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Learning problems

Materials science
» Optimizing payloads: reactive 

species, biomolecules, 
fluorescent markers, …

» Controllers for robotic scientist 
for materials science 
experiments

» Optimizing nanoparticles to 
maximize photoconductivity



Learning problems

Health sciences
» Sequential design of 

experiments for drug discovery

» Drug delivery – Optimizing the 
design of protective 
membranes to control drug 
release

» Medical decision making –
Optimal learning for medical 
treatments.



Drug discovery

Designing molecules

» X and Y are sites where we can hang substituents to change the 
behavior of the molecule.  We approximate the performance using 
a linear belief model:
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ij ij
sites i substituents j

Y X    

» How to sequence experiments to 
learn the best molecule as quickly 
as possible?
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Ride sharing
Uber/Lyft
» Provides real-time, on-demand 

transportation.
» Drivers are encouraged to enter or leave 

the system using pricing signals and 
informational guidance.

Decisions:
» How to price to get the right balance of 

drivers relative to customers.
» Real-time management of drivers.
» Policies (rules for managing drivers, 

customers, …)



Ride sharing

RidersCars
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Matching buyers with sellers
Now we have a logistic curve for 
each origin-destination pair (i,j)

Number of offers for each (i,j) pair 
is relatively small.
Need to generalize the learning 
across hundreds to thousands of 
markets.
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Emergency storm response

Hurricane Sandy
» Once in 100 years?
» Rare convergence of events
» But, meteorologists did an 

amazing job of forecasting 
the storm.

The power grid
» Loss of power creates 

cascading failures (lack of 
fuel, inability to pump water)

» How to plan?
» How to react?
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Meeting variability with portfolios of generation
with mixtures of dispatchability



Storage applications
How much energy to store in a battery to handle the 
volatility of wind and spot prices to meet demands?
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Solution strategies and problem classes
Modeling uncertainty
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Canonical problems

Decision trees



Canonical problems

Stochastic search (derivative based)
» Basic problem:

» Stochastic gradient

» Asymptotic convergence:

» Finite time performance

max ( , )x F x W

1 1( , )n n n n
n xx x F x W   

*lim ( , ) ( , )n
n F x W F x W  






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Manufacturing network (x=design)
Unit commitment problem (x=day ahead decisions)
Inventory system (x=design, replenishment policy)
Battery system (x=choice of material)
Patient treatment cost (x=drug, treatments)
Trucking company (x=fleet size and mix)

,max ( , )     where  is an algorithm (or policy)nF x W
 



Canonical problems

Ranking and selection (derivative free)
» Basic problem:

» We need to design a policy              that finds a design 
given by 

» We refer to this objective as maximizing the final 
reward.

 1 ,...,max ( , )
Mx x x F x W 
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 ,max ,NF x W
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Canonical problems

Multi-armed bandit problems
» We learn the reward from playing each 

“arm”

» We need to find a policy             for 
playing machine x that maximizes:

where

We refer to this problem as maximizing 
cumulative reward.
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Canonical problems

(Discrete) Markov decision processes
» Bellman’s optimality equation

» This is also the same as solving

where the optimal policy has the form
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Canonical problems

Optimal stopping I
» Model:

• Exogenous process:

• Decision:

• Reward:

» Optimization problem:

where      is a “stopping time” (or “ܨ௧ െmeasurable function”)

1 If we stop and sell at time 
( )

0 Otherwise                          t

t
X 


 


 1 2, ,..., Sequence of stock pricesTp p p  

Price received if we stop at time tp t

max p X  




Canonical problems

Optimal stopping II
» Model:

• Exogenous process:

• State:

• Policy:

» Optimization problem:
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Canonical problems

Linear quadratic regulation (LQR)
» A popular optimal control problem in engineering 

involves solving:

» where:

» Possible to show that the optimal policy looks like:

where      is a complicated function of Q and R.
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Canonical problems

Stochastic programming
» A (two-stage) stochastic programming problem

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

0 0 0 0 0 1min ( , )x X c x Q x  

1 10 1 ( ) ( ) 1 1( , ( )) min ( ) ( )x XQ x c x    
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 

  



Canonical problems

Stochastic programming
» A (two-stage) stochastic programming policy

where

» This is the canonical form of stochastic programming, 
which might also be written over multiple periods:

1min ( , )
t tx X t t t tc x Q x  
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Canonical problems

A robust optimization problem would be written

» This means finding the best design x for the worst 
outcome w in an “uncertainty set” 

» This has been adapted to multiperiod problems
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Canonical problems

Why do we need a unified framework?

