Tutorial: A Unified Modeling and Algorithmic

June 13, 2018

»

Princeton University
Department of Operations Research

© 2016 Warren B. Powell, Princeton University

Learning problems
|

® Materials science aviond
» Optimizing payloads: reactive e water b 3
. . droplet
species, biomolecules, ’ \@ S
fluorescent markers, ... 2

Qil dropl

» Controllers for robotic scientist
for materials science
experiments

» Optimizing nanoparticles to
maximize photoconductivity

Learning problems
|

® Health sciences

» Sequential design of
experiments for drug discovery

» Drug delivery — Optimizing the
design of protective
membranes to control drug
release

» Medical decision making —
Optimal learning for medical
treatments.

Drug discovery
N

@ Designing molecules

H Br CH,
F |
X N.
Cl CH,
Br
. v x HCI
Me

» X and Y are sites where we can hang substituents to change the
behavior of the molecule. We approximate the performance using
a linear belief model: |

Y=60,+ 2 X

sites i substituents j

» How to sequence experiments to
learn the best molecule as quickly
as possible?

Ride sharing

@ Uber/Lyft

» Provides real-time, on-demand

transportation.

» Drivers are encouraged to enter or leave
the system using pricing signals and
informational guidance.

® Decisions:

» How to price to get the right balance of
drivers relative to customers.

» Real-time management of drivers.

» Policies (rules for managing drivers,

customers, ...)

eeco0 ATRT = 3112 PM nd
= UBER
fomn
°® West Dr
[]
Rocky Hill
KINGSTON
Mt Rose
@7)

Princeton

61% m)

INL

() SET PICKUP LOCATION ()
Prin
Mee

@ —RINCETON

GUNCTON
LAWRENCEVILLE % @st Windsor

% ~ Township

Mercer:

uberX

Google J

BLACK CAR

Ride sharing

e = Eerry olag iviarkerpiace
= 1 CHINATOWN y
S PACIFIC HEIGHTS ok
é:} IS 1 G ocj%
S Riders s 2 S
calito 101 & <
ZA CLIFF ‘cornia St o
ANRIA, al JAPANTOWN TENDERLOIN LB‘O' <
california o 9,
WESTERN S i
N RICHMOND ADDITION & CIVIC CENTER
% | VISTA Rl 4 AT&T Park
= —DISTRICT © (& SouTH oF XV /
MARKETS
lboa St ALAMO SQUARE ‘=)Uber HQ e G|
O ,
e
St t & “MISSION BAY
t @ 903“ SY LOWER HAIGHT o® -
- 02
@ : 101 =
| & = o
’ HT-ASHBURY DU EOCE 7
5olden ¢ TRIANGLE
LincpIn 16th St
n Way 16th St
tif St 2 <
THE CASTRO & T | MISSION POTRERO HILL
cURekA VALLEY ® 2 DISTRICT DOGPATCH
:) S N
g —
(1]
sgast : 2ath St 07
NOE VALLEY
£ Cesar Chavez St
SUNSET u: !
| Yo
raval St %
EIGHTS BERNAL HEIGHTS %
SAINT FRANCIS
et GLEN PARK

=
WESTWOOD

Ride sharing

v = -ermy Blag iviarkerpiace
& 1 CHINATOWN ;
S PACIFIC HEIGHTS = <
{3 m (\Co
3 L O
- Fond 'y
" I carnge! 1+2
Q)
s : 2
“A CLIFF CalifornideSt JAPANTO vy SR
california St & || TENDERLOIN %
WESTERN S S
% RICHMOND' " qeqry Bivd ANZA\VISTAADDITIONC o eV IE S ENTH & ATRT Park
= —DISTRICT » (@)
= Q|| () SOUTH oF XV e
Z Turk _ MARKETS
lboa St ALAMO SQUARE ‘m)Uber HQ (\C_—}- G
X _
1 &
t @ 2102k SY (| oWER HAIGHT ROV A v dedtind
@ (4%]
(2 101 a
(&) =1 o
. AIGHT-ASHBURY DUBOCE ; 0
solden Gate Park ¥
TRIANGLE 6th St
Lincoln 1
n Way 16th St
17th St 2 <
THE CASTRO & £ | MISSION POTRERO HILL
= ® 3 DISTRICT ' DOGPATCH
© ‘ e EUREKA VALLEY L% A
QA 2o
NIV ALPEAKS I
a St y)
eg } » 24th St
NOE VALLEY
Cesar Chavez St
SUNSET DISTRICT FOREST HILL
DIAMOND %
raval St 4
HEIGHTS BERNAL HEIGHTS %
SAJNLLS%NCJS APy =

WESTWOOD

Ride sharing

o \£2 rerry I'.'JI'Ug l_fIElFKEIpIEICE
£)5 CHINATOWN
S PACIFIC HEIGHTS Tk .
1S o &
— @) o) :
. ia St o &), 2 %
californ! I .-1 01 N
z tS f I .
“A CLIFF Californi&St JAPANTO g 5
A TENDERLOIN Z
california St ® Ay
WESTERN S)
% RICHMOND' " qeqry Bivd ANZA viSTA APDITION =5, - (g CENTER & ATRT Park
= ——DISTRICT . SouTH oF XV
z Turk S MARKET#
m SN EEEEEEEEEEEREEEER r E—‘!
Iboa St (=)Uber HQ A
X :
St ' & “MISSION BAY
t @ 02K SY ([oWER HAIGHT WA &7
_, | - 20
(%) = - =
’ IGHT-ASHBURY. R 7
solden Gate Park GLE 3
Lincoln 16th St
n Way 16th St
t (2] o2
THE CASTRO 8 T |MISSION POTRERO HILL
EUREKA VA ® 3 DISTRICT DOGPATCH
? % 5
W
ggass % 24th St {101
IlIlIIIIIIIIIIIIIIII%VALLEY
Cesar Chavez St
SUNSET DISTRICT FOREST HILL
DIAMOND %
raval St %
HEIGHTS BERNAL HEIGHTS %
SAINT FRANCIS =
e GLEN PARK

WESTWOOD

Ride sharing

o =) FEIry blag viarketpiace
< T CHINATOWN
S PACIFIC HEIGHTS A
o)
=5 [7)
) : 1 P
(D ts Ca'ﬂfom"f I ; I
“A CLIFF Californi&st JAPANTO
i - TENDERLOIN
california St . o
WESTERN S :
N RICHMOND Geary Blvd ANZA VISTA ADDITION & (ClvIC CENTER R =
< ——DISTRICT . SOUTH OF X (B
z Turk S KET
|b088t EEEEENEEEEEEEENEEER 'UbE!fHQ C_—} |
0'3’(\
St t o§ MISSTON BAY
t @ 02K St OWER HAIGHT PICR A 7
2 107 ga
& =
’ IGHT-ASHBURY. T
5olden Gate Park GLE
Lincoln ethagl >
n Way 16th St
t (2] o2
THE CASTRO S % | MISSION POTRERO HILL
EUREKA VA ® 3 DISTRICT
30,
W
Gvikh % 24th St (101
IlllIIIIIIIIIIIIIIIIWALLEY
g&és-a.r-c-a.v-e
SUNSET DISTRICT FOREST HILL
DIAMOND %
raval St 4 Y
HEIGHTS BERNAL HEIGHTS %
SAINT FRANCIS Q
WOOoD GLEN PARK

WESTWOOD

Matching buyers with sellers

® Now we have a logistic curve for
each origin-destination pair (i,))

Buyer Seller

05 +0; p+05a

Y —
Pl(p.al)=

Probability of success
(=] (=]

® Number of offers for each (i,)) pair
is relatively small.

@ Need to generalize the learning
across hundreds to thousands of
markets.

2 24 28 32 36 4 44 48 52 56 6 64 68 72 76 8 84 88 92 96 10

Emergency storm response
L

HURRICANE CENTRAL & Hurricane Sandy
SANDY THREAT ||\|DEX

ALER » Once in 100 years?

Syraéuse Bo:‘:tfm

New York » Rare convergence of events

Pittsb h
[EJurg

on Wahgeten » But, meteorologists did an
e S amazing job of forecasting
nginggm: westhes the Storm.

;;;;;;;;

@® The power grid

» Loss of power creates
cascading failures (lack of
fuel, inability to pump water)

» How to plan?
» How to react?

Emergency storm response

Emergency storm response

0.5
- 0.50 >

38 | N [(=
503/ bsos bsos | -
054 & — (764

Emergency storm response

Meetmg variability with portfolios of generation
b W1th mlxtures of dlspatchablllty

J 1134 567 . SiRN
soimin ([
. cATD b3 N i

I 1irdn SENTINEE®

Storage applications

® How much energy to store in a battery to handle the
volatility of wind and spot prices to meet demands?

Wind speed

Electricityprices

o4

| I._.-"-"p'l

™,

!

