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Abstract

Characterising the joint distribution of extremes of ocean environmental variables such as significant wave

height (HS) and spectral peak period (TP ) is important for understanding extreme ocean environments

and in the design and assessment of marine and coastal structures. Many applications of multivariate

extreme value analysis adopt models that assume a particular form of extremal dependence between vari-

ables without justification. Models are also typically restricted to joint regions in which all variables are

extreme, but regions where only a subset of variables are extreme can be equally important for design.

The conditional extremes model of Heffernan and Tawn (2004) provides one approach to overcoming these

difficulties.

Here, we extend the conditional extremes model to incorporate covariate effects in all of threshold selection,

marginal and dependence modelling. Quantile regression is used to select appropriate covariate-dependent

extreme value thresholds. Marginal and dependence modelling of extremes is performed within a penalised

likelihood framework, using a Fourier parameterisation of marginal and dependence model parameters, with

cross-validation to estimate suitable model parameter roughness, and bootstrapping to estimate parameter

uncertainty with respect to covariate.
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We illustrate the approach in application to joint modelling of storm peak HS and TP at a Northern North

Sea location with storm direction as covariate. We evaluate the impact of incorporating directional effects

on estimates for return values, including those of a structure variable, similar to the structural response of

a floating structure. We believe the approach offers the ocean engineer a straightforward procedure, based

on sound statistics, to incorporate covariate effects in estimation of joint extreme environmental conditions.
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1. Introduction

It is well known that the characteristics of extreme ocean environments vary with respect to a number

of covariates. For example, extremes of HS vary with wave direction and season (as demonstrated by,

e.g., Ewans and Jonathan (2008) and Jonathan and Ewans (2011)). Incorporation of covariate effects is

important to successful marginal modelling of environmental extremes (see, e.g., Jonathan et al. 2008). It

would seem reasonable, therefore, to expect that covariate effects are important in modelling joint extremes

also in general.

Marginal modelling of extremes with covariates has been performed for many years. Some authors follow

the approach of Davison and Smith (1990), parameterising extreme value model parameters in terms of

one or more covariates (see, e.g., Chavez-Demoulin and Davison 2005). Other authors prefer to transform

(or whiten) the sample to remove the effects of covariates (see Eastoe and Tawn 2009) prior to extreme

value analysis. Marginal (and dependence) modelling of extremes with covariates requires the specification

of a threshold for extreme value modelling. A number of authors (see, e.g., Anderson et al. 2001) have

commented on the importance of specifying a covariate-dependent threshold when covariate effects are

suspected. One approach to covariate-dependent threshold specification is quantile regression (Koenker

2005), illustrated recently in environmental applications by Kyselý et al. (2010) and Northrop and Jonathan

(2011).

Characterising the joint distribution of extremes of ocean environmental parameters is important in un-

derstanding extreme ocean environments and in the design and assessment of marine structures. The

conditional extremes model of Heffernan and Tawn (2004) provides a straightforward procedure for mod-

elling multivariate extremal dependence in the absence of covariates. Jonathan et al. (2010) illustrate the

application of conditional extremes model to characterise the dependence structure of storm peak signific-

ant wave height (HS) and wave spectral peak period (TP ) and estimate the return values of TP conditional

on extreme values of HS . To estimate the conditional extremes model for bivariate extremes of random
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variables Ẋ1 (HS , say) and Ẋ2 (TP , say), the following procedure is appropriate. (a) Select a range of

appropriate thresholds for threshold exceedance modelling for each variable in turn. (b) Fit marginal gen-

eralised Pareto models to threshold exceedances of the sample data for each variable in turn for different

threshold choices, plot the values of model parameter estimates as a function of threshold, and select the

lowest threshold value per variable corresponding to approximately stable models. (c) Transform Ẋ1 and

Ẋ2 in turn to Gumbel scale (to X1 and X2) using the probability integral transform. (d) Fit the conditional

extremes model for X2|X1 (and X1|X2) in turn for various choices of threshold of the conditioning variate,

retain the estimated model parameters and residuals, plot the values of model parameter estimates and

examine residuals as a function of threshold, and select the lowest threshold per variable consistent with

modelling assumptions. (e) Simulate joint extremes on the standard Gumbel scale under the model, and

transform realisations to the original scale using the probability integral transform.

