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Abstract

Extreme value theory provides asymptotically motivated methods for modelling the occurrences of extreme
values of oceanographic variables, such as significant wave height at a single location. Problems are often
multivariate or spatial in nature, where interest lies in the risk associated with joint occurrences of rare
events, e.g. the risk to multiple offshore structures from a storm event. There are two different classes
of joint tail behaviour that have very different implications: asymptotic independence suggesting that
extreme events are unlikely to occur together, and asymptotic dependence implying that extreme events
can occur simultaneously. It is vital to have good diagnostics to identify the appropriate dependence class.
If variables are asymptotically independent, incorrectly assuming an asymptotically dependent model can
lead to overestimation of the joint risk of extreme events, and hence to higher than necessary design
costs of offshore structures. We develop improved diagnostics for differentiating between these two classes,
which leads to increased confidence in model selection. Application to samples of North Sea sea-state
and storm-peak significant wave height suggests that tail dependence changes with wave direction and
distance between spatial locations, and that in most cases asymptotic independence seems to be the more
appropriate assumption.
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1. Introduction

Metocean and coastal engineers are generally interested in the estimation of design conditions for a specific
spatial location. Of primary concern is the estimation of return values for wind-, wave- and current-
related variables corresponding to a long return period. However, there are instances when the engineer
is concerned with characterising joint occurrences of rare events at different locations or multiple hazard
occurrence at a single location. Examples of the former type might include (i) risk to multiple offshore
facilities from a single cyclone or hurricane event, (ii) impact of a single storm surge event on multiple
coastal locations, and (iii) insurance risk to a moving vessel traversing an ocean basin. Examples of the
latter type include the combined risk of wind-, wave- and current-induced forces on a fixed structure, or
motions of a floating structure. In such circumstances, a description of the joint structure of extreme events
is necessary. This paper develops diagnostic methods for assessing the appropriate form of dependence
structure to model metocean data sets and explores the implications of getting this decision right and
wrong in application to significant wave height at neighbouring locations.

To help formulate the issues, consider the simplified example of two identically distributed random vari-
ables X and Y . For example, the random variables X and Y could represent significant wave height at
neighbouring locations. We are typically interested in cases where both variables are large together, i.e.,
we need to find the probability Pr{X > x, Y > x} for large x, where x could correspond to the 50-year
return level of each variable marginally. For large x, this joint probability will be small, so for studying
dependence between extremes, it is typical to focus on the conditional probability Pr{Y > x|X > x}, re-
cognising that Pr{X > x, Y > x} can be recovered from this conditional probability by multiplying by the
marginal probability Pr{X > x}. Two special cases of dependence structure between (X,Y ) correspond to
the variables being independent (which we term perfect independence) or perfectly dependent (i.e., X = Y
always). Then,

Pr{Y > x|X > x} =

{
Pr{Y > x} if perfect independence
1 if perfect dependence.

(1)

As x tends to the upper endpoint x∗ of the common marginal distribution of X and Y , the limiting
probability χ then will satisfy

χ = lim
x→x∗

Pr{Y > x|X > x} =

{
0 if perfect independence
1 if perfect dependence.

(2)

The chance of joint occurrence of extremes is completely different in these cases. We cannot assume
observations of variables, such as significant wave height at different locations, to be perfectly independent
nor perfectly dependent of one another. An occurrence of an extreme event at one location influences the
chance of an extreme event at a location in its neighbourhood. The most well known dependence model
is the multivariate normal distribution, or equivalently the Gaussian copula, which is widely used across
fields of empirical modelling, including spatial interpolation using kriging or Gaussian process regression.
Consideration of the properties of this bivariate distribution with correlation parameter ρP (where we use
the subscript P to denote the Pearson correlation coefficient) suggests an alternative form for Pr{Y >
x|X > x} for large x, which is intermediate to perfect dependence and perfect independence for all
0 < ρP < 1, but has χ = 0.