\ ||II b\’ll III| |II
. 1\

Demand
™ .J'pll.l
|

ll“v"l

W I."-*“-I
\ |V

llI."'.

|
\
Ll

oy

Outline

® Canonical problems
@ Elements of a dynamic model

© An energy storage 1llustration

© Solution strategies and problem classes

Outline

® Canonical problems
® Elements of a dynamic model

® An energy storage 1llustration

© Solution strategies and problem classes

Canonical problems

® Decision trees

Decisions Experiment Decision Experiment
A A A A
s “r \r \r) |
] Concen., Success/ Concen., Success/
Catalyst e . T _F
¢ temperature, Jfatlure temperature, Jfatlure
-3
- - *D - -
. : 0
- e _..#*‘D
e 3]
3]
a0
“~s(] 0
. 3]
- - - -— ﬂ
e s

Canonical problems
|

® Stochastic search (derivative based)

» Basic problem:

Manufacturing network (x=design)

Unit commitment problem (x=day ahead decisions)

max EF (X,W)) gl;;;ltory system £x=d§sign, repler.lishment policy)
ry system (x=choice of material)

Patient treatment cost (x=drug, treatments)

Trucking company (x=fleet size and mix)

» Stochastic gradient
X" =x"+a V. F(X",W")
» Asymptotic convergence:
lim,__EF(X",W)—EF(x",W)
» Finite time performance

max _EF(x"",W) where 7 is an algorithm (or policy)

Canonical problems
|

® Ranking and selection (derivative free)

» Basic problem:

» We need to design a policy X7 (S") that finds a design
given by x™"

max_EF (x”"\' ,W)

» We refer to this objective as maximizing the final
reward.

Canonical problems
N

@® Multi-armed bandit problems

» We learn the reward from playing each
“arm,’

» We need to find a policy X * (S") for
playing machine X that maximizes:

N-1
max, EY F(X7(S"),W"™")

n=0
where

W ™! ="winnings" New information
S" =State of knowledge =~ What we know about each slot machine
X" =X"(S") Choose next “arm” to play

We refer to this problem as maximizing
cumulative reward.

Canonical problems
|

® (Discrete)

Markov decision processes

» Bellman’s optimality equation
Vi(S,) =min, _, (C(S;,a,)+7BE{V,.,(5.))1S.})

= minateﬂ (C(Sta a[)"‘ 7/2 p(St+1 =S'| St) a‘[)Vt+1(St+l)j

» This 1s al

min_ E <

so the same as solving

-

C(St,xr<st))|so}

T
_ t:()

where the optimal policy has the form

X" (S;) = argmin, (C(SU X)+E {Vt+1(St+1) | Ses %, })

Canonical problems
|

® Optimal stopping I
» Model:

* Exogenous process:

®=(P,, Pys---» Pr) = Sequence of stock prices

e Decision:
1 If we stop and sell at time t
Xt (a)) =)
0 Otherwise
e Reward:

p, = Price received 1f we stop at time t

» Optimization problem:
max_[Ep_X_

where 7 1s a “stopping time” (or “F; —measurable function™)

Canonical problems
|

® Optimal stopping II
» Model:

* Exogenous process:
@ =(P,, Pys---» Py) = Sequence of stock prices

P, = (1- a)ﬁt—l +ap
o State:

R, =1 1f we are holding asset, 0 otherwise.

S; = (R, P> P)
* Policy:

X@|@—1 P, =P +0
e 10 Otherwise

» Optimization problem:
T T
max, B pX"(S,|0)=max,E) pX"(S,|0)
t=0 t=0

Canonical problems
|

® Linear quadratic regulation (LQR)

» A popular optimal control problem in engineering
involves solving:
T

.....

t=0
» where:

X, = State at time t
u, = Control at time t (must be F, — measurable)

X, = f(x,u)+w, (W, is random at time t)

» Possible to show that the optimal policy looks like:

Ut*(xt) = KX,
where K, 1s a complicated function of Q and R.

Canonical problems
|

® Stochastic programming
» A (two-stage) stochastic programming problem

minXOEXO CoXo + EQ(X,6))

where

Q(Xy, 5 () = minxl(a))exl(a)) C,(w)X (w)

» This 1s the canonical form of stochastic programming,
which might also be written over multiple periods:

minc,x, + 3 p@)Y ¢ (@) (o)

we) t

Canonical problems
|

® Stochastic programming
» A (two-stage) stochastic programming policy

Xtﬂ(st) = argnlinxtext Ctxt T EQ(XU §t+1)

where

QX & (@) = minxm(a))exm(a)) Ci (@)X, (@)

» This 1s the canonical form of stochastic programming,

which might also be written over multiple periods:
t+H

min C X, + Z p(@,) Z Cyp (@) Xy (@)

o, €Q, t'=t+1

Canonical problems
|

@ A robust optimization problem would be written
min, _, mMax, ., F(X, W)

XxeX

» This means finding the best design X for the worst
outcome W 1n an “uncertainty set” V) (6)

» This has been adapted to multiperiod problems

t+H
X{(S) =arg minxt %, MAX W)ewd) Z Cp (W,)X,
t=t

.....

Canonical problems
|

® Why do we need a unified framework?
» The classical frameworks and algorithms are fragile.

» Small changes to problems invalidate optimality
conditions, or make algorithmic approaches
intractable.

» Practitioners need robust approaches that will provide
high quality solutions for all problems.

Outline

@ Canonical problems
@ Elements of a dynamic model

® An energy storage 1llustration

e Solution strategies problem classes

Modeling

® How much energy to store in a battery to handle the
volatility of wind and spot prices to meet demands?

Wind speed

Demand
ey fi
. ﬁf" II'.

[1'. .
\"wﬂll h\’\j I| ﬁL)II "Lj J" leﬁl‘nh

Electricityprices

Modeling

® Before we can solve complex problems, we have
to know how to think about them.

Min E {2 cx}
Ax=Dh

> }
x20 Organize class
C

libraries, and set up
ommunications and
databases

—

Mathematician

Software

® The biggest challenge when making decisions
under uncertainty is modeling.

Modeling

® For deterministic problems, we speak the language
of mathematical programming

» Linear programming:

min, CX Arguably Dantzig’s biggest
Ax =Db contribution, more so than the
X >0 simplex algorithm, was his

articulation of optimization

» For time-Sté}rged problems problems in a standard format,

min,) CX which has given algorithmic
t=0 researchers a common
Ax.—B._x_ =Db language.
D, X, <u,

X, 20

)i //
9 = 13:“‘ et
aaf

3 .G_

o .i-’,lr
4

N f" & Al
timizat

| e
’ i v
) ~ A
‘ \ . NN \ !‘Q
- 7 d)
: T WA o
{ 2ol '
> = , ; rd
AN N b
) e e A W
A s/ i g
i N 5. il 3
1 T . \ FJ 13
./ y) ﬁ‘ - :

-

Q_«_&nﬂu
N
Q;",

g

-
N
"\«

N

- 4
.(/

y
"
%

W

Wi Ilearnmg Markcw R AN =
Stochastic _ “ decision / ;;;;' ~Sintulation
control .~ optimization

procegses u

JohnR. Birge
Frangois Louveaux

b

(Approximate Dynamic
e Programmmg

(Solving the Curses of Dimensionality %

\
| : ; — Warren B. Powell _i

WWILEY

Introduction
to Stochastic

LG 18
5] Analysis -
Programming Optlmlzatmn

Dynamic Programming
and Optimal Control

SOHLIVIAHL I AFNdd ¥

SECOND EDITION

| Optlmal

Model Predictive a -
Learnmg ll— Control “‘*‘\"\@ ' g INTRODUCTION To
. r ! 7 STOCHASTIC SEARCH
i | R 7/ 4

WWW.
Lo aiiniic]

aND OPTIMIZATION

OPTIMAL

.| MULTI-ARMED BANDIT — -
r ALLOCATION INDICES Estimation, Simulation,
‘___ (SECOND EDITION | and Control

RS CONTROL

Learning

A_.

PWILEY
JAMES C. SPALL

dnlin;e Computation STOCHASTIC
and

Jiongmin Yon " i - ‘ Markov Decision Pmcusscs‘ Competitive Analysis SIMULATION
ong ong
R T \ Discrete Stochastic Allan Borodin Ran E-Yanly OPTIMIZATION

[)‘”dn"{:]}n}:r(”""“ng An Optlmﬂ[Computing Budget Allocation

Stochastic 2 en SENET . Chun-Hung Chen * Loo Hay Lee
Controls " : \

Hamiltonian Systems and
HIB Equations

MARTIN L. PUTERMAN . ®

Modeling

® We lack a standard language for modeling
sequential, stochastic decision problems.

» In the slides that follow, we propose to model problems
along five fundamental dimensions:

e State variables

e Decision variables

* Exogenous information
e Transition function

* Objective function

» This framework draws heavily from Markov decision
processes and the control theory communities, but it 1s
not the standard form used anywhere.

