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Abstract—Modelling rare or extreme events is critical in
many domains, including financial risk, computer security
breach, network outage, corrosion and fouling, manufacturing
quality and environmental extremes such as floods, snowfalls,
heat-waves, seismic hazards and meteorological-oceanographic
events like extra-tropical storms, hurricanes and typhoons.
Statistical modelling enables us to understand extremes and
design mechanisms to prevent their occurrence and manage
their impact.

Extreme events are challenging to characterise as they are,
by definition, rare and unusual even in a big data world. The
frequency and extent of extreme events is typically driven by
both primary attributes (dependent variables) and secondary
attributes (independent variables or covariates). Studies have
shown that improved inference can be gained from including
covariate effects in predictive models but this inclusion comes
at a heavy computation cost.

In this paper, we present a framework for risk estimation
from extreme events that are non-stationary; i.e., they are
dependent on multi-dimensional covariates. The approach is
illustrated by estimation of offshore structural design criteria
in a storm environment non-stationary with respect to storm di-
rection, season and geographic location. The framework allows
consistent assessment of structural reliability with thorough
uncertainty quantification. The model facilitates estimation
of risk for any combination of covariates, which can be
exploited for improved understanding and ultimately optimal
marine structural design. The computational burden incurred
is large, especially since thorough uncertainty quantification is
incorporated, but manageable using slick algorithms for linear
algebraic manipulations and high-performance computing.

Keywords-large-scale extremes; statistical modelling; covari-
ates; uncertainty quantification;

I. BACKGROUND

Extreme events from natural phenomena and human ac-

tivity are of global concern because they have potentially

devastating consequences for society; recent international

financial crises and extreme climate events bear testimony.

Yet until recently, the literature has tended to focus on un-

derstanding the mean attributes of physical systems and their

typical variation. Extreme events, by definition, are rare,

difficult to study and even harder to predict [1]. Occurrences

of extreme events may be inter-dependent in space or time,

for example due to common or related underlying causes

[2], [3], [4].

Statistical modelling enables us to understand risk due to

extremes and design mechanisms to manage their potential

impact. Extreme value theory (EVT) [5] describes statistical

distributions and stochastic processes appropriate for the

modelling of extreme phenomena, motivated by asymptotic

arguments. A review from an ocean engineering perspective

is presented in [6]. According to EVT, for a variable with

any underlying max-stable distribution, exceedances over a

(sufficiently high) threshold follow the generalised Pareto

(GP) distribution; a result sometimes known as the law of

small numbers. [7]. The GP distribution is used to model

extreme ocean waves [6], extreme corrosion and fouling [8]

and extreme financial markets [9]. Inferences motivated by

sound combinations of statistical and physical understanding

result in better characterisation of extremes [10].

To characterise extreme events, we use data not only for

rare values of primary attributes, but also for secondary at-

tributes (or covariates), since the characteristics of extremes

typically vary as a function of secondary attributes. Studies

[11] have shown that inclusion of covariates in a predictive

model improves estimation compared with estimation from

a model which ignores them [12], [13]. However inclusion

of complex covariate dependence complicates inference and

introduces a substantial computational burden.

In this paper, we present a framework for risk es-

timation from extreme events that are dependent on

multi-dimensional covariates. The approach is illustrated

in application to the estimation of extreme metocean

(meteorological-oceanographic) storm environments condi-

tional on storm direction, season and geographic location.

[13] discusses large-scale marginal spatio-directional ex-

treme value modelling using efficient statistical algorithms

and parallel computing environments. Marginal return values

for storm severity (measured using significant wave height,

HS) for locations in the Gulf of Mexico (GoM) within

a large spatial neighbourhood are estimated, accounting

for spatial and storm directional variability of peaks over

threshold. Applications to other ocean basins (such as

the South China Sea, SCS) require the incorporation of

a seasonal covariate, since storm systems exhibit strong

seasonal variation in those basins. For example, the SCS

regional climate is characterised by northeast and southwest

monsoons and passing typhoons [14]. To quantify an envi-

ronment such as SCS, therefore, a four-dimensional spatio-

directional-seasonal model is required. Statistical modelling



of directional and seasonal effects over a spatial domain is

the focus of the current paper.