To our knowledge, there is no literature on incorporation of covariate effects within the conditional ex-

tremes model, the topic of this article. The layout of the paper is as follows. In section 2, we introduce a

motivating application. Section 3 is a description of the marginal model (incorporating threshold model-

ling, generalised Pareto modelling of threshold exceedances and transformation to Gumbel scale), and the

extended conditional extremes model incorporating covariate effects. Section 4 addresses the estimation of

conditional extremes for the Northern North Sea location under consideration, followed by a more general

discussion and conclusions in section 5.

2. Data

We motivate and illustrate the methodology by considering joint estimation of extreme values of storm

peak HS and TP with directional covariate at a location in the northern North Sea. Data correspond to

hindcast values of storm peak HS over threshold, observed during periods of storm events, and associated

values for TP . The sample consists of 1163 pairs of values for the period October 1964 to August 1998.
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Figure 1 shows the approximate North Sea location corresponding to the data, and the relatively long

fetches for waves emanating from the Atlantic Ocean, the Norwegian Sea and the North Sea. With

direction from which waves travel expressed in degrees clockwise with respect to north, Figure 2 gives

scatter plots of HS (horizontal) and TP (vertical) for directional sectors corresponding approximately to

those in Figure 1. It can be seen that HS−TP dependence for Atlantic storms (directional sector [230, 280))

is quite different to that for storms emanating from the south (directional sector [140, 200)), suggesting

that the dependence between HS and TP varies as a function of direction, and that this dependence should

be accommodated in any joint modelling of extremes of HS and TP .

[Figure 1 about here.]

[Figure 2 about here.]

3. Model

The application introduced above suggests that we treat storm peak HS and associated TP as varying with

storm direction in order to characterise their joint extremal behaviour. Consider therefore two random

variables Ẋ1(θ), Ẋ2(θ) of common covariate θ. We are interesting in modelling their joint extremal structure

for any particular value of covariate θ. We assume that the joint tail of Ẋ1(θ) and Ẋ2(θ) can be characterised

adequately using the single covariate θ.

In this section we describe the extension of the conditional extremes modelling procedure, outlined in

section 1, to incorporate covariates. Sections 3.1 and 3.2 outline the coupled marginal generalised Pareto

modelling of threshold exceedances and quantile regression for threshold selection respectively. Section 3.3

discusses transformation to standard Gumbel scale, necessary for application of the conditional extremes

model in section 3.4. Finally, the adoption of Fourier series representations for model parameter functions

is outlined in section 3.5.
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3.1. Generalised Pareto model for threshold exceedances

Marginally, for each of Ẋ1(θ), Ẋ2(θ) in turn for a given value of θ, we assume that, conditional on exceeding

a large value, the corresponding random variables are generalised Pareto distributed:

Pr(Ẋj(θ) > ẋ|Ẋj(θ) > ψj(θ; τj∗)) = (1 +
ξj(θ)

ζj(θ)
(ẋ− ψj(θ; τj∗)))−1/ξj(θ) for j = 1, 2

for ẋ > ψj(θ; τj∗), (1+
ξj(θ)
ζj(θ)

(ẋ−ψj(θ; τj∗))) > 0 and ζj(θ) > 0. ψj(θ; τj∗) is a pre-selected quantile threshold,

assumed to be a smooth function of θ, associated with a non exceedance probability τj∗:

Pr(Ẋj(θ) 6 ψj(θ; τj∗)) = τj∗ .

Model parameters ξj(θ), ζj(θ), respectively generalised Pareto shape and scale, are also assumed to be

smooth functions of covariate. For a sample of values {ẋij}ni=1, j = 1, 2, corresponding to set {θi}ni=1 of

known covariate values, and pre-specified threshold ψj(θ; τj∗), estimates for the values of the functions

ξj(θ) and ζj(θ) at {θi}ni=1 can be obtained in principle by maximum likelihood estimation, by minimising

the negative log-likelihood:

`GP,j =
n∑
i=1

log ζj(θi) +
1

ξj(θi)
log(1 +

ξj(θi)

ζj(θi)
(ẋij − ψj(θi; τj∗))) for j = 1, 2 .