Modeling dynamic problems

B]
® The state variable:

Controls community
X, ="Information state"
Operations research/ MDP/Computer science
S, =(R,,1,, B,) = System state, where:
R, = Resource state (physical state)
Location/status of truck/train/plane
Energy 1n storage
|, = Information state
Prices
Weather
B, = Belief state ("state of knowledge")
Belief about traffic delays

Belief about the status of equipment

The state variable
I

® Illustrating state variables

» A deterministic graph

17.4

The state variable

® Illustrating state variables

» A stochastic graph

The state variable

® Illustrating state variables

» A stochastic graph

The state variable

® Illustrating state variables

» A stochastic graph with left turn penalties

The state variable

® Variant of problem in Puterman (2005):

» Find best path from 1 to 11 that minimizes the second
highest arc cost along the path:

» If the traveler 1s at node 9, what is her state?

S, =CN,, highest, second highest) =(9,15,12)

The state variables
I

® What is a state variable?

» Bellman’s classic text on dynamic programming (1957)
describes the state variable with:
e “... we have a physical system characterized at any stage by a
small set of parameters, the state variables.”
» The most popular book on dynamic programming
(Puterman, 2005, p.18) “defines” a state variable with

the following sentence:
« “At each decision epoch, the system occupies a state.”

» Wikipedia:
* A state variable i1s one of the set of variables that are used to
describe the mathematical ‘state’ of a dynamical system

The state variable
I

® My definition of a state variable:

Definition 9.3.1 A state variable is:

a) Policy-dependent version A function of history that, combined with the exogenous in-
formation (and a policy), is necessary and sufficient to compute the cost/contribution
function, the decision function (the policy), and any information required to model
the evolution of information needed in the cost/contribution and decision functions.

b) Optimization version A function of history that is necessary and sufficient to com-
pute the cost/contribution function, the constraints, and any information required to
model the evolution of information needed in the cost/contribution function and the
CONStraints.

» The first depends on a policy. The second depends only on the
problem (and includes the constraints).

» Using either definition, all properly modeled problems are
Markovian!

Modeling

dynamic problems

® Decisions:

Markov decision processes/Computer science
a, = Discrete action

Control theory
U, = Low-dimensional continuous vector

Operations research

X, = Usually a discrete or continuous but high-dimensional

vector of decisions.

At this point, we do not specify how to make a decision.
Instead, we define the function X ”*(S) (or A*(S) or U”*(9)),

where 7 specifies the type of policy. "7z" carries information

about the type of function f, and any tunable parameters 8 c ®"

The decision variables
]

@ Styles of decisions

» Binary
Xe X = {0,1}
» Finite
Xe X ={1,2,..., I\/I}
» Continuous scalar
Xe X = [a,b]
» Continuous vector
X=(X,..., X), X, €R
» Discrete vector
X=(X,.er X)» X, €Z
» Categorical
X=(a,...,a,), a 1sa category (e.g. red/green/blue)

Modeling dynamic problems
|

® Exogenous information:

W, = New information that first became known at time t

9 = (F’ép[st’f)t’EAt)

N

R = Equipment failures, delays, new arrivals
New drivers being hired to the network
[St = New customer demands
’ P, = Changes in prices
Iét = Information about the environment (temperature, ...)

Note: Any variable indexed by t is known at time t. This convention,
which is not standard in control theory, dramatically simplifies the
modeling of information.

7 Below, we let w represent a sequence of actual observations W, ,W,,....

W, (@) refers to a sample realization of the random variable W,.

Modeling dynamic problems

B]
® The transition function

M
A Sty =97 (S, X, Wiyy)
R,=R+Xx+R, Inventories
Pa =P T P Spot prices
D.=D, + D,, Marketdemands
>
Also known as the:
“System model” “Transfer function”
“State transition model” “Transformation function”
“Plant model” “Law of motion”
“Plant equation” “Model”
“State equation” “transition function”

For many applications, these equations are unknown. This
Is known as ““model-free” dynamic programming.

Modeling stochastic, dynamic problems
N

@ Objective functions

» Cumulative reward (“online learning”)

.
max _ & {Z C, (St , X7 (S)W.,) | SO}
t=0

* Policies have to work well over time, which means fast
convergence, and possibly fast learning (if there 1s a belief
state).

» Final reward (“offline learning™)
max]E{F(x”"“ W) SO}

« We only care about how well the final decision x™" works,
not how well we do while finding it.

Modeling stochastic, dynamic problems
N

® The complete model:
» Objective function

e Cumulative reward (“online learning”)

!
max [{Z C, (St , xtﬂ(St),Wm) | SO}
t=0
 Final reward (“offline learning”)
max E{F(x”’N W) so}
» Transition function:

St+1 = SM (St? Xt9Wt+1(a)))
» Exogenous information:

(Sgo Wi, W, ..., W,)

Modeling

I
® Stochastic

» Objective function

® Deterministic

» Objective function

T T
min » ¢ max,, E” {th (S X7 (S)W,,). so}
07T 1=0 t=0
» Decision variables: » Policy
(Xgsees X) X": S X
» Constraints: » Constraints at time t
 at timet
Ax =R, X = X (S) e
X =0 t

e Transition function

Rt+1 = bt+1 + tht

» Transition function

M
Sty =9 (Sv Xt7Wt+1)
» Exogenous information

(Sy. W, W, ., W)

Outline

@ Canonical problems
® Elements of a dynamic model

© An energy storage 1llustration

© Solution strategies and problem classes

An energy storage problem

® Consider a basic energy storage problem:

Wind speed

Electricityprices W“IIMM

—
L)
o
l e
1 | .
B | §
| I —p
| - .

» We are going to show that with minor variations in the
characteristics of this problem, we can make each class
of policy work best.

An cnergy storage problem
® A model of our problem

» State variables

» Decision variables

» Exogenous information

» Transition function

» Objective function

An energy storage problem

® State variables

G L

Wind speed L
E *) B P Demand
M. I|' "‘.I r\.,l ,l".,'l I',
. V\RX _ . _'IHII 'II IIIUI Ill-ﬁ 'II | II“"'. ."Ihll,,»’ﬁll
-~ (i \

Electricityprices 7 ﬁ?’ /J/
~t 4_, -

I|I "I.JI"L'I Ilr"J ||I_‘ Jn'ﬂ

» We will present the full model, accumulating the
information we need 1n the state variable.

» We will highlight

information we need as we proceed.

This information will make up our state variable.

An energy storage problem

® Decision variables

Wind speed

Electricityprices

Xt:(XF3XfBJ¢i,ﬁ%nXPU)

» Constraints;

EL
Ty T Ty

EB

GL EL BL
(It +x ")

Bl

I

IA

L

Demand

I II'*H ™, .Jﬁ
\ III \’\} ',II III '.,"’I l"|ﬁ
Illl’llf_'lll{ll "IIL‘)

M A
J Vo
/ X
J

|
)

An energy storage problem

® Exogenous information

E

Wind speed L
P Demand
| \ MV \
- 1 \) |
1] I"'\ | '|_| 'I f I"‘. III-_-L II_."‘\
'* (] \ I J I-'n | \ / I',;’ |I
+ L || Al -._II
|-\..;_I '_

Electricityprices % f‘?z / f_f—* .

A

E, = Change 1n energy from wind between t —1 and t

= Noise in the price process between t —1 and t

f.) = Forecast of demand D,, provided by vendor at time t

f° = (f)m Provided exogenously

¢’ = Difference between actual demand and forecast

An energy storage problem

® Transition function

Et+1

pt+1
D

t+1

battery
Rt +1

Electricityprices

TR DI

L

t

|

+ Et+1

0

0

t

+0,

.I:D

t,t+1

P

+ gt+1

_ Rtbattery

X

P +

t+1

Demgnd

=(6)" P, +

p
t+1

P, =

(p,
o

K P:_» Y,

Learning in stochastic optimization
N

® Updating the demand parameter

» Let ps,1 be the new price and let

Fpme(pt |9) (‘9) [_6’topt +0, 11 Py 1+0t2pt 2

» We update our estimate Ht using our recursive least
squares equations:

I — 1 —
9t+1 = b, B, P&
Vi
Ctp1 = F pnce(pt t)_ Pt
| _
B, =B _—(Bt P, (P,)T B,)
Vi

Y1 :1+(Et)T Bt [

An energy storage problem
N

® Types of learning:

» No learning (6's are known)

pt+1_‘9pt+‘9pt1+9 Py + t+1

» Passive learning (learn 8s from price data)

pt+1_ tOp +9’[1pt1+9t2pt2 t+1

» Active learning (“bandit problems™)

p
pt+1_ tOp +9’[1pt1+9t2pt2+9t3 t+1

Buy/sell decisions

An energy storage problem

® Objective function

Wind speed L
E 4 Demand
i i | [I"A"', |r‘\"u""‘;rll'.
I A | | || I| I'*'.I .'.' I ,-"Al
It I|I II "' | / v \

Electricityprices

o | .

C(Si %) 3 p (X +x)

]
min,, E{Z Ci(Se X (S, We)| 50}
t=0

An energy storage problem

@ State variables B
— D
» Cost function S = Et,I:[,RE (P pt_vp P), 17.(6,,B)

%f_/

p, = Priceof electricity

» Decision function

: 1t : ‘t

(2l + 2P 1+ 2PL

Outline

® Elements of a dynamic model
® An energy storage 1llustration
@ Solution strategies and problem classes

© Modeling uncertainty

Solution strategies and problem classes
N

@ Special structure

» There are special cases where we can solve
max, BF(X,W)

exactly. But not very many.

