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Motivation

Rational design an assessment of marine structures:

Reducing bias and uncertainty in estimation of structural reliability
Improved understanding and communication of risk

For new (e.g. floating) and existing (e.g. steel and concrete) structures
Climate change

Other applied fields for extremes in industry:

Corrosion and fouling
Economics and finance
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Australian North West Shelf
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Australian North West Shelf

Model storm peak significant wave height HS

Wave climate is dominated by westerly monsoonal swell and
tropical cyclones

Cyclones originate from Eastern Indian Ocean, Timor and Arafura Sea

Sample of hindcast storms for period 1970-2007

9× 9 rectangular spatial grid over 5o × 5o longitude-latitude domain

Spatial and directional variability in extremes present

Marginal spatio-directional model
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Cyclone Narelle January 2013: spatio-directional
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Cyclone Narelle January 2013: cyclone track
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Storm peak HS by direction
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Quantiles of storm peak HS spatially
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Extreme value analysis: univariate challenges

Covariates and non-stationarity:

Location, direction, season, time, water depth, ...
Multiple / multidimensional covariates in practice

Cluster dependence:

Same events observed at many locations (pooling)
Dependence in time (Chavez-Demoulin and Davison 2012)

Scale effects:

Modelling X or f (X )? (Reeve et al. 2012)

Threshold estimation:

Scarrott and MacDonald [2012]

Parameter estimation

Maximum likelihood, moments, Hill, ...

Measurement issues:

Field measurement uncertainty greatest for extreme values
Hindcast data are simulations based on pragmatic physics, calibrated to
historical observation
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Extreme value analysis: multivariate challenges

Spatial extremes using componentwise maxima:
⇔ max-stability ⇔ multivariate regular variation
Assumes all components extreme
⇒ Perfect independence or asymptotic dependence only
Composite likelihood for spatial extremes (Davison et al. 2012)

Extremal dependence: (Ledford and Tawn 1997)
Assumes regular variation of joint survivor function
Gives more general forms of extremal dependence
⇒ Asymptotic dependence, asymptotic independence (with +ve, -ve
association)
Hybrid spatial dependence model (Wadsworth and Tawn 2012)

Conditional extremes: (Heffernan and Tawn 2004)
Assumes, given one variable being extreme, convergence of distribution
of remaining variables
Allows some variables not to be extreme
Not equivalent to extremal dependence

Application:
... a huge gap in the theory and practice of multivariate extremes ...
(Beirlant et al. 2004)
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Model components

Sample {żi}ṅi=1 of ṅ storm peak significant wave heights observed at
locations {ẋi , ẏi}ṅi=1 with storm peak directions {θ̇i}ṅi=1

Model components:
1 Threshold function φ above which observations ż are assumed to be

extreme estimated using quantile regression
2 Rate of occurrence of threshold exceedances modelled using Poisson

model with rate ρ(
M
= ρ(θ, x , y))

3 Size of occurrence of threshold exceedance using generalised Pareto
(GP) model with shape and scale parameters ξ and σ
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Model components

Rate of occurrence and size of threshold exceedance functionally
independent (Chavez-Demoulin and Davison 2005)

Equivalent to non-homogeneous Poisson point process model (Dixon
et al. 1998)

Smooth functions of covariates estimated using penalised B-splines
(Eilers and Marx 2010)

Slick linear algebra (c.f. generalised linear array models, Currie et al.
2006)
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Penalised B-splines

Physical considerations suggest model parameters φ, ρ, ξ and σ vary
smoothly with covariates θ, x , y

Values of (η =)φ, ρ, ξ and σ all take the form:

η = Bβη

for B-spline basis matrix B (defined on index set of covariate values)
and some βη to be estimated

Multidimensional basis matrix B formulated using Kronecker products
of marginal basis matrices:

B = Bθ ⊗ Bx ⊗ By

Roughness Rη defined as:

Rη = β′ηPβη

where effect of P is to difference neighbouring values of βη
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Penalised B-splines

Wrapped bases for periodic
covariates (seasonal, direction)

Multidimensional bases easily
constructed. Problem size
sometimes prohibitive

Parameter smoothness
controlled by roughness
coefficient λ: cross validation
chooses λ optimally
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Quantile regression model for extreme value threshold

Estimate smooth quantile φ(θ, x , y ; τ) for non-exceedance probability
τ of z (storm peak HS) using quantile regression by minimising
penalised criterion `∗φ with respect to basis parameters:

`∗φ = `φ + λφRφ

`φ = {τ
n∑

ri≥0

|ri |+ (1− τ)
n∑

ri<0

|ri |}

for ri = zi − φ(θi , xi , yi ; τ) for i = 1, 2, ..., n, and roughness Rφ
controlled by roughness coefficient λφ