Our approach allows consistent assessment of the relia-

bility of marine structures with respect to extreme environ-

ments with thorough uncertainty quantification. The model

facilitates estimation of risk for any combination of covari-

ates, which can be exploited for improved understanding

of the environment and its effects on offshore and coastal

structures, and ultimately for optimal structural design. The

computational burden incurred is large, but manageable

using a combination of slick linear algebraic manipulations

[15] and high-performance computing.

II. APPROACH

A. Data Cube

We describe the multi-dimensional predictive analytic

framework using a data cube. A data cube model in typ-

ical Online Analytical Processing (OLAP) applications is a

means of modelling and visualisation in multiple dimensions

[16]. We need to consider variables representing extremes

modelled with respect to covariates of different dimensions.

Figure 1 illustrates this. At the simplest 0D level, we have

a stationary model with no covariates; we expect this model

not to describe physical reality well when covariate effects

are present; it will provide poor inference in general. On

the next level, we have a set of one-dimensional models for

which extremes are non-stationary with respect to a single

covariate (e.g., 1D-Drc, 1D-Ssn). In the metocean context,

such models typically provide significant improvements over

the stationary model. For example, real improvements in

structural reliability for no additional cost are achievable

if covariate effects are incorporated in the specification of

design criteria in general, e.g. by: a) designing structures

with different strengths in different directions; b) locating

critical modules in the most benign environments; and c)

performing operations of limited duration during the more

benign periods, all consistent with other safety requirements

for the offshore structure.

Extending to two dimensions, we might consider a

directional-seasonal model (2D Drc-Ssn) which characterises

directional and seasonal variation [17]. Predictions will be

different from those using a directional model, if seasonal

variation is an important driver of extremes. Characterising

this extra variability is particularly useful in assessing the

risk of offshore operations of limited duration, for example,

where directional variation is also expected.

The models described so far address a single location but

we can also seek to improve predictions by exploiting data

from a neighbourhood of locations. When limited sample

size is a concern, using multiple locations in inference

is generally useful. Sample size is generally problematic

in extreme value analysis, due to the fact that the infer-

ence strategy is motivated by asymptotic arguments. In the
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Figure 1. Data cube model representation incorporating direction (Drc),
season (Ssn), longitude (Lon) and latitude (Lat) covariates. Inferences
possible using any combination of covariates. The simplest 0D cuboid
represents a model stationary with respect to covariates, whereas the 4D
cuboid represents a model with all covariate effects incorporated.

oceanographic context, only the largest values in the sam-

ple (for example, observations exceeding some threshold)

should be used for extreme value modelling, but the sample

size must also be sufficient for good empirical modelling.

The amount of data available for analysis at a specific

location is therefore often limited. Reducing the threshold

risks invalidating asymptotic arguments of the underlying

the modelling strategy. Increasing the threshold value re-

duces sample size still further. One pragmatic solution is

to aggregate observations from a neighbourhood of spatial

locations and analyse the pooled sample using the approach

known as site pooling. However, neighbouring locations

in general have different extreme value characteristics, and

observations from neighbouring locations are typically not

statistically independent. Naive analysis of spatial extremes

over spatial neighbourhoods can lead therefore to erroneous

inferences. Recent developments in statistical modelling of

extreme ocean environments offer alternative solutions to

naive site pooling. [18], [13] for example are able to char-

acterise distributions of storm severity over spatial locations

giving practitioners a consistent approach to extreme value

analysis, and consistent design estimates across the domain

of interest.

In the existing literature on non-stationary marginal

extreme value analysis, covariate descriptions of various

complexities are used. Early efforts assumed simple lin-

ear regression-type relationships between parameters of the

extreme value model and one or more covariates. More

general descriptions including Fourier representations of

periodic covariates [19], non-parametric approaches includ-

ing splines [20] and Gaussian processes [21] followed.

Multi-dimensional covariate descriptions were subsequently

proposed using thin-plate splines [22] and tensor products



of marginal spline bases, and form the basis of the current

approach. These advances provide physically more appro-

priate models, but demand efficient computational tools for

useful application. In general, little effort has been devoted

to comparing and relating inferences from models using

different covariates to derive the complete picture. The

current work is an attempt to address this need. Below, we

model the same physical variable as a function of different

combinations of covariates, and compare inferences from

different models. Notice that though in principle we can

model any combination covariates shown in Figure 1, only

a few subset amongst these may be of practical interest.