@ Sampled problems (SAA, scenario trees)

» If the only problem is that we cannot compute the expectation, we
might solve a sampled approximation

max, BF (x,W)

@® Adaptive learning algorithms

» This 1s what we have to turn to for most problems, and is the focus
of this tutorial.

Solution strategies and problem classes
N

® State independent problems
» The problem does not depend on the state of the system.

max EF(z,IW)=E {p min(x, W) — cx}

» The only state variable 1s what we know (or believe) about
the unknown function EF'(z, W), called the belief state By,
SO St —_ Bt‘
® State dependent problems
» Now the problem may depend on what we know at time t:

maXOS C(S,z,IW) = Ein(x, W) - cx}

» Now the state is S; = (R, ¢, By)

Solution strategies and problem classes

® Offline (final reward)

» We can iteratively search for the best solution, but only
care about the final answer.

» Asymptotic formulation:

“ranking and selection”
F(z,W) 8
or
» Finite 1zon formulation: “stochastic search”

ma@)F(x”’N,W)

® Online (cumulative reward)

m

» We have to learn as we go

ma@]\[z:l F(Xz(Sn),WnJrl)

Solution strategies and problem classes
N

Offline
Terminal reward

Online
Cumulative reward

State

max E{F(.r‘"“\'. W)

So}

max, E{3 N -1 F(X™(S"), W"+1)|Sp)}

n=>0
independent Stochastic search Multiarmed bandit problem
problems (1) (2)
m -y -y ror ol -y] r ~y T e T ~y r -~y
State max_irn E{C(S, X™ "7 (5|6imP),W)|Sp} | maxr E{3]_, C(St,X™(St), Wi+1)|So}
dependent Offline dynamic programming Online dynamic programming

problems

4)

(3)

Solution strategies and problem classes

Offline Online
Terminal reward Cumulative reward
State max, E{F(z™N ,W)|So} max, E{3 N1 F(X™(S™), Wn+1)|S,)

inde pendent Stochastic search Multiarmed
problems (1)

bandit problem
(2)

State ~ Cqmax1rn E{C(S, X" (5]6"™P),W)[Sg]y maxx E{Y{_, C(St, X7 (St), Wies1)[So}

dependent Offline dynam&y)mgramming Online dynamic programming
4

problems (

(3)

\

T—1
imp . imp v -.—l"l] ”Hp
m;‘,l,.\E“”E(u ™MT o n=1,...,.N|SO (Em \T_[SOT ZC St X™ 7 (Sil0™7), Wes1)

t=0

)

Solution strategies and problem classes
N

Offline
Terminal reward

Online
Cumulative reward

State max, E{F(z™N ,W)|So} max, E{3 N1 F(X™(S™), Wn+1)|S,)
independent Stochastic search Multiarmed bandit problem
problems (1) (2)
State mag i §{C(S, X™ " (19imP) W)[Sp} | maxx {31, C(St, X™(St), We+1)|So}

dependent Dffline dynamic programming

problems

Online dynamic programming
(3)

(4)
Learning policies:
Approximate dynamic programming
Q-learning
SDDP

Solution strategies and problem classes
N

Offline Online
Terminal reward Cumulative reward
State max, E{F(z™N ,W)|Sp} 111;-1_\(7:*:{2;}':_“1 F(X™(S™),wn+l)|S,)
independent Stochastic search Multiarmed bandit problem

problems (1) (2)

State max_rn E{C(S, X™ "7 (86"™P), W)|So} | maxs E{S]_, C(St, X™(St), Wt+1)|So}
dependent Offline dynamic programming Online dynamic programming
problems (4) (3)

“Online” (cumulative reward) dynamic programming is recognized as the
“dynamic programming problem,” but the entire literature on solving
dynamic programs describes class (4) problems. This appears to be an

open problem.

Outline

@ Canonical problems
® Elements of a dynamic model

® An energy storage 1llustration

© Solution strategies and problem classes

Modeling uncertainty

Observational uncertainty
Prognostic uncertainty (forecasting)
Experimental noise/variability
Transitional uncertainty

Inferential uncertainty

Model uncertainty

Systematic exogenous uncertainty

Control/implementation uncertainty

® & & & & & & & ¢

Algorithmic noise
@® Goal uncertainty

Modeling uncertainty in the context of stochastic optimization
IS a relatively untapped area of research.

Outline

@ Canonical problems
® Elements of a dynamic model

® An energy storage 1llustration

© Solution strategies and problem classes

Designing policies
N

® We have to start by describing what we mean by a
policy.

» Definition:

A policy Is a mapping from a state to an action.
... any mapping.

® How do we search over an arbitrary space of
policies?

i

nnnnnnnnnnn

[Simulation '}
Optimization 14

DeSIgnlng pOllCleS O e 0

y .y
[stochasTic
SIMULATION
OPTIMIZATION

™ -

® Two fundamental strategies:

1) Policy search — Search over a class of functions for
making decisions to optimize some metric.

i
max__ o E tZ(;c:(st, X7 (S,10))IS,

2) Lookahead approximations — Approximate the impact
of a decision now on the future.

t'=t+1

T
X;(S,) = arg max, c<st,xt>+E{max,,en {E > (S X£(S) S} | St,xt}

Designing policies
N

@ Policy search:

1a) Policy function approximations (PFAs) x, = X"™(S, | 6)

* Lookup tables
— “when 1n this state, take this action™

« Parametric functions
— Order-up-to policies: if inventory 1s less than s, order up to S.
— Affine policies - X, =X"7(S,]0) = Z 09, (S,)
— Neural networks ek

* Locally/semi/non parametric
— Requires optimizing over local regions

1b) Cost function approximations (CFASs)

* Optimizing a deterministic model modified to handle uncertainty
(buffer stocks, schedule slack)

X CFA(St | 9) — arg mathe)_(t”(H) Cﬁ(stﬁ Xt | 6)

Designing policies

@ Lookahead approximations — Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

T
X, (S,) = arg max, (c:(st,xt)m{maxmn {E > (S X7 (SIS,) st,xt}]

t'=t+1

2a) Approximating the value of being in a downstream state using
machine learning (“value function approximatigns”)

(e (5.8, x))

X!™(8,) = argmax, (C(S,,%)+E{V,,(S,,))[S %})
=argmax, (C(S,,%)+V*(5)))

X, (S,)=arg max, (C(St , %)+ E

Designing policies

@ Lookahead approximations — Approximate the impact of a
decision now on the future:
» An optimal policy (based on looking ahead):

T
X, (S,) = arg max, (c:(st,xt)m{maxmn {E > (S X7 (SIS,) st,xt}]

t'=t+1

2a) Approximating the value of being in a dovvnstream state using
machine learning (“value function approximatipns”

X[(S,) =argmax, (C(S;,)+ BE{V,,(S.)1S.%})
X™(S,) = argmax (C(St,)q)+E S,)q})

= arg max,, (C(St , %) +\7tx(stx))

—

Designing policies
|
@ Lookahead approximations — Approximate the impact of a
decision now on the future:

» An optimal policy (based on looking ahead):

T
X;(S,) = argmax, (qst, X.) @{E > C(S,, X (S| sm} S, X,
t'=t+1

2a) Approximating the value of being in a downsffeam state using
machine learning (“value function approximationg”)

X{(S,) =argmax, (C(S,,x)+BE{V (S.)]S,x})

X™(8,) = argmax, (C(S,,%)+E{N.(S) 1S %})

= argmax, (C(St , %)

Designing policies

® The ultimate lookahead policy 1s optimal

X (S,) C(Sp %) @%@ C(st.,x;f(st'))li@}j

N/

Designing policies

® The ultimate lookahead policy 1s optimal

T
X, (S,) —argmax, (cxst,xt) B3 C(S., X{(50) S} | St,xt}j
t'=t+1

Maximization that we
cannot compute

v v

Expectations that we
cannot compute

Designing policies
N

® The ultimate lookahead policy 1s optimal

Xt*(st) = argmax, (C(SD Xt)+E{maX7zeH {E i C(St RS (S)] St+1} | St’ Xt}j

t'=t+1

» 2b) Instead, we have to solve an approximation called
the lookahead model:

t+H
Xt*(st) = argmax, (C(Sta Xt) T E{maxﬁeﬁ {E Z C(Stt At (Stt)| St t+1} | Sta Xt}]

t'=t+1

» A lookahead policy works by approximating the
lookahead model.

Designing policies
N

@ Types of lookahead approximations

» One-step lookahead — Widely used 1n pure learning
policies:
« Bayes greedy/naive Bayes
* Expected improvement
« Value of information (knowledge gradient)

» Multi-step lookahead

» Deterministic lookahead, also known as model predictive
control, rolling horizon procedure
 Stochastic lookahead:
— Two-stage (widely used in stochastic linear programming)
— Multistage
» Monte carlo tree search (MCTS) for discrete action
spaces
» Multistage scenario trees (stochastic linear
programming) — typically not tractable.