(Non-crossing) quantile regression formulated as linear programme
(Bollaerts et al. 2006)
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Spatio-directional 50% quantile threshold
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Cross-validation for optimal roughness
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Poisson model for rate of threshold exceedance

Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

`∗ρ = `ρ + λρRρ

(Negative) penalised Poisson log-likelihood (and approximation):

`ρ = −
n∑

i=1

log ρ(θi , xi , yi ) +

∫
ρ(θ, x , y)dθdxdy

ˆ̀
ρ = −

m∑
j=1

cj log ρ(j∆) + ∆
m∑
j=1

ρ(j∆)

{cj}mj=1 counts of threshold exceedances on index set of m (>> 1)
bins partitioning covariate domain into intervals of volume ∆

λρ estimated using cross validation
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Spatio-directional rate of threshold exceedances
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Generalised Pareto model for size of threshold exceedance

Generalise Pareto model for size of threshold exceedance estimated by
minimising roughness penalised log-likelihood:

`∗ξ,σ = `ξ,σ + λξRξ + λσRσ

(Negative) conditional generalised Pareto log-likelihood:

`ξ,σ =
n∑

i=1

log σi +
1

ξi
log(1 +

ξi
σi

(zi − φi ))

Parameters: shape ξ, scale σ

Threshold φ set prior to estimation

λξ and λσ estimated using cross validation. In practice set λξ = κλσ
for fixed κ
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Return values

Return value zT of storm peak significant wave height corresponding
to return period T (years) evaluated from estimates for φ, ρ, ξ and σ:

zT = φ− σ

ξ
(1 +

1

ρ
(log(1− 1

T
))−ξ)

z100 corresponds to 100–year return value, denoted HS100

Alternative: estimation of return values by simulation under model
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Spatio-directional 100-year return value HS100
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Current developments

Non-stationarity

Spatio-directional, seasonal-directional and spatio-seasonal-directional

Computational efficiency

Sparse and slick matrix manipulations

Quantifying uncertainty

Bootstrapping, Bayesian (Nasri et al. 2013, Oumow et al. 2012)

Spatial dependence

Composite likelihood: model componentwise maxima
Censored likelihood: block maxima → threshold exceedances
Hybrid model: full range of extremal dependence

Interpretation within structural design framework

Non-stationary conditional extremes

Spline representations for parameters of marginal and conditional
extremes models (Jonathan et al. 2013)
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Types of extremal dependence
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Extremal dependence

Bivariate random variable (X ,Y )

χ = limx→∞ Pr(X > x |Y > x)

asymptotically independent if χ = 0

asymptotically dependent if χ > 0

Extremal dependence models:

Admit asymptotic independence.

But have issues with:

Thresholds
Covariates
High dimensions

Ideas from theory of regular variation (see Bingham et al. 1987)
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Limit assumption 1 on joint tail

(XF ,YF ) with Frechet marginals (Pr(XF < f ) = e−
1
f ).

Assume Pr(XF > f ,YF > f ) is regularly varying at infinity:

limf→∞
Pr(XF > sf ,YF > sf )

Pr(XF > f ,YF > f )
= s−

1
η for some fixed s > 0

This suggests:

Pr(XF > sf ,YF > sf ) ≈ s−
1
ηPr(XF > f ,YF > f )

Pr(XG > g + t,YG > g + t) = Pr(XF > eg+t ,YF > eg+t)

≈ e−
t
ηPr(XF > eg ,YF > eg )

= e−
t
ηPr(XG > g ,YG > g)

on Gumbel scale XG : Pr(XG < g) = exp(−e−g ).

η is known as the coefficient of tail dependence.

η and χ characterise extremal dependence between two variables.
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Limit assumption 2 on joint tail

Ledford and Tawn [1997] motivated by Bingham et al. [1987]

Assume model Pr(XF > f ,YF > f ) = `(f )f −
1
η

`(f ) is a slowly-varying function, limf→∞
`(sf )
`(f ) = 1

Then:

Pr(XF > f |YF > f ) =
Pr(XF > f ,YF > f )

Pr(YF > f )

= `(f )f −
1
η (1− e−

1
f )−1

∼ `(f )f 1− 1
η

∼ `(f )Pr(YF > f )
1
η
−1

At η < 1 (or limf→∞`(f ) = 0), XF and YF are As.Ind.!