Each of the parameter functions ψj(θ; τj∗), ξj(θ) and ζj(θ) can be specified as a linear combination of

suitable basis functions, such as periodic splines and Fourier series for periodic covariates such as direction,

as discussed in section 3.5. In this case, we regulate parameter smoothness with covariate using a penalised

likelihood fitting criterion:

`∗GP,j = `GP,j + λξjRξj + λζjRζj for j = 1, 2
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for roughness coefficients λξj , λζj , and parameter roughnesses Rξj , Rζj which are easily evaluated (see Sec-

tion 3.5) for suitable choice of basis. The values of roughness coefficients are selected using cross-validation

to maximise the predictive performance of the model. 10-fold cross-validation was used throughout this

work.

3.2. Quantile regression model for thresholds

For each random variable in turn, the quantile threshold ψj(θ; τ) corresponding to quantile probability τ

is estimated using quantile regression, by minimising the roughness penalised loss criterion:

`∗QR,j = {τ
n∑

i,rij≥0
|rij |+ (1− τ)

n∑
i,rij<0

|rij |}+ λψj
Rψj

for j = 1, 2

and residuals rij = ẋij − ψj(θi; τ). The terms in parentheses correspond to the unpenalised quantile

regression loss criterion. Parameter roughness Rψj
can be evaluated in closed form (see Section 3.5) for

efficient estimation. The value of roughness coefficient λψj
is selected using cross-validation to maximise

the predictive performance of the quantile regression model.

In practice, quantile regression thresholds are estimated for an increasing sequence of D quantile probab-

ilities 0 < τ1 < τ2 < ... < τd < ... < τD < 1. For each choice of τd, standard diagnostic plots for generalised

Pareto fitting (such as the variation of the estimated shape parameter or some extreme quantile estimate

with threshold) are examined (see, e.g., Scarrott and MacDonald 2012). The lowest value of quantile

probability consistent with an adequate generalised Pareto fit is selected as τj∗. The quantile regression

threshold estimates for quantile probabilities 6 τj∗ are useful for marginal transformation to standard

Gumbel scale, discussed in the next section.
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3.3. Marginal transformation to standard Gumbel scale

The conditional extremes model is applied to random variables with standard Gumbel marginal distribu-

tions. For each random variable in turn, the quantile regression models for different quantile probabilities,

and the marginal generalised Pareto model for threshold exceedances, provide a means to transform from

sample {ẋij}ni=1 corresponding to random variable Ẋj(θ) at the set {θi}ni=1 of known covariate values to

an equivalent sample {xij}ni=1 corresponding to random variable Xj(θ) with approximately a standard

Gumbel distribution for any θ.

Above the threshold ψj(θ; τj∗), the unconditional cumulative distribution function for threshold exceedances

ẋ > ψj(θ; τj∗), for any value of θ, is given by:

Pr(Ẋj(θ) 6 ẋ) = 1− (1− τj∗) Pr(Ẋj(θ) > ẋ|Ẋj(θ) > ψj(θ; τj∗)) for j = 1, 2 .

Below the threshold, in the absence of a parametric form for the cumulative distribution function, we

approximate it using:

Pr(Ẋj(θ) 6 ẋ) ≈ τd + (τd − τd−1)
(ẋ− ψj(θ; τd−1))

(ψj(θ; τd)− ψj(θ; τd−1))
for j = 1, 2

where ψj(θ; τd−1) 6 ẋ < ψj(θ; τd) for the sequence of quantile probabilities τd such that τd 6 τj∗.

Using the probability integral transform, we can transform from original to standard Gumbel scales, since:

Pr(Xj(θ) 6 x) = exp(− exp(−x)) = Pr(Ẋj(θ) 6 ẋ) for j = 1, 2

so that the individuals in the transformed sample {xij}ni=1, j = 1, 2 are given by:

xij = − log(− log(Pr(Ẋj(θi) 6 ẋij))) for i = 1, 2, ..., n, and j = 1, 2
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now assumed to be marginally stationary.