Four (meta)classes of policies

Policy search

Lookahead approximations

1) Policy function approximations (PFAs)
» Lookup tables, rules, parametric/nonparametric functions
2) Cost function approximation (CFAs)
CFA T
» X " (St | 9) — argmaxxé)?jf(g) C (1?2 t | 9)

3) Policies based on value function approximations (VFAS)

» X]7(S,) =argmax, (C(S,.x)+ 7" (S7(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mllz’ng horizon proc..model piﬂedictlve control

XLA D(S) arg maX C(it 2 ﬁ)—l_ ZC(n's tt

f """ ff+H l'. t+l
» Chance constrained programming

PlAx, < f(W)|<1-0
» Stochastic lookahead 'stochastic prog Monte (.'Targp lree search

XH2(S) = argmaxf(X,)+ Z p(0) Z C(S, (@), %, (D))

xrr’xrr+l’ >N+l wel), t'=1+1
» “Robust optimization

XLA RO(S) arg max min C(” ﬁ)+ZC((w),x,.(w))

Xyt 5oy sy WEW, (O) foe

Four (meta)classes of policies

Function approx.

1) Policy function approximations (PKAs)
» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFASs)
» XS |0) = argmax .., C™(S,,x,|6)

3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax, (C(S,x) +7(S7(S,.x)))

4) Direct lookahead p011c1es (DLAS)
» Deterministic lookahead/rolling horizon proc./model predictive control

XLA D(S)= arg max C(Sttaxtt)+ Z C(Stt X))

""" X t'=t+1

» Chance constralned programmmg

P[AX < FW)]<1-6

» Stochastic lookahead /stochastic prog/Monte Caqo tree search

X A7(S,) = argmax C (S, %) + D P(@) D, C(Sy(@), % (D))
_ X_tt’xt_,t+1"“’xt,t+T el t'=t+1
» ““Robust optimization™

i
XS =arg max min C(Sy, %)+ Y C(Sy (W), X (W)

Xit » t t+H W (9) t'=t+1

Four (meta)classes of policies

Imbedded optimization

1) Policy function approximations (PFAs)

» Lookup tables, rules, parametric/nonparametric functions

2) Cost function approximation (CFKAs)
CFA T
» XS |0) = argmax _. . C™(S,,x |6)
3) Policies based on value function approximations (VFAS)
» X™(S,) =argmax (C(S,,x)+7," (87(S,.x,)))
4) Direct lookahead policies (DLAS)
» Deterministic lookahead 'mlllng horizon proc. model predictlve control

XLA D(S) arg maX C(it > [[)+ ZC(mn'e I‘t

""" rreH 1'=t+1
» Chance oml‘mmed pl ogramming

PlAx < fW)]<1-6

» Stochastic lookahead 'stochastic prog Monte Car lo lree search

XH5(8,) =argmax C(S,, %,) + Zp(anZ C(S, (@), %, (D))

xrr’xrr+l’ ’xrr+T Q) 1'=r+1
» “Robust optimization”

X 7(S)y=arg max min (S s ﬂ)+ZC((w),x,.(w))

X1 5esXy pypr WEW, (0) foe

Learning problems
|

® Classes of learning problems 1n stochastic
optimization
1) Approximating the objective
F(x|0) ~ EF (x,W).
2) Designing a policy X™(5|9).
3) A value function approximation
Ve (Se18) = Vi (Sy).

4) Designing a cost function approximation:
» The objective function C™(S;, x.|0).
 The constraints X™(5;|0)

5) Approximating the transition function
SM (S xe, Wes110) = SM(Sp, X Wisr)

Approximation strategies

® Approximation strategies

» Lookup tables
* Independent beliefs
* Correlated beliefs

-
S AN
B 3 o

» Linear parametric models
» Linear models
» Sparse-linear
» Tree regression

» Nonlinear parametric models
» Logistic regression
* Neural networks

NXTX N

XA XA
7

N7 AN O
0w
FOR LN AN 20N

:1';"}}"/' A SN AN
WAV AWAN

» Nonparametric models
» Gaussian process regression
» Kernel regression
» Support vector machines
» Deep neural networks

Designing policies
N

® Finding the best policy

» We have to first articulate our classes of policies

feF= {PFAS,CFAS,VFAS, DLAS}

0 € ®' = Parameters that characterize each family.

» So minimizing over z € I1 means:
H:{f ef,é’e@f}
» We then have to pick an objective such as
T T
max_ EY C(S,X"(S,10))=EY F(X"(S|0)W,,)
t=0 t=0
or

max BC(S;, X{) =EF(X7,W)

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAS)
» Direct lookahead policies (DLAS)

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAS)
» Direct lookahead policies (DLAS)

Policy function approximations
N

@ Battery arbitrage — When to charge, when to
discharge, given volatile LMPs

ERCOT (Texas) price data

g
B

g
H

g
&

g
8

Dollars per megawatt-hour

Average price ~ $50/megawatt-hour |

T e

Policy function approximations
N

® Grid operators require that batteries bid charge and
discharge prices, an hour in advance.

140.00

120.00

100.00

80.00

ischarge 0009 ’A
A s '\V‘“\ ? 7
QCharge _H /

20.00

L o e o o o e e e L o o B o e o e B LI B o o o o B o e e I NI e e o o o o o
1 357 9111315171921 23252729 313335373941 43454749 51 53555759 616365676971

® We have to search for the best values for the policy
parameters 6" and 6"

Policy function approximations
N

® Our policy function might be the parametric
model (this 1s nonlinear in the parameters):

+1 if p, < @
XS, 10)=10 1f gehares < p, < gaiseharee
\—1 it p, > geharee
:ﬁ Pﬂﬁﬁgmsﬁo@&eﬁ n_[u'l alild jﬁ_ﬂdf u - ‘| — [
=—i—| Price of electricity: —¢ | |
(an ﬁ Fly | W mm\Wnﬂnﬂ f‘a\ . 1
Ve WA i AV VAN A
IJ i . i '

Policy function approximations
N

® Finding the best policy
» We need to maximize

4
max, F(0) =B y'C(S,, X[(S, 10))
t=0

» We cannot compute the expectation, so we run simulations:

HDischarge

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAS)
» Direct lookahead policies (DLAS)

Cost function approximations

® Lookup table

» We can organize potential catalysts into groups

» Scientists using domain knowledge can estimate

correlations in experiments between similar catalysts.

1.4 nm Fe

1 nm Fe

2nm Fe

10nm ALD Al203+1.2 nm IBS Fe
2 nim Mi

MNi 0.6 nm

10nm ALD Al203+1 nm Ni

1

0.7
0.7

0.6
0.4
0.4
0.2

&
,::-.
,.bé“
:;?ﬁ".
ﬁp“-';
w
o
.;::%
L "
Vv &
0.6 0.4
0.6 0.4
0.6 0.4
1 1
1 1
0.3 0.7
0 0.6

0.4
0.4
0.4
0.3
0.7

0.6

0.2
0.2
0.2

0.6
0.6

Cost function approximations

J

N

® Correlated beliefs: Testing one material teaches us about other
materials

99

Cost function approximations

® Cost function approximations (CFA)

» Upper confidence bounding

n
X

XUCB(Sn | QUCB) _ argmaXX (ﬁ: _I_gUCB log n]

» Interval estimation

J‘zaa; X'(S"|0") =argmax, (& +0"5)

» Boltzmann exploration (“soft max™) o
* Choose x with probability: P"(8) =

E e ﬂ)r(]'
X!

X Beltz(gm19) = arg max{z|P"(#) < U}.

I

Cost function approximations

® Picking 8'% = 0 means we are evaluating each choice
at the mean.

ERN
.y

101

/s

k//////////////////////////ﬂ

\

.MMM

Cost function approximations

® Picking 8'% = 2 means we are evaluating each choice
at the 95 percentile.

»////////////////////A

102

Cost function approximations
N

@ Optimizing the policy

» We optimize 8’ to maximize:
max . F(0")=EF (x"",W)

where
X"=X"(S"|0") =argmax, (1] +0°5;) S"=(1.5})

"

@ Notes: |
» This can handle any belief model, 5l
including correlated beliefs, nonlinear
belief models. &)
A

» All we require 1s that we be able to
simulate a policy.

0 0 .I5 1I 1 .l5 é 2.I5 3I 3.I5 4
IE
IE parameter &

Cost function approximations

@ Inventory management

» How much product
should I order to
anticipate future
demands?

» Need to accommodate
different sources of

uncertainty.
* Market behavior
 Transit times
* Supplier uncertainty
* Product quality

Cost function approximations
N

® Imagine that we want to purchase parts from
different suppliers. Let X, be the amount of
product we purchase at time t from supplier p to
meet forecasted demand D,. We would solve

X¢ (§,) = argmin, Z C, X,

peP

subject to
2 % 2D
peP
Xp SU >Xt
X =0)
» This assumes our demand forecast D, 1s accurate.