» The classical frameworks and algorithms are fragile.  

» Small changes to problems invalidate optimality 
conditions, or make algorithmic approaches 
intractable. 

» Practitioners need robust approaches that will provide 
high quality solutions for all problems.
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Modeling
How much energy to store in a battery to handle the 
volatility of wind and spot prices to meet demands?



Modeling

Before we can solve complex problems, we have 
to know how to think about them.

The biggest challenge when making decisions 
under uncertainty is modeling.  

Min E {cx}
Ax = b
x > 0

Mathematician

Software

Organize class
libraries, and set up

communications and 
databases



Modeling

For deterministic problems, we speak the language 
of mathematical programming
» Linear programming:

» For time-staged problems

min x cx

0
Ax b

x
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x x t t
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c x
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Arguably Dantzig’s biggest 
contribution, more so than the 
simplex algorithm, was his 
articulation of optimization 
problems in a standard format, 
which has given algorithmic 
researchers a common 
language.
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Modeling

We lack a standard language for modeling 
sequential, stochastic decision problems.
» In the slides that follow, we propose to model problems 

along five fundamental dimensions:

• State variables
• Decision variables
• Exogenous information
• Transition function
• Objective function

» This framework draws heavily from Markov decision 
processes and the control theory communities, but it is 
not the standard form used anywhere.



Modeling dynamic problems

The state variable:
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Operations research/MDP/Computer science
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The state variable

Illustrating state variables
» A deterministic graph
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The state variable

Illustrating state variables
» A stochastic graph
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The state variable

Illustrating state variables
» A stochastic graph
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The state variable

Illustrating state variables
» A stochastic graph with left turn penalties
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The state variable

Variant of problem in Puterman (2005):
» Find best path from 1 to 11 that minimizes the second 

highest arc cost along the path:

» If the traveler is at node 9, what is her state?
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The state variables

What is a state variable?
» Bellman’s classic text on dynamic programming (1957) 

describes the state variable with:
• “… we have a physical system characterized at any stage by a 

small set of parameters, the state variables.”

» The most popular book on dynamic programming 
(Puterman, 2005, p.18) “defines” a state variable with 
the following sentence:

• “At each decision epoch, the system occupies a state.”

» Wikipedia:
• A state variable is one of the set of variables that are used to 

describe the mathematical ‘state’ of a dynamical system



The state variable

My definition of a state variable:

» The first depends on a policy.  The second depends only on the 
problem (and includes the constraints).

» Using either definition, all properly modeled problems are 
Markovian!



Modeling dynamic problems

Decisions:
Markov decision processes/Computer science
     Discrete action
Control theory
     Low-dimensional continuous vector
Operations research
     Usually a discrete or continuous but high-dimensional
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At this point, we do not specify  to make a decision.
Instead, we define the function ( ) (or ( ) or ( )),  
where  specifies the type of policy. " " carries information
about the type of functi

how
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 
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The decision variables

Styles of decisions
» Binary

» Finite

» Continuous scalar

» Continuous vector

» Discrete vector

» Categorical

 0,1x X 

 1,2,...,x X M 

 ,x X a b 

1( ,..., ),    K kx x x x 

1( ,..., ),    K kx x x x 

1( ,..., ),     is a category (e.g. red/green/blue)I ix a a a



Modeling dynamic problems

Exogenous information:
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 
New information that first became known at time 

ˆ ˆ ˆˆ     = , , ,

ˆ    Equipment failures, delays, new arrivals
            New drivers being hired to the network

ˆ    New customer demands
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ˆ     Information about the environment (temperature, ...) 
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Note: Any variable indexed by t is known at time t. This convention, 
which is not standard in control theory, dramatically simplifies the 
modeling of information.

 
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Modeling dynamic problems

The transition function
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( ,   ,   )
ˆ             Inventories
ˆ                     Spot prices
ˆ                 Market demands
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Also known as the:
“System model”
“State transition model”
“Plant model”
“Plant equation”
“State equation”

“Transfer function”
“Transformation function”
“Law of motion”
“Model”
“transition function”

For many applications, these equations are unknown. This 
is known as “model-free” dynamic programming. 



Objective functions

» Cumulative reward (“online learning”)

• Policies have to work well over time, which means fast 
convergence, and possibly fast learning (if there is a belief 
state).