3.4. Conditional extremes model

For positively dependent random variables X1(θ), X2(θ) with standard Gumbel marginal distributions for

any θ, we extend the asymptotic argument of Heffernan and Tawn (2004) for the form of the conditional

distribution of Xjc(θ), j
c = 1, 2 given the value of Xj(θ), j = 1, 2, j 6= jc for any value of covariate θ :

(Xjc(θ)|Xj(θ) = x) = αj(θ)x+ xβj(θ)Wj(θ) for j, jc = 1, 2, jc 6= j

and x > φj(κj∗) where φj(κj∗) is a threshold with non-exceedance probability κj∗ above which the con-

ditional extremes model fits well. The parameter functions αj(θ) ∈ [0, 1], βj(θ) ∈ (−∞, 1] vary smoothly

with covariate θ. Wj(θ) is a random variable drawn from an unknown distribution. We assume that

the standardised variable Zj = (Wj(θ) − µj(θ))/σj(θ) follows a common distribution Gj , independent of

covariate, for smooth location and scale parameter functions µj(θ), σj(θ) > 0. We write, for any value of

θ:

(Xjc(θ)|Xj(θ) = x) = αj(θ)x+ xβj(θ)(µj(θ) + σj(θ)Zj) for j, jc = 1, 2, jc 6= j .

For potentially negatively dependent variables, extended forms of the equations above are available in

the covariate-free case (see Heffernan and Tawn 2004). (Recently, Keef et al. (2013) proposed marginal

transformation to the Laplace distribution rather than Gumbel. The former has exponential tails on both

sides and symmetry, capturing the exponential upper tail of the Gumbel required for modelling positive

dependence but the symmetry also allows for negatively associated variables to be incorporated into the

model parsimoniously.) To estimate the parameter functions αj(θ), βj(θ), µj(θ) and σj(θ), we follow

Heffernan and Tawn (2004) in assuming that Gj is the standard normal distribution. The corresponding
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negative log likelihood for pairs {xi1, xi2} from the original sample for which xij > φj(κj∗), conditioned on

Xj(θ) is:

`CE,j =
∑

i,xij>φj(θi;κj∗)

log sij +
(xijc −mij)

2

2s2ij
for j, jc = 1, 2, jc 6= j

where mij = αj(θi)xij + µj(θi)x
βj(θi)
ij and sij = σijx

βj(θi)
ij . Adopting a penalisation procedure to regulate

parameter roughness, the penalised negative log likelihood is:

`∗CE,j = `CE,j + λαjRαj + λβjRβj + λµjRµj + λσjRσj for j = 1, 2

where parameter roughnesses Rαj , Rβj , Rµj , Rσj are easily evaluated (see Section 3.5), and roughness

coefficients λαj , λβj , λµj , λσj are estimated using cross-validation . To reduce computational burden, we

choose to fix the relative size of the roughness coefficients. Residuals:

rij =
1

σ̂j(θi)
((xijc − α̂j(θi)xij)x

−β̂j(θi)
ij − µ̂j(θi)) for j, jc = 1, 2, jc 6= j

evaluated for xij > φj(κj∗) are inspected to confirm reasonable model fit, as discussed in section 4. The

set of residuals is also used as a random sample of values for Zj from the unknown distribution Gj for

simulation to estimate extremes quantiles in section 5.

3.5. Parameter functional forms

Motivated by the application in section 2, we assume that the common covariate θ is periodic on [0, 360).

It is then natural to represent parameter functions ψj(θ), ξj(θ), ζj(θ), αj(θ), βj(θ), µj(θ) and σj(θ) using

Fourier series. Adopting the notation η(θ) for a typical parameter function:

η(θ) =

p∑
k=0

aηk cos(kθ) + bηk sin(kθ)
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for Fourier coefficients aηk, bηk with bη0
M
= 0, and Fourier order p. The roughness of η(θ) with respect to

θ can then be evaluated as:

Rθ =

∫ 360

0
(η′′(θ))2dθ =

p∑
k=0

k4(a2ηk + b2ηk)

where η′′(θ) is the second derivative of η(θ) with respect to θ. This simple form facilitates efficient para-

meter estimation using roughness penalisation described above for quantile regression, generalised Pareto

modelling and conditional extremes modelling.