B. Model Components

Extending the work of [23] and [22], summarised in [13],

we model storm peak significant wave height HSP
S , defined

as the largest value of significant wave height observed per

location during the period of a storm event. At a given

location, storm peak events are reasonably assumed to be sta-

tistically independent given covariates since they correspond

to occurrences of independent atmospheric pressure fields.

We assume that each storm event is observed at all locations

within the neighbourhood under consideration. Thus for a

sample {żi}
ṅ
i=1

of ṅ values of HSP
S observed at locations

{ẋi, ẏi}
ṅ
i=1

with dominant wave directions {θ̇i}
ṅ
i=1

and

seasons {φ̇i}
ṅ
i=1

at HSP
S (henceforth storm directions and

storm seasons), we proceed using the peaks-over-threshold

approach as follows (cf. Figure 2)) on peaks.

We first estimate a threshold function ψ above which ob-

servations ż are assumed to be extreme. The threshold varies

smoothly as a function of covariates (ψ
△

= ψ(θ, φ, x, y))
and is estimated using quantile regression. We retain the set

of n threshold exceedances {zi}
n
i=1

observed at locations

{xi, yi}
n
i=1

with storm peak directions {θi}
n
i=1

and seasons

{φi}
n
i=1

for further modelling. We next estimate the rate

of occurrence ρ of threshold exceedance using a Poisson

process model with Poisson rate ρ (
△

= ρ(θ, φ, x, y)). Finally

we estimate the size of occurrence of threshold exceedance

using a GP model. The GP shape and scale parameters ξ

and σ are also assumed to vary smoothly as functions of

covariates, with ξ real and σ > 0. Positivity of GP scale

is ensured throughout in the optimisation scheme. The GP

shape parameter is unrestricted in the full optimisation, but

limited to the interval (-0.5, +0.2) in the estimation of the

GP starting solution.

This approach to extreme value modelling follows that

of [20] and is equivalent to direct estimation of a non-

homogeneous Poisson point process model [24], [6]. We

emphasise that, in common with [20] and [6], we perform

marginal non-stationary extreme value analysis across a

grid of (dependent) spatial locations, accounting marginally

for directional, seasonal and spatial variability in extremal

characteristics. We further account for the effects of extremal

spatial dependence between locations on inferences using

a block bootstrapping scheme (cf. §II-E on computational

aspects).
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Figure 2. Model components: extreme value quantile threshold ψ, Poisson
rate of threshold exceedance ρ, and size of threshold exceedance quantified
by GP shape and scale ξ, σ. Each component is modelled as function of
covariates θ, φ, x, y.

C. Parameterising Covariates

Applying the approach to whole-basin applications is

methodologically straightforward, but computationally chal-

lenging. Physical considerations suggest we should consider

parameters ψ, ρ, ξ and σ to be smooth functions of covari-

ates θ, φ, x, y [25]. For estimation, this can be achieved by

expressing the value of each parameter in terms of a linear

combination of suitable basis functions for the domain D

of covariates, where D = Dθ × Dφ × Dx × Dy . Here

Dθ = [0, 360) is the (marginal) domain of storm peak

directions, Dφ = [0, 360) is the (marginal) domain of storm

peak seasons (expressed as normalised days of 360-day

calendar year), and Dx, Dy are the domains of x- and y-

values (e.g. longitudes and latitudes) under consideration.

For each covariate (and marginal domain) in turn, we first

calculate a B–spline basis matrix for an index set of size m

(m << n) covariate values; potentially we could calculate

the basis matrix for each of the n observations, but usually

avoid this for computational and statistical efficiency. For

instance in the case of Dθ, we calculate an mθ × pθ basis

matrix Bθ such that the value of any function at each of

the mθ points in the index set for storm direction can be

expressed as linear combination Bθβθ for some pθ×1 vector

βθ of basis coefficients. Note that periodic marginal bases

can be specified if appropriate (e.g. for Dθ and Dφ). Then

we define a basis matrix for the four-dimensional domain D



using tensor products of marginal basis matrices. Thus

B = By ⊗Bx ⊗Bφ ⊗Bθ (1)

provides an m× p basis matrix (where m = mθmφmxmy ,

and p = pθpφpxpy) for modelling each of ψ, ρ, ξ and σ

on the corresponding spatio-directional-seasonal index set

of size m. Any of ψ, ρ, ξ and σ (η, say, for brevity) can

then be expressed in the form η = Bβ for some p × 1
vector β of basis coefficients. Model estimation therefore

reduces to estimating appropriate sets of basis coefficients

for each of ψ, ρ, ξ and σ. The value of any marginal pη (i.e.

pθ, pφ, px, or py) is equal to the number qη of spline knots

specified for periodic domains (e.g Dθ, Dφ), and to qη +dη
for aperiodic domains (e.g Dx, Dy), where dη is the order

of the B-spline function specified (always 3 in this work, so

that spline functions are twice differentiable).