» Final reward (“offline learning”)

• We only care about how well the final decision ݔగ,ே works, 
not how well we do while finding it.
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Modeling stochastic, dynamic problems
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The complete model:
» Objective function

• Cumulative reward (“online learning”)

• Final reward (“offline learning”)

» Transition function:

» Exogenous information:
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Modeling stochastic, dynamic problems
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Modeling 
Deterministic 
» Objective function

» Decision variables:

» Constraints: 
• at time t

• Transition function

Stochastic
» Objective function

» Policy

» Constraints at time t

» Transition function

» Exogenous information
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An energy storage problem

Consider a basic energy storage problem:

» We are going to show that with minor variations in the 
characteristics of this problem, we can make each class 
of policy work best.



An energy storage problem

A model of our problem

» State variables

» Decision variables

» Exogenous information

» Transition function

» Objective function



An energy storage problem

State variables

» We will present the full model, accumulating the 
information we need in the state variable.

» We will highlight information we need as we proceed. 
This information will make up our state variable.
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An energy storage problem

Decision variables

» Constraints;
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An energy storage problem

Exogenous information
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An energy storage problem

Transition function
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Learning in stochastic optimization

Updating the demand parameter
» Let ௧ାଵ be the new price and let

» We update our estimate ௧ using our recursive least 
squares equations:
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An energy storage problem

Types of learning:
» No learning ( ᇱ are known)

» Passive learning (learn from price data)

» Active learning (“bandit problems”)
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Buy/sell decisions



An energy storage problem

Objective function
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An energy storage problem

State variables
» Cost function

» Decision function
Constraints:

» Transition function
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Outline

Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies



Solution strategies and problem classes
Special structure
» There are special cases where we can solve

exactly.  But not very many.

Sampled problems (SAA, scenario trees)
» If the only problem is that we cannot compute the expectation, we 

might solve a sampled approximation

Adaptive learning algorithms
» This is what we have to turn to for most problems, and is the focus 

of this tutorial.

max ( , )x F x W

ˆmax ( , )x F x W



Solution strategies and problem classes

State independent problems
» The problem does not depend on the state of the system.

» The only state variable is what we know (or believe) about 
the unknown function                , called the belief state ௧, 
so ௧ ௧.

State dependent problems
» Now the problem may depend on what we know at time t:

» Now the state is ௧ ௧ ௧ ௧

 max ( , ) min( , )
x
F x W p x W cx  

( , )F x W

 0
max ( , , ) min( , )

tx R t
C S x W p x W cx    



Solution strategies and problem classes

Offline (final reward)
» We can iteratively search for the best solution, but only 

care about the final answer.
» Asymptotic formulation:

» Finite horizon formulation: 

Online (cumulative reward)
» We have to learn as we go

max ( , )
x
F x W

,max ( , )NF x W
 

1
1

0

max ( ( ), )
N

n n

n

F X S W
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



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“ranking and selection”
or

“stochastic search”



Solution strategies and problem classes



Solution strategies and problem classes



Solution strategies and problem classes

Learning policies:
Approximate dynamic programming
Q-learning
SDDP
…



Solution strategies and problem classes

“Online” (cumulative reward) dynamic programming is recognized as the 
“dynamic programming problem,” but the entire literature on solving 
dynamic programs describes class (4) problems. This appears to be an 
open problem.
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Modeling uncertainty

Observational uncertainty
Prognostic uncertainty (forecasting)
Experimental noise/variability
Transitional uncertainty
Inferential uncertainty
Model uncertainty
Systematic exogenous uncertainty
Control/implementation uncertainty
Algorithmic noise
Goal uncertainty

Modeling uncertainty in the context of stochastic optimization 
is a relatively untapped area of research. 



Outline

Canonical problems
Elements of a dynamic model
An energy storage illustration
Solution strategies and problem classes
Modeling uncertainty
Designing policies



Designing policies

We have to start by describing what we mean by a 
policy.
» Definition:

A policy is a mapping from a state to an action.  
… any mapping.

How do we search over an arbitrary space of 
policies?



Designing policies

Two fundamental strategies:

1) Policy search – Search over a class of functions for 
making decisions to optimize some metric.