Cost function approximations
N

® Imagine that we want to purchase parts from
different suppliers. Let X, be the amount of

product we purchase

at time t from supplier p to

meet forecasted demand D,. We would solve

X[(S, | 0) =argmin

subject to
a0
peP

Xp = Up

X, €X” (0) Z Cp ti

peP

__— Reserve

X7 (0)

—— Buffer stock

» This 1s a “parametric cost function approximation™

Cost function approximations

® A general way of creating CFAs:

» Define our policy:

X[(0)=arg min

subject to

Parametrically
modified costs

AX = Parametrically
modified constraints

» We tune ¢ by optimizing:
T
min, F" () = E{Zust, X7 (0)) So}
t=0

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFAS)
» Direct lookahead policies (DLAS)

Value function approximations
N

® Q-learning (for discrete actions)

§"(s",a")=r(s",a")+~ymax_, Q" '(s' a")
Qn (Sn, an) — (1 B &n—l)én_l (Sn9 an) _l_ an—lqn(sn9 an)

» But what if the action a 1s a vector?

Blood management

® Managing blood inventories

Type of Type of
Donated Blood Recipient Blood
AB+ AB+

AB-

AB-

Blood management

® Managing blood inventories over time

Slide 111

Rt,(AB+,O)_)

Rt,(AB+,1)_)

Rt,(AB+,2)_)

Rt,(O—,O) —>

Rt,(O—,l) >

Rt,(O—,Z) —>

O- Dt,AB+

Y

Satisfy a demand

R

Rt,(AB+,0) >

AB+,0

Rt,(AB+,1)_)

AB+,1

Rt,(AB+,2)_)

AB+.2 |-

Rt,(O—,O)

Rt,(O—,l) >

Rt,(O—,z) =

L
L
.
L
"~
.
L
"
-
"~
0
e,
LN
LN
L
.
"
-
L
0
L
L

L

.

L

.
L
.
"~
.
.....
.
LN
.
L
.
L
.
L

0
.
.
.
.
.~
0
.
.
.
.0
.

Q
.
.
.O
.
0
.O
»

\ve
.

O
0
.
0
.
0
.
.0
A\
.

O
.
.
.O
»

.0
.
0
»

"o
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.Q
.

‘e
0
.
.
.
.
.
.
.
‘e
.

"¢
.
‘e
0

0
taa,
“~,
e,
0
L
0
e,
.
.....
L
tea,
.

‘e
g
.O
.

RtX

Rt+1

AB+,0 F’ém, g | AB+H0
S [N E— > AB+.1
SN T S— >l AB+.2
SN TR C—— > AB+.3

0-.0 IQHI,O—"""""") 0-.0
S [NN e — > O-.1
N [T E—— > 0-,2
b [T J S — > 0-3

D

R

Rt,(AB+,0) >

AB+,0

Rt,(AB+,1)_)

Rt,(AB+,2)_)

AB+2 |-

Rt,(O—,O) —>

Rt,(O—,l) —>

Rt,(o—,z) —>

u
.
.
e
L
.
.
e
-
'-
0
LI
e
.
.
.
.
-
"
0
a
L

AB+,1k

e

.

e

.
e
.
a
.
.....
.
L
.
e
.
e
.
e

.
.
.
.
.
.h
0
.
.
.
.0
»

Q
.
.
.O
.
A\
0

"o
0
.
0
.
.
‘e
0

O
0
.
0
.
0
.
.0
A\
»

.0
.O
0

0
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.
.Q
.

Q
0
0
.
.
.
.
.
.
.
.
O
.

g
.'
0

0
tea,
.,
tea,
0
e
0
tea,
.
.....
e
“ea,
.

.0
.
g
.O
.

RtX

AB+,0

AB+,1

AB+,2

AB+,3

PORD DD

R R FR)

AB+.0
~ AB+,1 @
Rt,(AB+,2) ABHZ KA. AB+,2

: N ——

Rt,(O—,O) —>0-.0

Rt,(AB+,0) > AB+,0

"
"
»
e
L
-
e
e
-
a
.....
e
L
.
.
.
-
"
®
"
L

Rt,(AB+,1) —> AB+,1 |-

.
.
.
0
.
.~
.0
0
.
.0
»

Rt,(O—,l) 100 ke W\ 0-,0
R0 =102 R o
................... 4 0-2
........ {0 @.
Solve this as a
linear program. >

Duals R, R’ F(R)

A —-1 AR+ () k-..
G g0 ABE O ABH e
];t,(ABJr’l)# AB+’1 RN AB+,1 @

0
tay,
“~,
e,
.
L
0
e,
.
.....
L
LT9%
“a

Vt,(AB+,2) > AB+,2 BN AB+,2 é %‘
o\ T DY AB+,3 @

Vio-0 —> 0-,0

.
.
.
0
.
.~
.0
0
.
.0
»

Vio-n =051 K\ 0-0
A — N\ N
V‘[,(O—,z) — 0-72 O_al
.............. 5 0_92
os =—>e
Dual variables give X
value additional -

unit of blood.. D,

Updating the value function approximation
N

® Estimate the gradient at R"

A S
\\
\\
\\
\\
T
7 \=\\ |‘;n
/7 N ~ d U GL(AB+,2)
7’ \\ -
/
~
/ F(R)
/
/
/
L >

I:etr,](AB+,2)

Updating the value function approximation
N

® Update the value function at R}

“F(R)

X, N n
Rt—l Rf,(AB+,2)

Updating the value function approximation
N

® Update the value function at

V"
\ C(RY)
| t(AB+2)

T,
*
IS

v,

Updating the value function approximation
N

® Update the value function at

o R

Exploiting concavity
N

@ Derivatives are used to estimate a piecewise linear
approximation

V.(R)|

L]l
Il
I/l

Approximate value 1teration
L

Step 1: Start with a pre-decision state S/

Step 2: Solve the deterministic optimization using L
Deterministic

an approximate value function: S
optimization

max, (C,(S!,%)+V"" (S"*(S!, %))

to obtain X; and dual variables(Vy).

Step 3: Update the value function approximation Recursive
V(S =0-a, V(S +a, ¥ statistics

Step 4: Obtain Monte Carlo sample of W, (®") and

compute the next pre-decision state:

Sty = S" (S X W, (@)

Step 5: Return to step 1.

Simulation

Approximate value 1teration
L

Step 1: Start with a pre-decision state S/
Step 2: Solve the deterministic optimization using
an approximate value function:
max, (C,(S!,%)+V"" (S"*(S!, %))
to obtain X; and dual variables(Vy).

Deterministic
optimization

Slide 123

Approximate value iteration

Step 1: Start with a pre-decision state S/
Step 2: Solve the deterministic optimization using o
: . Deterministic
an approximate value function: .
optimization

(M (57. %)

to obtain X, a¥ \(V7).

Approximate value 1teration
L

Step 1: Start with a pre-decision state S/

Step 2: Solve the deterministic optimization using o

. . Deterministic

an approximate value function: .
optimization

max, (C,(S7,%) +V," (S*(S, %))
to obtain X; and dual variables(Vy).
Step 3: Update the value function approximation Recursive

UJ%»//>>\ statistics

h K [
e
a«aw?

7, \qz. A\ / \.!

YO
m .v&/&
N @

X

[terative learning
t

[terative learning

N

_»V_V_I V_»

¢
AN

B 5\ VARANDY o

D .\ \GRLVAYAY 4 WREN,

iy
N - /. SR

[terative learning

B A NERYARYS” o

AV, UAETAVZAEA @

/y \Q/o \

[terative learning

B A NERYARYS” o

AV, UAETAVZAEA @

/y \Q/o \

Objective function

Approximate dynamic programming
N

® ... a typical performance graph.

1900000

1Y

1800000

1700000

W AL
|P“ 0 “, ‘ [(» ‘41’]l“l
L

— Al
i

AV
I

Il
lil‘

T W ')
'.." ,)] \ hl"}\“nig_ L“u;‘lll‘lljw
!

»"'!~ A Jh/‘" Ty '*‘ (
' L |

1600000

1500000 A /,, A

1400000

1300000

1200000

0

100

200

300 400

500

Iterations

600

700 800

900

1000

2014 IEEE S5YMPOSIUM ON ADAPTIVE DYNAMIC PROGEAMMING AND REINFORCEMENT LEAENING 1

A Comparison of Approximate Dynamic
Programming Techniques on Benchmark Energy
Storage Problems: Does Anything Work?

Daniel R. Jiang, Thuy V. Pham, Warren B. Powell, Daniel FE. Salas, and Warren R. Scott

Abstract—

problem of

is becoming| DENChMarks and careful tuning.

Approximate value functions can work very well, but you need
like solar al Structure to guide the learning process. ADP needs he additional

lookup table

remely effec-
bre advanced

]]I'ﬂhlEl‘nS are Uy STUC TS TIC Uy AT PTOST s, oot
when the state space becomes large, traditional (exact) techniques
such as backward induction, policy iteration, or value itera-
tion quickly become computationally intractable. Approximate
dynamic programming (ADP) thus becomes a natural solution
technique for solving these problems to near-optimality vsing
significantly fewer computational resources. In this paper, we
compare the performance of the following: various approxi-
mation architectures used approximate policy iteration (API),
approximate value iteration (AYI) with structured lookup table,
and direct policy search on an energy storage problem, for which
optimal benchmarks exist.

statistical estimation methods.

