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Context

Rational and consistent design and assessment of marine structures
Reduce bias and uncertainty in estimation of structural integrity
Quantify uncertainty as well as possible

Non-stationary marginal, conditional and spatial extremes
Multiple locations, multiple variables, time-series
Multidimensional covariates

Rational quantification of uncertainty
Data acquisition (simulator or measurement)
Data pre-processing (storm peak identification)
Threshold uncertainty
Model form (marginal measurement scale effect, spatial extremal dependence)

Improved understanding and communication of risk
Incorporation within established engineering design practices
Knock-on effects of improved inference
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Motivation : North Sea application
Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in storm severity; “strips” of locations
with different orientations; central location for directional model
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Modelling extremal spatial dependence : why bother?

Improved inference for the characteristics of extremes at one location exploiting
data from multiple locations in a spatial neighbourhood

Improved estimation of risk for spatially-distributed structures (coastal defences,
multiple installations) from spatially spread storm events

Can we estimate spatial extremes models usefully from typical metocean hindcast
data?

Can we see evidence for covariate effects in extremal spatial dependence for ocean
storm severity?
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Modelling extremal spatial dependence : mathematically

Locations j = 1, 2, ..., p, continuous random variables and values {Xj}, {xj}
Spatial distribution of storm peak HS

f (x1, x2, ..., xp) = [f (x1)f (x2)...f (xp)] C(x1, x2, ..., xp)

{f (xj)} are marginal densities, C(x1, x2, ..., xp) is dependence “copula”

Interested in estimating things like “the shape of an extreme storm”

f (x1, x2, ..., xp|Xk = xk > uk) for large uk

We know how to estimate extremes marginally, but what about extremal
dependence?

⇒ study spatial extremes, i.e. sensible models for C(x1, x2, ..., xp)
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Modelling extremal spatial dependence : procedure

Sample of peaks over threshold {y} at p locations, with covariates {θ}
Simple marginal gamma-GP model

Sample transformed (“whitened”) to standard Frechet scale per location

Spatial extremes (“max-stable model”) to estimate extremal spatial dependence

Bayesian inference estimating joint distributions of parameters, uncertainties
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Marginal : isolating storm peaks
HS ≈ 4× standard deviation of ocean surface time-series at specific location corresponding to a specified period (typically three hours)
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Marginal : gamma-generalised Pareto

Simple marginal gamma-GP model fitted using Bayesian inference

GP ξ, σ, gamma α, β, and threshold ψ all functions of θ

Spline parameterisation for model parameters in terms of θ

ψ for pre-specified threshold probability τ

Gibbs sampling when full conditionals available

Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms

Sample of joint posterior of {ξθ, σθ, αθ, βθ, ψθ} estimated

Ross et al. [2017b], Frigessi et al. [2002], Behrens et al. [2004], MacDonald
et al. [2011]
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Marginal : transformation to standard Fréchet scale
Storm peak HS on direction for central location before and after standardisation to Fréchet scale
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Extremes basics : marginal

Block maxima Yk at location k have distribution FYk
which is “max-stable” in the

sense that F n
Yk

(b′kn + a′knyk) = FYk
(yk) for some sequences {a′kn > 0} and {b′kn}

Only limiting distribution for FYk
is generalised extreme value (GEV)

FYk
(yk) = exp[− exp{(yk − η)/τ}] for ξ = 0

= exp[−{1 + ξ(yk − η)/τ}−1/ξ
+ ] otherwise
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Extremes basics : spatial

Similarly, FY for block maxima Y at p locations “max-stable” when
F n
Y (b′1n + a′1ny1, b

′
2n + a′2ny2, ..., b

′
pn + a′pnyp) = FY (y1, y2, ..., yp)

Transform to unit Fréchet Zk = {1 + ξ(Yk − η)/τ}1/ξ, FZk
(zk) = exp(−1/zk), for

zk > 0. Then

FZ (z1, z2, ..., zp) = FZ (nz1, nz2, ..., nzp)n

Only choices of FZ exhibiting this “homogeneity” correspond to finite-dimensional
distributions from max-stable processes (MSPs), and are hence valid for spatial
extreme value modelling
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Spatial : basic theory