The roughness R of any function η defined on the support

of the spline basis can be easily evaluated on the index set

(at which η = Bβ). For a one-dimensional (e.g. directional)

spline basis, following [26], writing the vector of differences

of consecutive values of β as ∆β, and vectors of second

and higher order differences using ∆kβ = ∆(∆k−1β), k =
2, 3, ..., the roughness R of η is given by

R = β′
Pβ (2)

where P = (∆k)′(∆k) for differences of order k =
1, 2, 3, ... (with appropriate modifications to preserve peri-

odicity as necessary). For a spatio-directional spline basis,

the penalty matrix P can be similarly defined using

P = Py ⊗Px ⊗Pφ ⊗Pθ (3)

We manage the considerable computational challenges of

basin-wide extreme value modelling using a combination

of generalised linear array methods (GLAM) and parallel

computing as described in [13].

D. Simulation Steps

For clarity, we next briefly describe key modelling steps.

1) Identification of peaks over threshold: Storm peak

significant wave heights HSP
S are isolated from time-

series of sea state HS using the procedure de-

scribed in [27]. Contiguous intervals of HS above

a low peak-picking threshold are identified, each

interval now assumed to correspond to a storm

event. The peak-picking threshold corresponds to a

covariate-dependent (i.e., directional for 1D-Drc case,

directional-seasonal 2D-Drc-Ssn) quantile of HS with

specified non-exceedance probability (referred to as

PP-NEP), estimated using quantile regression. The

maximum of HS during the storm interval is taken

as the storm peak significant wave height HSP
S for

subsequent extreme value modelling (cf. Figure 3).

The values of other covariates θ, φ, x, y at the time

of the storm peak significant wave height are referred

to as storm peak values of those variables.

2) Extreme value threshold estimation: Threshold esti-

mation in general is a difficult problem in extreme

value analysis with recent emphasis not just on the

threshold but also the uncertainty quantification on

subsequent inferences such as return levels [28]. Ac-

cordingly, our approach avoids the selection of a

specific threshold by estimating an ensemble [17] of

non-stationary extreme value models corresponding

to different threshold choices. Each of these in turn

corresponds to a plausible choice of threshold non-

exceedance probabilities (referred to as EV-NEP).

3) Model estimation and computation of return value dis-

tributions: We estimate an ensemble of Poisson models

for the rate of occurrences of threshold exceedances,

and the corresponding ensemble of GP models for

the size of exceedances. We then simulate under the

ensemble of models to produce realisations of storm

peak characteristics corresponding to any return period

of interest, and accumulate return value distributions.

Table I lists the peak-picking threshold PP-NEPs used for

different model types in this work, and the sizes of resulting

HSP
S samples. Extreme value analysis was performed sub-

sequently using exceedances of the non-stationary quantile

with non-exceedance probability EV-NEP from the interval

shown.

E. Complexity and Uncertainty Quantification

1) Dimensionality: As described above, the number of

parameters to be estimated is the product of the

number of parameters per marginal spline basis. In

principle, inference therefore requires manipulation

and inversion of very large matrices. Fortunately, as

demonstrated in [13], generalised linear array methods

(GLAMs) offer significant computational advantages.

2) Roughness penalisation: We estimate parameters using

penalised maximum likelihood estimation, to avoid

potential over-fitting of non-parametric models. The

(negative log) likelihood function is penalised us-

ing a linear combination of parameter roughnesses

with roughness coefficients for each model parameter

ψ, ρ, ξ and σ. The choice of optimal penalty coeffi-

cients is determined by block cross-validation. Since

each storm is observed as spatially-dependent event

at all spatial locations, we define a storm block to

be the set of occurrences of a particular storm at all

locations for the purposes of both cross-validation (in

estimation of model smoothness) and bootstrapping

for uncertainty quantification (see below).