This paper reports on the performance of a variety of ap-
proximation methods that have been developed in the approx-
imate dynamic programming community, tested using a series
of optimal benchmark problems drawn from a relatively simple
energy storage application. These suggest that methods based
on Bellman error minimization, using both approximate value
iteration and approximate policy iteration, work surprisingly
poorly if we use approximation methods drawn from machine
learning. Pure table lookup also works poorly. By contrast,

“I think you give a too rosy a picture of ADP....”
Andy Barto, in comments on a paper (2009)

“Is the RL glass half full, or half empty?”
Rich Sutton, NIPS workshop, (2014)

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFASs)
» Direct lookahead policies (DLAS)

Lookahead policies

® Planning your next chess move:

» You put your finger on the piece while you think about
moves into the future. This is a lookahead policy,
illustrated for a problem with discrete actions.

. ;Iﬁ#&‘ .::nal St[M _r 4 ,{i -" ’f 7 "
g-,»f_ % »7 L

s @e{:, E'E:de' - ik, o
G .-.;_---"1""-"'1;L e I'..llu::.eum .I'-".I;,.E[
. ?] Pl "y i Eldrlﬂge.-ﬁtr&et

mew York /A 1ol

‘7' 1: ivic C‘-Ent r
, : h
Ll iy sl ~

i %hq

E—br

= -Eh amhera E-.t

B o) §r
Pﬂ‘mﬁﬂ\:ﬂtﬁ' ﬂ) A ..h-
J TWI::l Erldgﬂs-

[FJ"'{.I'E-IZ I"-I'Iurry' E!iergtraum
%xﬁ‘ SHigh Eﬂhnnl -H

T i_"'
<5,

e

Tc-r'1.,h|n5 -

| ... :
e Equareﬁ.‘-’ark

Lookahead policies

® Decision trees:

Decisions Experiment Decision Experiment
A\ A A A
4 ar ar 1
. Concen., Success/ Concern., Success/
Caralyst S g .
v remperature, failure temperature, failure
o]
. #‘_..-""PD ,#"#-F'#
- o T - . -*ﬂ
- . : : - - - 'ﬂ
A 0]
: O
y oo : “o(]
N u . -»[]
3] P
C : =0
—— - - - - ﬂ
] T

Lookahead policies
|

® Modeling lookahead policies

» Lookahead policies solve a lookahead model, which is an
approximation of the future.

» It 1s important to understand the difference between the:

« Base model — this is the model we are trying to solve by finding
the best policy. This is usually some form of simulator.

* The lookahead model, which is our approximation of the future
to help us make better decisions now.

» The base model is typically a simulator, or it might be the
real world.

Lookahead policies
|

® Lookahead models use five classes of
approximations:

» Horizon truncation — Replacing a longer horizon problem
with a shorter horizon

» Stage aggregation — Replacing multistage problems with
two-stage approximation.

» Outcome aggregation/sampling — Simplifying the
exogenous information process

» Discretization — Of time, states and decisions

» Dimensionality reduction — We may 1gnore some variables
(such as forecasts) in the lookahead model that we capture

in the base model (these become latent variables in the
lookahead model).

Lookahead policies
|

® Lookahead policies are the trickiest to model:
» We create “tilde variables” for the lookahead model:

SNt’t, = Approximated state variable (e.g coarse discretization)
X, = Decision we plan on implementing at time t" when we are

planning at time t, t'=t,t+1,....,t + H

%= (Ko Koo Koo)
W, .. = Approximation of information process

C. . = Forecast of costs at time t' made at time t

~

b

. = Forecast of right hand sides for time t' made at time t

» All variables are indexed by t (when the lookahead
model 1s being generated) and t’ (the time within the
lookahead model).

Lookahead policies
|

® We can use this notation to create a policy based
on our lookahead model:

Limited horizon

(Se XX (S| S}| S, xt}

~

X, (S,) =argmax C(S,, x,)+ B maxﬁE

\ 4
Restricted/simplified set of policies

\ 4
Sampled set of realizations (or deterministic);
Aggregated staging of decisions and information

\ 4
Simplified/discretized set of state variables

v
Simplified/discretized set of decision variables

» Simplest lookahead 1s deterministic.

Lookahead policies
|

® Deterministic lookahead

~ T ~
X P(S,) =argmax C(Sy, %)+ > C(Sy %)

~ o~ t'=t+1
Xtt > Xt,t+1 AR Xt,t+T

® Stochastic lookahead (with two-stage
approximation)

~ ~ T ~ ~ ~ ~
X5 (S,) =argmax C(§, %)+ X p(@) Y. C(§u(@), % ()
Xir X, RENERNE X, T ~ t=t+

Scenario trees

Lookahead policies

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

t+1 t+2 t+3

The real process

Lookahead policies
|

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

A
D P
2 L e
= L
9 LR
O o
= o I
‘_Ez {fgﬁ% I
o) VQKS?’ |
9 <
O | |

| |

=

t t+1 t+2 t+3

The real process

Lookahead policies

The lookahead model

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model
D

Lo

’JS 1"‘\:; |
. ,\’\ CK
T .f‘
]

t+1 t+2 t+3

The real process

Lookahead policies
|

® Lookahead policies peek into the future

» Optimize over deterministic lookahead model

. A
_g g {
O)\’i;’
: s
3 B
S (&
= | ,@5\
av) ‘ﬁ%
— : \‘//
o K
2 P &
- | e
| |

=

t t+1 t+2 t+3

The real process

~

~ ,\\"-
a7
" ,'L;\' C‘\S ‘

p
Lpre?

Lookahead policies
|

® Stochastic lookahead

» Here, we approximate the information model by using a
Monte Carlo sample to create a scenario tree:

lam 2am 3am 4am 5am

= c=

Change in wind speed

Change in wind speed

Change in wind speed

Lookahead policies
|

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model

Lookahead policies
|

@ We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model

Lookahead policies
|

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model

Lookahead policies
|

® We can then simulate this lookahead policy over
time:

The lookahead model

t t+1 t+2 t+3
The base model

Learning damaged networks

Which way should the truck go?

ision

Qutcome Dec

ision

Dec

Qutcome

ision

Dec

4‘4

N

//,;4,’“2/. N
O

)

A
] ,»ﬁvg..%;;??»,.,,,.,\»...,,,...%..;,. Ll

B A it
,;\ \7./, \.(....f‘,.‘. \‘/. NV N \ \ v\
R

[
[\ ‘/\ A \.;’,‘7 . /\// v
i ,..ﬂ,.é% OONRANO O i
\ é.Z,..\..Q\//;/..Z%z,/..,”w.,?\..,% /.,;_y...v/....,{%%,,..) ,.z'z
R

HIiEEINNIEER I-IWI
ARG, AN

.,.‘

A NOAABAR A \441: AN ABN

XADOANNF
\ n
L] ,~ AR |

WA \
Vil ey (L L Y A R R R VAR L)

(
1
[N L VAR VLA VA oo [I A O L LV A A Y R L A B VA]
[V LY v ﬁ] LV R R T SR R B ! 1
v b noy X [VI T | | T W S B} ! 1
N\ A Mo A VoA A gk g e
[ANA rhoh MM o g gty gy [B U '
My by gy [ERUVARY oty gy g 2L R T]
Wby by by g bvgp by by g My by by by Ty L
Pagbw by by by gy by g by [v
1 y Iy [Vg
1l In L] v
Lrviavta Vg 1 Vg
v VEr v vigvg v (RN] (ay
LA N i ‘i (LA VAR YY) v
wooow e Wy Wwoow L1 U A | A A U U U A U] W W \

O OO0 ¢

Lookahead policies

® Monte Carlo tree search:

- é/%o @/%\@ O/O\C
gﬁé%ééb C;ﬁéé%ééb gé%ééé gé%@éé

A

E6SOEED ééi?\ééé oe! Jelefe)e é@gbééb
é ¢

Rollout

Tree policy policy

N
v

(a) (b) (c) (d)

C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. I. Cowling, P. Rohlfshagen, S. Tavener, D. Perez, S. Samothrakis and S.
Colton, “A survey of Monte Carlo tree search methods,” IEEE Transactions on Computational Intelligence and Al in Games,
vol. 4, no. 1, pp. 1-49, March 2012.

47

M\
"

im mumnnl“nn(i mlm
(A CRECACH ACUAEA AR LA LA /ACAEAGEA A ACKRGEERRER 1 [AL A AL AL ALLA

OO T LT T
TP T D T
L A T O \
gy T

111 11 L[]

Lookahead policies
|

& Notes:
» Solving stochastic lookahead policies can be hard!

» ... but this 1s still just a lookahead policy which 1s a
class of rolling horizon heuristic.