Max-stable process (MSP): a means of extending the GEV for modelling maxima
at one location, to multivariate extreme value distributions for modelling of
component-wise maxima observed on a lattice

On unit Fréchet scale, only choices of FZ exhibiting “homogeneity”are valid for
spatial extreme value modelling

Convenience:“exponent measure” VZ

FZ (z1, z2, ..., zp) = exp{−VZ (z1, z2, ..., zp)}

Convenience:“extremal coefficient” θp

FZ (z , z , ..., z) = exp (−VZ (z , z , ..., z))

= exp
(
−z−1VZ (1, 1, ..., 1)

)
from the homogeneity property

= exp (−θp/z)
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Spatial : data
Fréchet scale observations of the spatial distribution of storm peak HS over the North Sea spatial grid for 8 typical events (a)-(h). The spatial
maximum for each event is given as a white disc, and the spatial minimum as a black disc (with white outline). The white→ yellow→ red→ black
colour scheme indicates the spatial variation of relative magnitude of storm peak HS
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Spatial : data
Fréchet scale scatter plots of storm peak HS for different pairs of locations. Panel (a) for the central location and its nearest neighbour to the West
along the approximate West-East transect with angle φ = 4.6; panel (b) for the end locations of the same transect. Panel (c) for the central location
and its nearest neighbour to the North along the approximate North-South transect with angle φ = −72.2; panel (d) for the end locations of the
same transect
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Spatial : VZ for Smith, Schlather and Brown-Resnick processes

Smith : For two locations sk , sl in S, Vkl for Smith process given by

Vkl(zk , zl ; h(Σ)) =
1

zk
Φ(

m(h)

2
+

log(zl/zk)

m(h)
) +

1

zl
Φ(

m(h)

2
+

log(zk/zl)

m(h)
)

h = sl − sk , m(h) is Mahalanobis distance (h′Σ−1h)1/2 between sk and sl

Σ is 2× 2 covariance matrix (2-D space) to be estimated. Σ scalar in 1-D

Vkl(1, 1; h(Σ)) = 2Φ(m(h)/2) by construction

Schlather similar likelihood, parameterised in terms of Σ only

Brown-Resnick identical likelihood, parameterised in terms of Σ and scalar Hurst
parameter H (estimated up front)
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Spatial : Constructive representation

MSP is maximum of multiple copies {Wi} (i ≥ 1) of random function W

Each Wi weighted using Poisson process {ρi} (i ≥ 1).

The MSP Z (s) for s in spatial domain S is Z (s) = µ−1 maxi{W+
i (s)/ρi}

W+
i = max{Wi (s), 0}

µ = E (W+(s)) = 1 by construction typically

ρi = εi for (i = 1), ρi = εi + ρi−1 for (i > 1), and εi ∼ Exp(1)

Different choices of W (s) give different MSPs.

Smith : Wi (s; si ,Σ) = ϕ(s − si ; Σ)/fS(si ), with si sampled from density fS(si ) on
S, with ϕ representing standard Gaussian density

Schlather, Brown-Resnick : Similar
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Spatial : illustrations
Illustrative realisations of Smith (a,e), Schlather (b,f), and Brown-Resnick (c,d,g,h) processes for different parameter choices. The first row
corresponds to parameter settings (Σ11,Σ22,Σ12) = (300, 300, 0) for all processes, and the second row to (30,20,15). For Brown-Resnick processes
(c,g), Hurst parameter H = 0.95. For Brown-Resnick processes (d,h), H = 0.65. Each panel can be considered to show a possible spatial realisation
of storm peak HS , similar to those shown earlier
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Spatial : estimation approximations

Theory gives us models for pairs of locations. Cannot write down full joint
likelihood `(Σ; {yj}). Approximate with “composite” likelihood `C (Σ; {yj})

`(Σ; {yj}) ≈ `C (Σ; {yj}) =
∑
{k,l}∈N

wkl log fkl(yk , yl ; h(Σ))

Theory applies for block maxima Z , but we have peaks over threshold Y . For
yk , yl > u for large u, approximate

Pr [Yk ≤ yk ,Yl ] ≈ Pr [Zk ≤ yk ,Zl ]