3) Bootstrapping: It is critical to quantify the uncertainty

with which extreme value models are estimated. Re-

sampling techniques such as bootstrapping can be

used to estimate the uncertainty of model parameters



and estimates of return values and other structure

variables [20], applicable when dependent data from

neighbouring locations are used. In the current context,

bootstrapping involves resampling the original sam-

ple with replacement to create a bootstrap resample.

The whole modelling procedure, including parame-

ter and return value estimation is then executed for

the resampled data. By repeating this scheme for a

large number of bootstrap resamples, we can quantify

sampling uncertainty on parameter and return value

estimates. Model fitting for each bootstrap resample

is independent of fitting for all others. Computation-

ally, bootstrapping is embarrassingly parallel, allowing

efficient parallel implementation.

III. APPLICATION

We consider estimation of extreme value models for HSP
S

in the South China Sea using historical data from the

recent SEAFINE database [29]. The storm characteristics

are discussed in §I and e.g. in [14] . Both directional and

seasonal covariates influence the rate of occurrence and size

of extreme events (as can be seen in Figure 3); spatial

variation is also anticipated. We outline 1D directional (Drc),

2D directional-seasonal (Drc-Ssn), 3D spatio-seasonal (Ssn-

Lon-Lat) and 4D spatio-directional-seasonal (Drc-Ssn-Lon-

Lat) models. To the best of our knowledge, this is the first

demonstration of extreme value modelling with nested multi-

dimensional covariates up to 4D.

Figure 3. HSP

S
(black) and sea state HS (grey) with direction θ (top)

and season φ (bottom).

A. 1D directional model

HSP
S occurrences were isolated as a function of the storm

direction (θ) using the procedure described in §II-D. The

most severe storms occur in the South (around 180o, with

North being 0o clock-wise orientation; see upper panel of

Figure 3). Parameters estimates (with bootstrap 95% uncer-

tainty bands) of the multi-dimensional covariate model are

Model PP-NEP #Str Peaks EV-NEP

1D-Drc 0.80 2355 [0.5,0.9]
2D-Drc-Ssn 0.60 4101 [0.5,0.9]

3D-Ssn-Lon-Lat 0.65 3156 [0.5,0.9]
3D-Drc-Lon-Lat 0.80 2916 [0.5,0.9]

4D-Drc-Ssn-Lon-Lat 0.65 3791 [0.5,0.9]

Table I
PARAMETERS USED FOR THE EXTRACTION OF STORM PEAKS FOR

DIFFERENT MODELS.

shown in Figure 4. Threshold estimate and rate of occurrence

reflect storm peak characteristics. GP shape is negative

throughout. Model diagnostics are essential to demonstrate

adequate model fit. Of primary concern is that the estimated

extreme value model generates directional distributions con-

sistent with observed storm peak data. Accordingly, Figure

5 compares return values from the model with those from

the original sample, indicating a good agreement across

directional sectors. Figure 6 shows the 100-year return value

for HSP
S directionally (black) or omni-directionally (red).
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Figure 4. 1D Drc: Directional model parameters showing median estimates
(solid) and 95% uncertainty bands (dashed). (a) Threshold ψ, (b) rate ρ,
(c) GP scale σ and (d) GP shape ξ.

B. 2D directional-seasonal model

Parameter estimates for a directional-seasonal model are

shown in Figure 7. Threshold and rate of occurrence es-

timates suggest more extreme HSP
S in the southern sector

during winter months. Uncertainty bands from the ensemble

model indicate reasonable estimates. Diagnostic plots for the

2D and all subsequent higher-dimensional models similar to

Figure 5 indicate good model fit. Figure 8 shows directional

and seasonal return values corresponding to a return period

of 100 years; comparing the second panel of this figure with
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Figure 6 suggests reasonable agreement between the models

for estimation of directional return values.

C. 3D spatio-seasonal, 3D spatio-directional and 4D

spatio-directional-seasonal models

We now extend the directional-seasonal model to include

spatial variation, using a 11 × 11 spatial grid centred

at the location for which the directional and directional-

seasonal models were previously estimated. Grid spacing

is approximately 11km. For illustration, we also compare

estimates of return values from a 3D spatio-seasonal model

(ignoring directional effects) with those from a 4D model.

Figures 9 and 10 show median parameter estimates from

the ensemble model by season and direction respectively.