Various other choices of basis are available. For periodic covariates, a basis of periodic splines (see, e.g.,

Eilers and Marx 2010) provides a good alternative.

4. Application

Marginal quantile regression thresholds ψj(θ; τd) for quantile probabilities τd of 0.1, 0.2, ..., 0.9 were es-

timated for storm peak HS (j = 1) and TP (j = 2), and used in turn for generalised Pareto modelling.

For quantile regression only, we found it advantageous to use evenly-spread transformed covariate values

{θ∗i }ni=1, with:

θ∗i =
360

n
(r(θi)− 1) for i = 1, 2, ..., n

where r(θi) is the rank of θi in the set of covariates, namely the position of θi in the set of covariate values

sorted in ascending order. The set {θ∗i }ni=1 is uniformly distributed on [0, 360) by design, stabilising quantile

regression estimation on the transformed θ∗ scale. Interpreted on the original θ scale, the transformation

imposes greater smoothness on quantile thresholds in directional sectors less frequently observed, and

allows greater threshold flexibility in more frequently observed sectors, in a natural way according to the

rate of occurrence of events from different directions.
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The marginal directional quantiles for storm peak HS(θ) and TP (θ) are illustrated in Figure 3, showing

a clear directional dependence in each case. For HS , longer tails are evident for directions corresponding

to longer fetches (e.g. the North Sea, the Atlantic Ocean and Norwegian Sea). For TP , a longer tail is

evident for the Atlantic sector, reflecting the occurrence of long-period swell events and the larger extreme

wind seas for that sector. The greater smoothness of quantile thresholds for sectors corresponding to

land shadows (e.g. Norway, achieved by transforming directional values to approximately uniform scale as

described above) is also evident and intuitively reasonable.

[Figure 3 about here.]

In the case that one of the random variables is regarded as the dominant design variable, e.g. HS(θ) for

a fixed marine structure, there is usually interest in estimating the distribution of the associated random

variable, e.g. TP (θ), conditioned on an extreme value of the conditioning dominant design variate for one

or more choices of covariate θ. For this reason we focus here on modelling TP (θ) given large values of HS(θ)

as a function of θ. The analogous procedure can be used of course to model HS(θ) given large TP (θ).

Following transformation to Gumbel scale, the conditional extremes model for TP (θ) given HS(θ) was es-

timated using penalised likelihood with κ1∗ = 0.8. Estimates for parameters α, β, µ and σ (all functions of

θ) are given in Figure 4 as solid lines, together with 2.5%, 50% and 97.5% percentiles from a bootstrapping

analysis (using 1000 resamples). There is good agreement between the median bootstrap and point estim-

ates. Uncertainty bands are also reasonable for all parameters except β, which is difficult to identify for α

close to unity (see Keef et al. 2013 for a constrained solution). The influence of the directional covariate

is again clear, particularly for α and σ. For α, this suggests that the dependence between HS and TP is

greatest in the North Sea sector; we also note that dependence is positive for all directions. For σ, the

estimates suggest that the variability in the dependence between HS and TP is greater in the Atlantic and

Norwegian sectors. Corresponding residuals (see Section 3.4) are plotted against direction and conditioning
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variate in Figures 9 and 10 in the Appendix; no obvious inconsistencies with modelling assumptions (see,

e.g., Jonathan et al. 2010) are observed. For comparison, however, Figure 11 in the Appendix illustrates

residuals from a covariate-free conditional extremes model for the same starting sample. The dependence

of residual on direction is apparent, suggesting that this model would not be suitable.

[Figure 4 about here.]

5. Estimation of extreme quantiles

In this section we use simulation under the fitted model to estimate the conditional distributions of con-

ditioned variates and structure variables given large values of the conditioning variate, as a function of

covariate. We start by outlining the simulation procedure.