2) Lookahead approximations – Approximate the impact 
of a decision now on the future. 
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Designing policies
Policy search:
1a) Policy function approximations (PFAs)

• Lookup tables 
– “when in this state, take this action”

• Parametric functions
– Order-up-to policies: if inventory is less than s, order up to S.
– Affine policies -
– Neural networks

• Locally/semi/non parametric
– Requires optimizing over local regions

1b) Cost function approximations (CFAs)
• Optimizing a deterministic model modified to handle uncertainty 

(buffer stocks, schedule slack)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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Designing policies
Lookahead approximations – Approximate the impact of a 
decision now on the future:
» An optimal policy (based on looking ahead):

2a) Approximating the value of being in a downstream state using 
machine learning (“value function approximations”)
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The ultimate lookahead policy is optimal
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Designing policies
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Designing policies

The ultimate lookahead policy is optimal

Expectations that we 
cannot compute

Maximization that we 
cannot compute



Designing policies

The ultimate lookahead policy is optimal

» 2b) Instead, we have to solve an approximation called 
the lookahead model:

» A lookahead policy works by approximating the 
lookahead model.
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Designing policies
Types of lookahead approximations 
» One-step lookahead – Widely used in pure learning 

policies:
• Bayes greedy/naïve Bayes
• Expected improvement
• Value of information (knowledge gradient)

» Multi-step lookahead
• Deterministic lookahead, also known as model predictive 

control, rolling horizon procedure
• Stochastic lookahead:

– Two-stage (widely used in stochastic linear programming)
– Multistage

» Monte carlo tree search (MCTS) for discrete action 
spaces

» Multistage scenario trees (stochastic linear 
programming) – typically not tractable.



1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFAs)
»

3) Policies based on value function approximations (VFAs)
»

4) Direct lookahead policies (DLAs)
» Deterministic lookahead/rolling horizon proc./model predictive control

» Chance constrained programming

» Stochastic lookahead /stochastic prog/Monte Carlo tree search

» “Robust optimization”

Four (meta)classes of policies
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Learning problems

Classes of learning problems in stochastic 
optimization
1) Approximating the objective

.
2) Designing a policy గ .
3) A value function approximation 

௧ ௧ ௧ ௧ .
4) Designing a cost function approximation:

• The objective function ̅ܥగ ܵ௧, ߠ|௧ݔ .
• The constraints ܺగሺܵ௧|ߠሻ	

5) Approximating the transition function
ெ

௧ ௧ ௧ାଵ
ெ

௧ ௧ ௧ାଵ



Approximation strategies

Approximation strategies
» Lookup tables

• Independent beliefs 
• Correlated beliefs 

» Linear parametric models
• Linear models 
• Sparse-linear
• Tree regression

» Nonlinear parametric models
• Logistic regression
• Neural networks 

» Nonparametric models
• Gaussian process regression
• Kernel regression
• Support vector machines
• Deep neural networks 



Designing policies

Finding the best policy
» We have to first articulate our classes of policies

» So minimizing over            means:

» We then have to pick an objective such as

or
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Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Policy function approximations

Battery arbitrage – When to charge, when to 
discharge, given volatile LMPs
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Grid operators require that batteries bid charge and 
discharge prices, an hour in advance.

We have to search for the best values for the policy 
parameters 
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Policy function approximations



Policy function approximations

Our policy function might be the parametric 
model (this is nonlinear in the parameters):

charge

charge discharge

charge
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1 if 
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Energy in storage:

Price of electricity:



Policy function approximations

Finding the best policy
» We need to maximize

» We cannot compute the expectation, so we run simulations:

DischargeCharge

 
0

max ( ) , ( | )
T

t
t t t

t
F C S X S

   


 



Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Cost function approximations

Lookup table
» We can organize potential catalysts into groups
» Scientists using domain knowledge can estimate 

correlations in experiments between similar catalysts.
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Cost function approximations

Correlated beliefs: Testing one material teaches us about other 
materials

1 2 3 4 4 5



Cost function approximations

Cost function approximations (CFA)
» Upper confidence bounding

» Interval estimation

» Boltzmann exploration (“soft max”)
• Choose x with probability:

log( | ) arg max  
 

   
 

UCB n UCB n UCB
x x n
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Cost function approximations

Picking ூா means we are evaluating each choice 
at the mean. 

1 2 3 4 4 5
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Cost function approximations

Picking ூா means we are evaluating each choice 
at the 95th percentile. 

1 2 3 4 4 5



Cost function approximations
Optimizing the policy
» We optimize ߠூா to maximize:

where

Notes:
» This can handle any belief model, 

including correlated beliefs, nonlinear 
belief models.