Need fkl(yk , yl ; h(Σ)) for non-exceedances of u also, so make “censored”
likelihood approximation
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Spatial : estimation

Estimate joint distribution of Ω = [Σ11,Σ22,Σ12] (2-D space, or Ω = Σ in 1-D)

MCMC using Metropolis-Hastings

Current state Ωr−1, marginal posterior fM(βM), original sample D of storm peak HS .
Draw a set of marginal parameters βMr from fM , independently per location.
Use βMr to transform D to standard Fréchet scale, independently per location,
obtaining sample DFr .
Execute “adaptive” MCMC step from state Σr−1 with sample DFr as input, obtain
Σr .

Adaptive MCMC candidates generated using Ωc
r = Ωr−1 + γε1 + (1− γ)ε2

γ ∈ [0, 1], ε1 ∼ N(0, δ2
1 I3/3), ε2 ∼ N(0, δ2

2SΩr−1/3)
SΩr−1 estimate of variance of Ωr−1 using samples to trajectory to date
Roberts and Rosenthal [2009]
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Spatial : σ̂(φ) for Smith
For all transects with a given orientation φ estimated using 1-D (box-whisker) and 2-D (black) Smith processes. φ is quantified as the transect angle
anticlockwise from a line of constant latitude. The first (second) row: marginal threshold non-exceedance probability 0.5 (0.8). The first (second)
column: censoring threshold non-exceedance probability 0.5 (0.8). For 1-D estimates with a given φ, box centres = median, box edges = 0.25 and
0.75 quantiles across all parallel transects; whisker edges = 0.025 and 0.975 quantiles. For 2-D estimates, the 0.025, 0.5 and 0.975 quantiles are
shown as a function of φ. Note that the colour coding of box-whisker plots corresponds to that of transect orientation
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Spatial : σ̂(φ) for Schlather
Estimated extremal spatial dependence parameter σ̂(φ) for all transects with a given orientation φ estimated using 1-D (box-whisker) and 2-D
(black) Schlather processes. φ is quantified as the transect angle anticlockwise from a line of constant latitude. The first (second) row corresponds
to a choice of marginal threshold with non-exceedance probability 0.5 (0.8). The first (second) column corresponds to a choice of censoring threshold
with non-exceedance probability 0.5 (0.8)
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Spatial : σ̂(φ) for Brown-Resnick
Estimated extremal spatial dependence parameter σ̂(φ) for all transects with a given orientation φ estimated using 1-D (box-whisker) and 2-D
(black) Brown-Resnick processes with H = 0.75. φ is quantified as the transect angle anticlockwise from a line of constant latitude. The first
(second) row corresponds to a choice of marginal threshold with non-exceedance probability 0.5 (0.8). The first (second) column corresponds to a
choice of censoring threshold with non-exceedance probability 0.5 (0.8)
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Spatial : extremal coefficient θ̂(φ)
Estimated extremal coefficient θ̂(φ) for all transects with a given orientation φ, estimated using 1-D Smith (black), Schlather (dark grey) and
Brown-Resnick (light grey) processes. The first (second) row corresponds = marginal threshold with non-exceedance probability 0.5 (0.8). The first
(second) column = censoring threshold with non-exceedance probability 0.5 (0.8)
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Spatial : spatial dependence parameter σ̂(φ, s) for individual transects
Smith process with marginal and censoring thresholds = non-exceedance probability of 0.8. (b)-(g): σ̂(φ, s) for fixed orientation φ (given in the
panel title) as a function of transect locator s. (a): transects with s = 1 for different orientations φ. (b)-(g): abscissa values for transect locators are
scaled to physical perpendicular distances between parallel transects
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Discussion

Possible to estimate reasonable spatial extremes models for typical samples of
hindcast data

Consistent inferences from Smith, Schlather and Brown-Resnick models

Evidence for directional and spatial anisotropy

Only investigated “asymptotically dependent” models here, but see Kereszturi
et al. [2016]

Did not perform simultaneous marginal and dependence inference

Essential that marginal modelling performed thoughtfully

Fetch effects may be visible

Other locations, basins
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