5.1. Simulation procedure

To simulate a realisation of an exceedance of a high quantile of the conditioning variate Xj(θ) (j = 1, 2)

and a corresponding value of the conditioned variate Xjc(θ) (jc = 1, 2, jc 6= j), for some θ, we proceed as

follows:

1. Draw a value of covariate θs (e.g. at random from the original sample or from some estimate of its

distribution estimated from the sample),

2. Draw a value of residual rsj from the set of residuals obtained during model fitting (see Section 3.4),

3. Draw a value xsj of the conditioning variate from its standard Gumbel distribution,

4. If the value xsj exceeds φj(κj∗) continue, else resample xsj ,

5. Estimate the value of the conditioned variate xsjc using:

xsjc = α̂j(θs)xsj + x
β̂j(θs)
sj (µ̂j(θs) + σ̂j(θs)rsj)

13



where the obvious notation is used for the estimated values of model parameters (see Section 3.4),

6. Transform the pair xsj , xsjc in turn to the original scale (to ẋsj , ẋsjc) using the probability integral

transform (see Section 3.3).

Note that this procedure can be extended to include realisations for which xsj ≤ φj(κj∗), by drawing a

pair of values (for the conditioning and conditioned variates) at random from the subset of the Gumbel-

transformed original sample (for which the conditioning variate is ≤ φj(κj∗)) at step 4.

5.2. Covariate-dependent conditional distributions

Using the simulation procedure above, the conditional distribution of TP (θ) given large values of HS(θ)

exceeding its directional quantile with non-exceedance probability 0.99 (in 34 years) was estimated, and

is illustrated in Figure 5. A solid black line represents the median value of TP (θ), and dashed black lines

give the 2.5% and 97.5% percentiles of the distribution. Also shown (as dark grey straight lines) are the

corresponding values estimated using a covariate-free conditional extremes model. For further comparison,

the marginal TP (θ) curve with non-exceedance probability 0.99 is also shown (in light grey).

[Figure 5 about here.]

From the figure it can be seen that the conditional values of TP follow a similar trend to marginal TP

with direction, except that the conditional values are smaller (due to the imperfect dependence between

HS and TP , resulting from swell events in the data). The uncertainty of the conditional TP is greatest in

the Atlantic sector, reflecting the original sample (see Figure 2). In contrast, the fluctuation of conditional

TP with direction is not captured by the covariate-free conditional extremes model, which in particular

underestimates conditional TP for the Atlantic and Norwegian Sea sectors. Nonetheless, the location

and uncertainty of estimates from the covariate-free model are generally consistent with those from the

directional model. These estimates are illustrated alongside those for marginal HS(θ) with quantile non-

14



exceedance probability of 0.99 (in 34 years) in Figure 6. The directional variation of return values for HS

and conditional TP are consistent with physical understanding of fetch and land shadow effects.

[Figure 6 about here.]

5.3. Covariate-dependent conditional distribution of structure variable

Simulations under the estimated conditional extremes model can also be useful to estimate return values

for structure variables defined in terms of the conditioning and conditioned variates. For illustration, the

roll or heave response R(θ) of a floating structure with direction θ can be described in terms of HS(θ) and

TP (θ) using a functional form similar to:

R(θ) =
AHS(θ)

1 +B/TP (θ)2

for A,B > 0, both potentially also functions of covariate. For the response R(θ) illustrated in Figure 7 (in

terms of R/HS against θ, for constant A,B), the variation of median conditional response (given that HS

exceeds its quantile threshold with non-exceedance probability 0.99 in 34 years) with direction is shown

in Figure 8 (as a solid black curve). Also shown are 2.5% and 97.5% percentiles of the distribution of

conditional distribution (as dashed black curves). For comparison, Figure 8 also gives the corresponding

(straight) lines corresponding to a covariate-free conditional extremes model. Conditional response is

underestimated by the covariate-free model for North Sea, Atlantic and Norwegian Sea sectors. Again,

however, the general location and spread of covariate-free estimates are in agreement with estimates from

the directional conditional extremes model.

[Figure 7 about here.]

[Figure 8 about here.]
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6. Discussion

In this article we demonstrate that the joint tail of storm peak significant wave height and associated peak

period shows storm directional dependence for hindcast data from one Northern North Sea location. We

extend the conditional extremes model of Heffernan and Tawn (2004) to incorporate covariate effects. We

show that estimates of conditional extremes of peak period ignoring directional variability are different

to those which allow the characteristics of the joint tail region to vary smoothly with storm direction.