» Even if solving the lookahead model 1s hard, an optimal
solution of a lookahead model (even a stochastic one) 1s
(with rare exceptions) not an optimal policy.

Outline

@ The four classes of policies

» Policy function approximations (PFAs)
» Cost function approximations (CFAs)
» Value function approximations (VFASs)
» Direct lookahead policies (DLAS)

Parametric cost function approximation

® An energy storage problem:

Sample Paths of Spot Price (P)
) R)

- -~
rd
Iy
G e =
i ~ - -‘:I}fr o -
S

The state of the system can be represented by the following five ¢ Figure: Sample paths of spot prices (P,)
dimensional vector,

Spot Price Fgmuuts v. Observed (P)
St — (Rt._ Er. Pr. Dt. Gt) 220t r‘ i d?o:;-.msonamm

1
5 - Day Ahead Forecast: 2072 146505
= oy

200 \ ote

where

@ R: € [0, Rmax] is the level of energy in storage at time t

&
©

E; is the amount of energy available from wind

Wind Energy (MW)

D, is the power demand ol

"]
@ P; is the spot price of electricity . :
"]
°

G; is the energy available from the grid —

Parametric cost function approximation

® Forecasts evolve over time as new iformation arrives:

- m
Rolling forecasts, /J’,A \
Egﬂited each | // | ,
A
|| IFncigenchit; fnade at l{l/l,/
P /// \ Actual

N

Hours starting at noon on 13/07/09

Parametric cost function approximation
N

® Benchmark policy — Deterministic lookahead

XDLA(S,) = argmin C(Se, xt) +
¥ V=t L H)

Reo + 0% + %3 < A
N G
X + % <Ry
Xl + %% <R™ R,
KR <A
Rer % <y
5 <y

Parametric cost function approximation

® Parametric cost function approximations
. wr wd
» Replace the constraint Ly /\\xtt'

rd
""‘HI "“11{?T<f —————-———I' ———————— Demand D,
~o _ -~
IT .“‘\::s 4';(1(!
th:
1.

» Lookup table modified forecasts (one adjustment term for
each time 7 = ¢'- ¢ 1n the future):

E
<
:Ett' +xtt' _t'

» Exponential function for adjustments (just two parameters)

6,(t'-t\e E
< 2
ﬂjtt. + xt' —tI

» Constant adjustment (one parameter)

E
<
xtt' +xt' _t'

Parametric cost function approximation
N

® Optimizing the CFA:

» Let F(@ a)) be a simulation of our policy given by

ZO((S,(@) | 0))

» We then compute the gradlent with respect to &
V,F(0,0) =V F(0,0)

» The parameter € 1s found using a classical stochastic
gradient algorithm:

0" =0"+a V FO", o)

We tested several stepsize formulas and found that ADAGRAD

worked best:
t

‘} 2
o = G = E \V F Xt,W
" Gt —|_ E t t'()(X (t-I-l))

Parametric cost function approximation
N

® Optimizing the CFA:
» We compute the gradient by applying the chain rule

o (0C X0\ = [(OCw 8S. 8Cy 0Xy(S.|0) 0Sy OXy(S:|0)
Wit = (ax{)' 26)+Z [(ast,'W)J“(aXﬂ(st[a)'(9S, 00« o9 ’

t’'=1

where the interaction from one time period to the next 1s
captured using

35} —_ 3Sy) 88{'_1 + 3Sy) [BXt;_l(St_lw)) ast'_l + aXt'_l(St_1|9)]
80 8Sy_y 00 = 0Xy_1(Si—1]0) dSy_1 a0 0 '

» Assuming there are no integer variables, these equations
are quite easy to compute.

Lookup table

Constant parameter

["N-By

0.7

06 -

9 0.5+

04r

0.3

0.2

01rF

10

Parametric cost function approximation

® Improvement over deterministic benchmark:

Percent improvement over deterministic
lookahead

Lookup table
Exponential

ConstanIt I

Standard deviation in forecast error

Percent improvement

20

® Lookup table Exponential ® Constant

Parametric cost function approximation
N

® The parametric CFA represents a fundamental
rethinking of the modeling of stochastic
programming problems:

» From thinking of the lookahead model as the objective

function:
;

max C,X, + Z p(a))z C. (@)X (@)

we) t=1

» To acknowledging that the lookahead model 1s a policy
for solving the base model...

T
maXﬁ:G Eﬂ {th (SU ><tﬁ(st | 9)9Wt+1) | SO}
t=0

.... which 1s a simulator where we do not have to make
any of the standard approximations required in stochastic
programming.

An energy storage problem

® Consider a basic energy storage problem:

Wind speed

Electricityprices W“IIMM

—
L)
o
l e
1 | .
B | §
| I —p
| - .

» We are going to show that with minor variations in the
characteristics of this problem, we can make each class
of policy work best.

An energy storage problem
N

® We can create distinct flavors of this problem:

» Problem class 1 — Best for PFAs

« Highly stochastic (heavy tailed) electricity prices
 Stationary data

» Problem class 2 — Best for CFAs

 Stochastic prices and wind (but not heavy tailed)
 Stationary data

» Problem class 3 - Best for VFAs

 Stochastic wind and prices (but not too random)
« Time varying loads, but inaccurate wind forecasts

» Problem class 4 — Best for deterministic lookaheads
 Relatively low noise problem with accurate forecasts

» Problem class 5 — A hybrid policy worked best here

 Stochastic prices and wind, nonstationary data, noisy forecasts.

An energy storage problem
N

@ The policies

» The PFA:

» Charge battery when price 1s below pl
» Discharge when price is above p2

» The CFA

« Optimize over a horizon H; maintain upper and lower bounds (u, 1)
for every time period except the first (note that this is a hybrid with a
lookahead).

» The VFA

» Piecewise linear, concave value function in terms of energy, indexed
by time.

The lookahead (deterministic)
* Optimize over a horizon H (only tunable parameter) using forecasts of
demand, prices and wind energy

» The lookahead CFA

» Use a lookahead policy (deterministic), but with a tunable parameter
that improves robustness.

>

N

An energy storage problem

® Each policy is best on certain problems
» Results are percent of posterior optimal solution

o CFA Error Determ.
Problem: Problem description .
correction
A stationary problem with heavy-tailed prices,
relatively low noise, moderately accurate

forecasts.

A time-dependent problem with daily load
patterns, no seasonalities in energy and price, 0.752 0.712 0.746
relatively low noise, less accurate forecasts.
A time-dependent problem with daily load,

energy and price patterns, relatively high noise, 0.914 0.886

forecast errors increase over horizon.

A time-dependent problem, relatively low
0.962 0.749 0.971 0.997

noise, very accurate forecasts.

Same as (C), but the forecast errors are
0.865 0.590 0.914 0.922

stationary over the planning horizon.

» ... any policy might be best depending on the data.

Joint research with Prof. Stephan Meisel, University of Muenster, Germany.

JohnR. Birge
Frangois Louveaux

b

(Approximate Dynamic
e Programmmg

(Solving the Curses of Dimensionality %

\
| : ; — Warren B. Powell _i

WWILEY

Introduction
to Stochastic

LG 18
5] Analysis -
Programming Optlmlzatmn

Dynamic Programming
and Optimal Control

SOHLIVIAHL I AFNdd ¥

SECOND EDITION

| Optlmal

Model Predictive a -
Learnmg ll— Control “‘*‘\"\@ ' g INTRODUCTION To
. r ! 7 STOCHASTIC SEARCH
i | R 7/ 4

WWW.
Lo aiiniic]

aND OPTIMIZATION

OPTIMAL

.| MULTI-ARMED BANDIT — -
r ALLOCATION INDICES Estimation, Simulation,
‘___ (SECOND EDITION | and Control

RS CONTROL

Learning

A_.

PWILEY
JAMES C. SPALL

dnlin;e Computation STOCHASTIC
and

Jiongmin Yon " i - ‘ Markov Decision Pmcusscs‘ Competitive Analysis SIMULATION
ong ong
R T \ Discrete Stochastic Allan Borodin Ran E-Yanly OPTIMIZATION

[)‘”dn"{:]}n}:r(”""“ng An Optlmﬂ[Computing Budget Allocation

Stochastic 2 en SENET . Chun-Hung Chen * Loo Hay Lee
Controls " : \

Hamiltonian Systems and
HIB Equations

MARTIN L. PUTERMAN . ®

e
W i >

Stochastic /
gradients’

Simulation ¥

7 ‘ﬁ‘_\‘ 7 z ‘ N il r/\? :x 2 s \ A
e 2 N optimization &

g \ - ii | p 7 4 — \‘ | E?,’:-.ﬁ‘, n, 0 i} / ; 7

P 4 . 4 P COR TS o BElace ey

AVE approx. (CFAs) [* =87 o0

Multi-armed bandits
/optimal learning

Reinforcement
learning/ADP

Markov decision

Optimal control

Processes

© Warren Powell 2017 ;
LLHHHHEHHHIISEESSESB”S

Thank you!

http://www.castlelab.princeton.edu/
A tutorial on this topic is available at the top of

http://www.castlelab.princeton.edu/jungle/