η easily estimated from a sample by noting that LF , the minimum
of XF and YF is approximately GP-distributed:

Pr(LF > f + s|LF > f ) ∼ (1 +
s

f
)−

1
η for large f
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Characterising pairwise spatial dependence using η

Northern North Sea Central North Sea

Asymptotic independence if η < 1

Asymptotic dependence η = 1 valid locally only

Non-stationary region of asymptotic dependence
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Conditional extremes
Limit assumption on conditional tail
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Limit assumption on conditional tail

Model conditional (and hence joint) extremes of two variables

Heffernan and Tawn [2004]

Sample {xi1, xi2}ni=1 of variate X1 and X2

(X1,X2) transformed to (Y1,Y2) on standard Gumbel scale

Model (Y2|Y1 = y) = ay + ybZ for large y and positive dependence

Model (Y1|Y2 = y) similarly

Appropriate for most known distributional forms, but not all

Simulation to sample joint distribution of (Y1,Y2) (and (X1,X2))

Encompasses both asymptotic dependence and asymptotic
independence

Extends naturally (pairwise) to high dimensions

But: consistency of (Y2|Y2) and (Y1|Y2) not ensured
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Simple stationary conditional extremes
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Non-stationary conditional extremes

On Gumbel scale, extend with common covariate θ:

(Y2|Y1 = y , θ) = αθy + yβθ(µθ + σθZ ) for y > φθ(τ)

where:

φθ(τ) is a high non-stationary quantile of Y1 on Gumbel scale, for
non-exceedance probability τ , above which the model fits well

αθ ∈ [0, 1], βθ ∈ (−∞, 1], σθ ∈ [0,∞)

Z is a random variable with unknown distribution G , assumed
Normal for estimation
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South Atlantic Ocean sample

Single directional covariate. Three directional sectors identified by
consideration of fetch conditions, with differing sample characteristics
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South Atlantic Ocean parameter estimates
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South Atlantic Ocean return values

More at www.lancs.ac.uk/∼jonathan/NSCE13.pdf
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Spatial extremes
Modelling of component-wise maxima
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Component-wise maxima

Beirlant et al. [2004] is a nice introduction.

No obvious way to order multivariate observations.

Theory based on component-wise maximum, M.

For sample {xij}ni=1 in p dimensions:
Mj = maxni=1{xij} for each j .
M probably not a sample point!

P(M ≤ x) =
∏p

j=1 P(Xj ≤ xj) = F n(x)

Assume: F n(anx + bn)
D→ G (x)

Therefore also: F n
j (an,jxj + bn,j)

D→ Gj(xj)
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Homogeneity

Limiting distribution with Frechet marginals, GF

GF (z) = G (G←1 (e−
1
z1 ),G←2 (e−

1
z2 ), ...,G←p (e

− 1
zp ))

VF (z) = − logGF (z) is the exponent measure function
VF (sz) = s−1VF (z) homogeneity order -1
VF (1) is known as the extremal coefficient (and V (1) = 2− χ)

Homogeneity order -1 is equivalent to asymptotic dependence (or perfect
independence):

P(X > sf ,Y > sf ) = 1− (P(X > sf ) + P(Y > sf )

+ P(X ≤ sf ,Y ≤ sf ))

= (1− P(X ≤ sf ,Y ≤ sf ))− 2P(X > sf )

= (1− exp(−V (sf , sf )))− 2(1− exp(−1/(sf )))

≈ V (sf , sf ) = s−1V (f , f ) for large f

= s−1P(X > f ,X > f ) so that η = 1
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Composite likelihood for spatial dependence

Composite likelihood lC (θ) assuming Frechet marginals:

lC (θ) = −
n∑

i=1

n∑
j=1

log f (zi , zj ; θ)

f (zi , zj) = (
∂V (zi , zj)

∂zi

∂V (zi , zj)

∂zj
−
∂2V (zi , zj)

∂zi∂zj
)e−V (zi ,zj )

Lots of possible exponent measures with simple bivariate parametric
forms with pre-specified functions (e.g. of distance) whose parameters
must be estimated:

Smith (Spatial Gaussian process)
Schlather (Extremal Gaussian process)
Geometric Gaussian
Brown-Resnick model
Davison and Gholamrezaee
Wadsworth & Tawn (Hybrid Gaussian-Gaussian process)

See Davison et al. [2012].
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Smith process

V (zi , zj) =
1

zi
Φ(
α(h)

2
+

1

α(h)
log(

zj
zi

))

+
1

zj
Φ(
α(h)

2
+

1

α(h)
log(

zi
zj

))

with pre-specified α(h) = (h′Σ−1h)1/2 of distance h, where:

Σ =

(
σ2

1 σ12

σ12 σ2
2

)
and σ2

1, σ12 and σ2
2 must be estimated.
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Realisation from Smith process

For case σ2
1 = 20, σ12 = 15 and σ2

2 = 30. Standard Frechet marginals.

Philip Jonathan (Shell, Lancaster) Extremes with splines Hejnice 2013 47 / 51



Realisations: Schlather and geometric Gaussian processes

Schlather Geometric Gaussian
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Useable spatial extremes

Non-stationary spatial processes

parameterise in terms of covariates

Modelling of threshold exceedances more efficient than block maxima

censored likelihood

Cannot assume asymptotic dependence

hybrid model admits asymptotic dependence and asymptotic
independence

Computational efficiency
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