We conclude that neglecting directional covariate effects in joint tail modelling can lead to misleading

estimates of return values for the variables concerned. We believe therefore that the conditional extremes

model incorporating covariates is a useful complement to existing methods for extreme value analysis in

ocean design.

The conditional extremes model estimates the dependence between random variables independently of

their marginal characteristics (see, e.g., Jonathan and Ewans 2013, Heffernan and Tawn 2004). Moreover,

it adopts appropriate model forms (known from asymptotic extreme value theory) for both marginal (e.g.

generalised Pareto for peaks over threshold) and dependence models (e.g. the Heffernan and Tawn model

for variables with Gumbel marginal distributions) of extreme values. Jonathan et al. (2009) illustrate the

conditional extremes approach in the absence of covariate effects, for estimation of joint extremes of storm

peak HS and associated TP , and compare the approach with that of Haver (1985). The latter assumes

that large values of HS follow a Weibull distribution, and that conditional values of TP given HS follow a

log-normal distribution. The conditional extremes model is shown to perform better than the Haver model

for simulated samples with known extremal characteristics. The main reason for this is that there is no

prescribed model form for extrapolation of the parameter estimates of the Haver (and similar empirical)

models beyond the domain of the data. We would therefore also expect the conditional extremes model to

also provide more realistic estimates of characteristic structure variables.

A fuller examination of the conditions required for the (original covariate-free) conditional extremes model
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to be valid is given by Heffernan and Resnick (2007). An interesting discussion of the merits of the model

is included in the discussion of the original paper of Heffernan and Tawn (2004). The limit assumption

underlying the extended conditional extremes model is itself an extension of that made by Heffernan and

Tawn (2004). Informally, in the notation of Section 3, we assume that for positively dependent random

variables X1(θ) and X2(θ) of common covariate θ with standard Gumbel marginal distributions for any

value of θ, the standardised variable:

Zj = σj(θ)
−1(

Xjc(θ)− αj(θ)
x
βj(θ)
j

− µj(θ)) for j, jc = 1, 2, jc 6= j

is such that:

Pr(Zj 6 z|Xj = xj , θ)→ G(z) as z →∞

for some non-degenerate distribution G independent of covariate θ, where α, β, µ and σ are smooth

functions of θ. For the current application, this would seem to be a reasonable assumption (from physical

considerations and inspection of model diagnostics, e.g., Figures 9 and 10 in the Appendix).

Many design recipes specify a combination such as 100-year wave, 100-wind and 10-year current to provide

a conservative structural load for design purposes. The veracity of this assumption is difficult to assess in

general. However, using the estimated conditional extremes model, simulations of extreme environments,

structural loads and responses can be performed efficiently. In principle therefore, combinations of envir-

onmental design conditions, incorporating covariate effects, corresponding to a specified level of risk or

reliability can be estimated.

The conditional extremes model is applicable to the joint tail of any distribution of random variables, for

example representing peaks over threshold or block (e.g. annual) maxima. It is also applicable to joint

modelling of serially correlated variables characterising consecutive sea states, with care in interpretation
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of inferences for parameter uncertainty and return values in the presence of serial dependence.

The adoption of quantile regression for threshold modelling with covariates together with subsequent mar-

ginal and conditional extremes modelling provides a rational and scalable framework for joint tail modelling.

In the current work, directional thresholds corresponding to a common non exceedance probability are used

for marginal and dependence modelling. In other applications, adopting different non exceedance probabil-

ities for each marginal and dependence model has been found, based on inspection of model fit diagnostics,

to be beneficial. In principle, other criteria for threshold selection could be used, but we find the use of

constant non exceedance probability with covariate to be physically appealing and practically useful.

Incorporation of multiple (and multivariate) covariates is possible in principle, and may be justifiable and

necessary in future. Computationally, inference for one covariate is relatively straightforward, notwith-

standing the need to estimate multiple quantile thresholds, appropriate parameter roughnesses in marginal

and conditional models (using cross-validation), and uncertainties (using bootstrapping). Bondell et al.

(2010) propose simultaneous estimation of non-crossing quantiles. Extensions of the method to multiple

covariates will require access to good computational resources. Extension to conditional modelling of

three of more random variables, and potentially even to include different covariates for different subsets

of variables are possible. Spatial, spatio-directional or spatio-temporal covariates are attractive from an

oceanographic perspective.