Figure 11 shows the 100-year return value as a function of

direction, season and location; for comparison, Figure 12

illustrates spatio-seasonal return values from a 3D spatio-
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Figure 7. 2D Drc-Ssn: Directional-seasonal model. (a) Threshold ψ, (b)
rate ρ, (c) GP scale σ and (d) GP shape ξ. Left panel shows median
estimates and 8 right-hand panels the median (solid) and 95% uncertainty
bands (dashed) for seasonal variation in 8 directional octants. Titles give
average number of events per sector.
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Figure 8. 2D Drc-Ssn: 100-year HSP

S
return value (metres) by (a)

direction and (b) season. In each plot the left-hand panel shows the
omni-covariate return values with the right hand panel showing covariate
dependence. Quantiles of non-stationary (black) and stationary (red) return
values illustrated, corresponding to different quantile levels.

seasonal model. There is good agreement, suggesting that

characterising directional dependence is not important for es-

timation of (omni-directional) spatio-seasonal return values.

Of course, quantifying directional dependence is essential

for estimation of directional return values, and impossible

with a 3D spatio-seasonal model.

Figure 13 compares estimates for directional return values

from 1D directional, 2D directional-seasonal, 3D spatio-

directional and 4D spatio-directional-seasonal models. To

our knowledge, this is the first time that such a comparative

analysis of the estimates from multidimensional extreme

value models has been presented. Figure 14 compares sea-

sonal return values in a similar way. In this case, there is

good agreement between estimates for directional and sea-

sonal return values from models incorporating at least those

covariates. Asymptotically, we can argue that this might

be the case when inferences are dominated by covariate

combinations yielding the most extreme events; in practice

however for finite samples, this may not be expected [30].

In summary, our framework enables an unified approach to

deriving consistent estimates of extreme value by effectively

modelling covariate effects.

IV. DISCUSSION

Understanding rare or extreme events is important in many

fields of human activity, yet predicting their characteris-

tics is challenging exactly because extreme events occur

infrequently. Moreover, there is strong evidence that the

characteristics of extreme events are dependent in general

on covariates; estimating this non-stationarity is vital to

reliable extreme value predictions. Prediction is generally

problematic, since it corresponds to estimating points far

out in the tail of a probability distribution; predictions

exhibit large inherent natural (aleatory) uncertainty and large

sampling (epistemic) uncertainty.

If an extreme value model is to be used reliably, it

must describe aleatory uncertainty adequately; in the context

of metocean extremes, this means that covariate effects

must be captured within the model. In this work, we

explore a set of nested non-stationary marginal extreme

value models with increasingly sophisticated representations

of non-stationarity. We show that directional and seasonal

variability is present in samples of storm severity in the

South China Sea, and that this variability is captured in

extreme value model parameters, and reflected in estimates

for return values under the model. If an extreme value

model is to be used reliably, we should also seek to reduce

its epistemic uncertainty as much as possible; this can be

achieved by using the largest possible sample consistent with

the extreme value model, since statistical efficiency increases

with effective sample size. In a metocean context, this

requires modelling a heterogeneous sample of threshold ex-

ceedances exhibiting covariate dependencies; capturing these

adequately is essential. We demonstrate how storm severity

in the South China Sea varies with storm direction, season

and location in general. Directional and seasonal effects are

clear in parameter estimates and estimates for return values.

However, we also find that estimates, integrated over covari-

ates as necessary, for spatio-seasonal return values from 3D

spatio-seasonal and 4D spatio-directional-seasonal models

are consistent. This is also true of estimates of directional

(or seasonal) return values from all of 1D, 2D, 3D and 4D

models incorporating directional (or seasonal) covariate are

consistent. More generally, extreme value inferences for any

combination of directional, seasonal and spatial covariates

can be made consistently from the 4D model.

We recommend that the potential influence of covariates

always be considered in extreme value estimation. The ap-

proach outlined in this article provides a general framework

to achieve this.
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Figure 9. 4D Drc-Ssn-Lon-Lat: Extreme value model parameters for
directional-seasonal-spatial covariate showing median estimates from the
ensemble model by season. Left-hand panels indicate omni-seasonal esti-
mates and 12 right-hand panels monthly estimates. (a) Threshold ψ, (b)
rate ρ, (c) GP scale σ and (d) GP shape ξ.