» All we require is that we be able to 
simulate a policy.  

 ( | ) arg max        ( , )n IE n IE n IE n n n n
x x x x xx X S S        
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Cost function approximations

Inventory management

» How much product 
should I order to 
anticipate future 
demands?

» Need to accommodate 
different sources of 
uncertainty.

• Market behavior
• Transit times
• Supplier uncertainty
• Product quality



Cost function approximations

Imagine that we want to purchase parts from 
different suppliers.  Let      be the amount of 
product we purchase at time t from supplier p to 
meet forecasted demand      .  We would solve 

» This assumes our demand forecast      is accurate.  

tD
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          ( ) arg min
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Imagine that we want to purchase parts from 
different suppliers.  Let      be the amount of 
product we purchase at time t from supplier p to 
meet forecasted demand      .  We would solve 

» This is a “parametric cost function approximation”
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Cost function approximations

tD

tpx

Reserve

Buffer stock



A general way of creating CFAs:
» Define our policy:

subject to

» We tune     by optimizing:

Cost function approximations

( ) arg min ( , | )t x t tX C S x  



0
0

min ( ) ( , ( )) |
T

t t
t

F C S X S 
  



   
 


( )Ax b  

Parametrically
modified costs

Parametrically
modified constraints



Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Value function approximations

Q-learning (for discrete actions)

» But what if the action a is a vector?

1
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Blood management

Managing blood inventories
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Blood management

Managing blood inventories over time

t=0
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( )tF R
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Solve this as a 
linear program.
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Updating the value function approximation

Estimate the gradient at 
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Updating the value function approximation

Update the value function at 
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Updating the value function approximation
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Updating the value function approximation

Update the value function at ,
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Exploiting concavity

Derivatives are used to estimate a piecewise linear 
approximation

( )t tV R

tR



Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain      and dual variables     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 
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Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain      and dual variables     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
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Approximate value iteration

Step 1: Start with a pre-decision state 
Step 2: Solve the deterministic optimization using

an approximate value function:

to obtain      and dual variables     . 
Step 3: Update the value function approximation

Step 4: Obtain Monte Carlo sample of               and
compute the next pre-decision state:

Step 5: Return to step 1. 
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Iterative learning
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Approximate dynamic programming

… a typical performance graph.



“I think you give a too rosy a picture of ADP….”
Andy Barto, in comments on a paper  (2009) 

“Is the RL glass half full, or half empty?” 
Rich Sutton, NIPS workshop, (2014) 

Approximate value functions can work very well, but you need 
structure to guide the learning process. ADP needs 
benchmarks and careful tuning.



Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Lookahead policies

Planning your next chess move:

» You put your finger on the piece while you think about 
moves into the future.  This is a lookahead policy, 
illustrated for a problem with discrete actions.





Lookahead policies

Decision trees:



Lookahead policies

Modeling lookahead policies
» Lookahead policies solve a lookahead model, which is an 

approximation of the future.
» It is important to understand the difference between the:

• Base model – this is the model we are trying to solve by finding 
the best policy.  This is usually some form of simulator.

• The lookahead model, which is our approximation of the future 
to help us make better decisions now.

» The base model is typically a simulator, or it might be the 
real world.



Lookahead policies

Lookahead models use five classes of 
approximations:
» Horizon truncation – Replacing a longer horizon problem 

with a shorter horizon
» Stage aggregation – Replacing multistage problems with 

two-stage approximation.
» Outcome aggregation/sampling – Simplifying the 

exogenous information process
» Discretization – Of time, states and decisions
» Dimensionality reduction – We may ignore some variables 

(such as forecasts) in the lookahead model that we capture 
in the base model (these become latent variables in the 
lookahead model).



Lookahead policies

Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

» All variables are indexed by t (when the lookahead
model is being generated) and t’ (the time within the 
lookahead model).

 
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Lookahead policies

We can use this notation to create a policy based 
on our lookahead model:

» Simplest lookahead is deterministic.

*
' ' ' , 1

' 1
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Restricted/simplified set of policies

Simplified/discretized set of state variables

Simplified/discretized set of decision variables

Sampled set of realizations (or deterministic);
Aggregated staging of decisions and information

Limited horizon



Lookahead policies

Deterministic lookahead

Stochastic lookahead (with two-stage 
approximation)
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Scenario trees



Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model
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Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Lookahead policies

Lookahead policies peek into the future
» Optimize over deterministic lookahead model

The real process
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Lookahead policies

Stochastic lookahead
» Here, we approximate the information model by using a 

Monte Carlo sample to create a scenario tree: 
1am          2am          3am         4am         5am   …..