The size of estimated uncertainties of conditional extremes model parameters is influenced by many factors,

including the form of the conditional extremes model and sample size. For some values of parameters

(e.g. αj(θ) and βj(θ) near unity, see Section 3.4), model identification is problematic. Small samples

typically yield large uncertainties. The effect of parameter uncertainty on estimated design values can be

easily quantified by including the estimation of design values within the bootstrapping analysis. Bayesian

specification might prove advantageous especially when prior judgements regarding realistic smoothness of

parameters with covariates are possible from physical understanding.
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Appendix

This appendix gives supporting diagnostic plots for the conditional extremes model for associated TP given

storm peak HS discussed in Section 4 of the main text.

[Figure 9 about here.]

[Figure 10 about here.]

[Figure 11 about here.]
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Figure 1: Figure 1: North Sea location. Directional sectors corresponding to long fetches associated with the Atlantic Ocean,
Norwegian Sea and North Sea typically yield more severe storm events. Sectors corresponding to Norway and the United
Kingdom are fetch limited. Storm direction is the direction from which the storm emanates, and is measured clockwise from
North.
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Figure 2: Plots of storm peak HS (in metres, horizontal) versus associated TP (in seconds, vertical) for the most severe (20%
of) storms emanating from 6 directional sectors (ordered, clockwise from 20o). The characteristics of dependence between TP

and HS varies from sector to sector. For example, for storms emanating from the south (directional sector [140, 200)), TP is
highly dependent on HS in contrast to Atlantic storms (from directional sector [230, 280)).
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Figure 3: Polar plot of marginal directional quantile estimates for storm peak HS (in metres, on left hand side) and TP

(seconds) for deciles with probabilities 0.1 to 0.8 together with the sample (grey dots). Transformed directions were used for
quantile regression. Directional dependence is apparent.
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Figure 4: Estimates for parameters α, β, µ and σ and their uncertainties as functions of θ using penalised likelihood with
bootstrap resampling. Median bootstrap estimate is given in solid black, with a 95% bootstrap uncertainty band in dashed
black. The estimate obtained using the original sample is given in solid grey. Dependence term α is largest for storms
emanating from the North Sea sector as expected from inspection of sample (see Figure 2). Directional effects are apparent
in α and σ in particular. The bootstrap uncertainty in β is particularly large. Note that parameter uncertainty is also large
in the interval [0,135) (not shown), due to small sample size.
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Figure 5: Marginal storm peak TP (seconds) corresponding to non-exceedance probability of 0.99 (in 34 years), incorporating
covariate effects (solid light grey). Median conditional storm peak TP given exceedances of storm peak HS (metres) with
exceedance probability 0.01, incorporating (solid black) and ignoring (solid dark grey) covariate effects, together with 2.5%-
and 97.5% percentiles (dashed).
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Figure 6: Return values of storm peak HS (metres) and associated conditional values of TP (seconds). Inner dot-dashed
lines (on common scale): storm peak HS with probability non-exceedance probability 0.99 (in 34 years), with (grey) and
without (black) directional effects. Outer solid lines (on common scale): median associated TP with (black) and without
(grey) directional covariate effects; outer dashed lines give corresponding 2.5%- and 97.5% percentile values for associated TP .
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Figure 7: Simple ratio of response R to storm peak HS as a function of storm peak TP (seconds) for any direction.
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Figure 8: Median conditional structural response (in metres) for storm peak HS (metres) exceeding its directional quantile
non-exceedance probability of 0.99 incorporating (solid black) and ignoring (solid grey) directional covariate effect, with
corresponding 2.5%- and 97.5% percentiles (dashed).
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Figure 9: Values for residuals Z from conditional extremes model against direction θ. There is no obvious directional
dependence.
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Figure 10: Values for residuals Z from conditional extremes model against conditioning variate HS (on Gumbel scale). There
is no obvious dependence.
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Figure 11: Values for residuals Z from a covariate-free conditional extremes model against direction θ. Residuals appear to
be dependent on the value of covariate.
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