Ang 7.5

-0.4 0 0.4
-0.5

0

0.5
Ang 37.5

-0.4 0 0.4
-0.5

0

0.5

Ang 82.5

-0.4 0 0.4
-0.5

0

0.5

Ang 127.5

-0.4 0 0.4
-0.5

0

0.5
Ang 172.5

-0.4 0 0.4
-0.5

0

0.5
Ang 217.5

-0.4 0 0.4

Relative Longitude

-0.5

0

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

Ang 262.5

-0.4 0 0.4
-0.5

0

0.5

Ang 307.5

-0.4 0 0.4
-0.5

0

0.5

N
NE

E

SE
S

SW

W

NW

-0.4 -0.2 0 0.2 0.4

Relative Longitude

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

0.8

0.9

1

1.1

1.2

1.3

1.4

1.5

1.6

(a) Threshold
Ang 7.5

-0.4 0 0.4
-0.5

0

0.5
Ang 37.5

-0.4 0 0.4
-0.5

0

0.5

Ang 82.5

-0.4 0 0.4
-0.5

0

0.5

Ang 127.5

-0.4 0 0.4
-0.5

0

0.5
Ang 172.5

-0.4 0 0.4
-0.5

0

0.5
Ang 217.5

-0.4 0 0.4

Relative Longitude

-0.5

0

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

Ang 262.5

-0.4 0 0.4
-0.5

0

0.5

Ang 307.5

-0.4 0 0.4
-0.5

0

0.5

N
NE

E

SE
S

SW

W

NW

-0.4 -0.2 0 0.2 0.4

Relative Longitude

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0.02

(b) Rate
Ang 7.5

-0.4 0 0.4
-0.5

0

0.5
Ang 37.5

-0.4 0 0.4
-0.5

0

0.5

Ang 82.5

-0.4 0 0.4
-0.5

0

0.5

Ang 127.5

-0.4 0 0.4
-0.5

0

0.5
Ang 172.5

-0.4 0 0.4
-0.5

0

0.5
Ang 217.5

-0.4 0 0.4

Relative Longitude

-0.5

0

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

Ang 262.5

-0.4 0 0.4
-0.5

0

0.5

Ang 307.5

-0.4 0 0.4
-0.5

0

0.5

N
NE

E

SE
S

SW

W

NW

-0.4 -0.2 0 0.2 0.4

Relative Longitude

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

(c) GP scale
Ang 7.5

-0.4 0 0.4
-0.5

0

0.5
Ang 37.5

-0.4 0 0.4
-0.5

0

0.5

Ang 82.5

-0.4 0 0.4
-0.5

0

0.5

Ang 127.5

-0.4 0 0.4
-0.5

0

0.5
Ang 172.5

-0.4 0 0.4
-0.5

0

0.5
Ang 217.5

-0.4 0 0.4

Relative Longitude

-0.5

0

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

Ang 262.5

-0.4 0 0.4
-0.5

0

0.5

Ang 307.5

-0.4 0 0.4
-0.5

0

0.5

N
NE

E

SE
S

SW

W

NW

-0.4 -0.2 0 0.2 0.4

Relative Longitude

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

R
e

la
ti
v
e

 L
a

ti
tu

d
e

-0.3

-0.28

-0.26

-0.24

-0.22

-0.2

-0.18

-0.16

-0.14

-0.12

(d) GP shape

Figure 10. 4D Drc-Ssn-Lon-Lat: Extreme value model parameters for
directional-seasonal-spatial covariate showing median estimates from the
ensemble model by direction. Left-hand panels indicate omni-directional
estimates and 8 right-hand panels directional octant estimates. (a) Threshold
ψ, (b) rate ρ, (c) GP scale σ and (d) GP shape ξ.
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(b) 4D by season

Figure 11. 4D Drc-Ssn-Lon-Lat: 100-year HSP

S
return value (metres)

for spatio-directional-seasonal covariate by (a) direction and (b) season. In
each plot, the left-hand panel indicates the omni-covariate estimate from
the threshold ensemble model with the right-hand panel indicating the
directional and seasonal estimates.
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Figure 12. 3D Ssn-Lon-Lat: 100-year HSP

S
return value (metres) for

spatio-seasonal covariate. The left-hand panel indicates the omni-seasonal
estimate from the threshold ensemble model with the 12 right-hand panel
indicating the 12 monthly estimates.
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Figure 13. Comparison of 100-year directional return values for HSP

S

from 1D, 2D, 3D and 4D models incorporating directional covariate.
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Figure 14. Comparison of 100-year seasonal return values for HSP

S
from

1D, 2D, 3D and 4D models incorporating seasonal covariate.


