead policies

Monte Carlo tree search:

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis and S.
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in Games,
vol. 4, no. 1, pp. 1–49, March 2012.

Lookahead policies

Notes:

» Solving stochastic lookahead policies can be hard!

» … but this is still just a lookahead policy which is a
class of rolling horizon heuristic.

» Even if solving the lookahead model is hard, an optimal
solution of a lookahead model (even a stochastic one) is
(with rare exceptions) not an optimal policy.

Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA

Parametric cost function approximation

An energy storage problem:

Parametric cost function approximation
Forecasts evolve over time as new information arrives:

Actual

Rolling forecasts,
updated each
hour.







Forecast made at
midnight:

Parametric cost function approximation

Benchmark policy – Deterministic lookahead

' ' ' '

' ' '

' ' '

max
' ' '

' ' '
arg

' '
arg

' '

wd rd gd D
tt tt tt tt

gd gr G
tt tt tt

rd rg
tt tt tt

wr gr
tt tt tt
wr wd E
tt tt tt
wr gr ch e
tt tt
rd rg disch e
tt tt

x x x f

x x f

x x R

x x R R

x x f

x x

x x

b

g

g

+ + £

+ £

+ £

+ £ -

+ £

+ £

+ £

  

 
 

 

 

 

 

Parametric cost function approximation

Parametric cost function approximations
» Replace the constraint

with:
» Lookup table modified forecasts (one adjustment term for

each time in the future):

» Exponential function for adjustments (just two parameters)

» Constant adjustment (one parameter)

't t  

' ' ' '
wr wd E
tt tt t t tt
x x f  

'
wr
tt
x '

wd
tt
x

2 (')

' ' 1 '

t twr wd E
tt tt tt
x x e f  

' ' '
wr wd E
tt tt tt
x x f 

Parametric cost function approximation

Optimizing the CFA:
» Let be a simulation of our policy given by

» We then compute the gradient with respect to

» The parameter is found using a classical stochastic
gradient algorithm:

We tested several stepsize formulas and found that ADAGRAD
worked best:

(,) (,)F F      

(,)F  

 
0

(,) (), (() |)
T

t t t
t

F C S X S    


 




1 1(,)n n n n
n
F       

()2
1

' 0

 (,)
t

n t x t t
tt

G F x W
G
h

a
e +

=

= = 
+

å

Parametric cost function approximation

Optimizing the CFA:
» We compute the gradient by applying the chain rule

where the interaction from one time period to the next is
captured using

» Assuming there are no integer variables, these equations
are quite easy to compute.

0fs = 10fs =

20fs = 30fs =
Lookup table

Constant parameter
Exponential function

Parametric cost function approximation

Improvement over deterministic benchmark:

Lookup table
Exponential

Constant

Parametric cost function approximation

The parametric CFA represents a fundamental
rethinking of the modeling of stochastic
programming problems:
» From thinking of the lookahead model as the objective

function:

» To acknowledging that the lookahead model is a policy
for solving the base model…

…. which is a simulator where we do not have to make
any of the standard approximations required in stochastic
programming.

0 0
1

max () () ()
T

t t
t

c x p c x


  
 

  

 1 0
0

max , (|), |
T

t t t t t
t

E C S X S W S 
   



 
 
 


An energy storage problem

Consider a basic energy storage problem:

» We are going to show that with minor variations in the
characteristics of this problem, we can make each class
of policy work best.

An energy storage problem

We can create distinct flavors of this problem:
» Problem class 1 – Best for PFAs

• Highly stochastic (heavy tailed) electricity prices
• Stationary data

» Problem class 2 – Best for CFAs
• Stochastic prices and wind (but not heavy tailed)
• Stationary data

» Problem class 3 - Best for VFAs
• Stochastic wind and prices (but not too random)
• Time varying loads, but inaccurate wind forecasts

» Problem class 4 – Best for deterministic lookaheads
• Relatively low noise problem with accurate forecasts

» Problem class 5 – A hybrid policy worked best here
• Stochastic prices and wind, nonstationary data, noisy forecasts.

An energy storage problem
The policies
» The PFA:

• Charge battery when price is below p1
• Discharge when price is above p2

» The CFA
• Optimize over a horizon H; maintain upper and lower bounds (u, l)

for every time period except the first (note that this is a hybrid with a
lookahead).

» The VFA
• Piecewise linear, concave value function in terms of energy, indexed

by time.
» The lookahead (deterministic)

• Optimize over a horizon H (only tunable parameter) using forecasts of
demand, prices and wind energy

» The lookahead CFA
• Use a lookahead policy (deterministic), but with a tunable parameter

that improves robustness.

An energy storage problem

Each policy is best on certain problems
» Results are percent of posterior optimal solution

» … any policy might be best depending on the data.
Joint research with Prof. Stephan Meisel, University of Muenster, Germany.

Stochastic
programming

Markov
decision
processes

Reinforcement
learning

Optimal
control

Model
predictive

control

Robust
optimization

Approximate
dynamic

programming

Online
computation

Simulation
optimization

Stochastic
search

Decision

analysis

Stochastic
control

Simulation
optimization

Dynamic
Programming

and
control

Optimal
learning

Bandit
problems

© Warren Powell 2017

Multi-armed bandits
/optimal learning

Reinforcement
learning/ADP

Stochastic search

Simulation
optimization

Stochastic
programming

Optimal controlMarkov decision
processes

Lookahead policies
(DLAs)

Stochastic
gradients

© Warren Powell 2017

Ranking and
selection

Policy search
(PFAs)

Cost function
approx. (CFAs)

Value function
approx. (VFAs)

Thank you!
http://www.castlelab.princeton.edu/

A tutorial on this topic is available at the top of

http://www.castlelab.princeton.edu/jungle/