Change in wind speed

Change in wind speed

Change in wind speed



Lookahead policies

We can then simulate this lookahead policy over 
time:
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Lookahead policies
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Lookahead policies

We can then simulate this lookahead policy over 
time:
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Learning damaged networks
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Lookahead policies

Monte Carlo tree search:

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez,  S. Samothrakis and S. 
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and AI in Games, 
vol. 4, no. 1, pp. 1–49, March 2012.





Lookahead policies

Notes:

» Solving stochastic lookahead policies can be hard!

» … but this is still just a lookahead policy which is a 
class of rolling horizon heuristic.

» Even if solving the lookahead model is hard, an optimal 
solution of a lookahead model (even a stochastic one) is 
(with rare exceptions) not an optimal policy.



Outline

The four classes of policies
» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAs)
» Direct lookahead policies (DLAs)
» A hybrid lookahead/CFA



Parametric cost function approximation

An energy storage problem:



Parametric cost function approximation
Forecasts evolve over time as new information arrives:

Actual

Rolling forecasts, 
updated each 
hour.







Forecast made at 
midnight:



Parametric cost function approximation

Benchmark policy – Deterministic lookahead
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Parametric cost function approximation

Parametric cost function approximations
» Replace the constraint 

with:
» Lookup table modified forecasts (one adjustment term for 

each time in the future):

» Exponential function for adjustments (just two parameters)

» Constant adjustment (one parameter)
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Parametric cost function approximation

Optimizing the CFA:
» Let              be a simulation of our policy given by

» We then compute the gradient with respect to 

» The parameter     is found using a classical stochastic 
gradient algorithm:

We tested several stepsize formulas and found that ADAGRAD 
worked best:
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Parametric cost function approximation

Optimizing the CFA:
» We compute the gradient by applying the chain rule

where the interaction from one time period to the next is 
captured using 

» Assuming there are no integer variables, these equations 
are quite easy to compute.



0fs = 10fs =

20fs = 30fs =
Lookup table

Constant parameter
Exponential function



Parametric cost function approximation

Improvement over deterministic benchmark:

Lookup table
Exponential

Constant



Parametric cost function approximation

The parametric CFA represents a fundamental 
rethinking of the modeling of stochastic 
programming problems:
» From thinking of the lookahead model as the objective 

function:

» To acknowledging that the lookahead model is a policy 
for solving the base model…

…. which is a simulator where we do not have to make 
any of the standard approximations required in stochastic 
programming.
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An energy storage problem

Consider a basic energy storage problem:

» We are going to show that with minor variations in the 
characteristics of this problem, we can make each class 
of policy work best.



An energy storage problem

We can create distinct flavors of this problem:
» Problem class 1 – Best for PFAs

• Highly stochastic (heavy tailed) electricity prices
• Stationary data

» Problem class 2 – Best for CFAs
• Stochastic prices and wind (but not heavy tailed)
• Stationary data

» Problem class 3 - Best for VFAs
• Stochastic wind and prices (but not too random)
• Time varying loads, but inaccurate wind forecasts

» Problem class 4 – Best for deterministic lookaheads
• Relatively low noise problem with accurate forecasts

» Problem class 5 – A hybrid policy worked best here
• Stochastic prices and wind, nonstationary data, noisy forecasts.



An energy storage problem
The policies
» The PFA:

• Charge battery when price is below p1
• Discharge when price is above p2

» The CFA
• Optimize over a horizon H; maintain upper and lower bounds (u, l) 

for every time period except the first (note that this is a hybrid with a 
lookahead). 

» The VFA
• Piecewise linear, concave value function in terms of energy, indexed 

by time.
» The lookahead (deterministic)

• Optimize over a horizon H (only tunable parameter) using forecasts of 
demand, prices and wind energy

» The lookahead CFA
• Use a lookahead policy (deterministic), but with a tunable parameter 

that improves robustness.



An energy storage problem

Each policy is best on certain problems
» Results are percent of posterior optimal solution

» … any policy might be best depending on the data.
Joint research with Prof. Stephan Meisel, University of Muenster, Germany.
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Thank you!
http://www.castlelab.princeton.edu/

A tutorial on this topic is available at the top of

http://www.castlelab.princeton.edu/jungle/