Hence, to model tail dependence reliably we need models which will account for the different possibilities
for how the conditional probability Pr{Y > x|X > x}, and its extensions for our metocean examples,
vary for large x. Clearly, models which capture intermediate forms between perfect independence and
perfect dependence are required, and we will explain that these correspond to two broad classes, with
either 0 < χ < 1 or χ = 0, termed asymptotic dependence and asymptotic independence, respectively. For
asymptotic independence, it is impossible for the most extreme events for both variables (X,Y ) to occur
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simultaneously. For asymptotic dependence, if X is extreme it is also possible for Y to be simultaneously
extreme. In theory, there are also cases where Pr{Y > x|X > x} decays to 0 faster than Pr{Y > x}
as x → x∗, corresponding to negative dependence between (X,Y ), but for our metocean examples this
typically does not occur. Hence, the key focus in the paper will be on positively dependent variables.

As we are interested in joint probabilities for large events, it is natural to look for asymptotic arguments
that provide guidance regarding the possible form that these probabilities can take. Extreme value theory
provides this framework for one variable. For example, although the distribution of a continuous random
variable can take any form, subject to weak convergence conditions, above a sufficiently high threshold,
peaks over threshold of this variable follow the generalised Pareto distribution approximately (Pickands,
1975). This motivates the adoption of a specific tail functional form which can be estimated, and from
which extrapolations to long return period events can be obtained. For metocean data this has been found
to provide a reliable method for return level estimation of a single variable. Furthermore, the parameters
of this distribution may be allowed to vary with one or more covariates, such as direction or season (e.g.,
Jonathan et al. 2008).

Unfortunately, analogous specific asymptotic results are not available from extreme value theory for the
joint distribution of extremes of two or more variables. For this reason, a number of different approaches,
none of which is completely satisfactory, have emerged for modelling multivariate and spatial extremes. In
the applied statistics literature popular methodologies are motivated by consideration of componentwise
maxima and regular variation (e.g., Coles and Tawn 1994; Cooley et al. 2012; Davis et al. 2013; Davison
et al. 2012; de Haan and de Ronde 1998). These lead to tractable models for joint extremes. However,
they require the assumption of asymptotic dependence between extremes of pairs of random variables, i.e,
χ > 0 (as defined in (2)).

Suppose that X and Y represent significant wave height at two different locations rX and rY , respectively.
Then if the distance dXY = |rY − rX | between these locations is small relative to the spatial extent of an
ocean storm, the assumption of χ > 0 may well be valid. However, as dXY increases, the assumption appears
increasingly untenable, since the same physical cause (i.e., a low-pressure field causing wind causing waves)
is increasingly unlikely to produce simultaneous extreme values of significant wave height at both locations
despite there being some dependence between observed values of X and Y . Thus, it seems reasonable
for these dXY that χ = 0 corresponding to asymptotic independence. If we continue to increase dXY ,
eventually the locations are so distant that the characteristics of X and Y cannot possibly be influenced by
the same physical cause. In this limit, we can say that X and Y exhibit perfect independence of extremes.

The difference between joint extremes estimated under asymptotic dependence and asymptotic independ-
ence assumptions can be very large. For example, for storm-peak significant wave height from a typical
location in North Sea application we present in Section 5, marginal extreme value analysis suggests that
the 100-year return level is approximately 15.5m and that this does not change much over neighbouring
sites. If a 100 year event occurs at one location, the median of the conditional distribution at a neighbour-
ing location will also be approximately 15.5m, under strong asymptotic dependence. However, under the
assumption of an asymptotically independent Gaussian process model with correlation parameter 0.8, the
median of the conditional distribution at the neighbouring location reduces to approximately 13.5m (see
Section 5.3 for details). In fact all quantiles of the conditional distribution reduce by approximately 2m; a
reduction of 2m in the conditional distribution is of considerable practical importance.

The majority of applicable models for multivariate and spatial extremes assume asymptotic dependence,
leading potentially to over-estimation of the risk of joint occurrences of extremes of X and Y if asymptotic
dependence is incorrectly assumed. On the other hand, if asymptotic independence is assumed when the
data are in fact asymptotically dependent, the risk of the extremes will be underestimated. Conservatism
in design is desirable, provided that the extent of conservatism is itself reasonable and well bounded.
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For extreme dependence modelling this conservatism may be unbounded. For instance, if the variables
are falsely assumed to be asymptotically dependent (with χ > 0) when they were actually perfectly
independent, then Pr{X > x, Y > x} can be over-estimated by the factor χ/Pr{X > x} → ∞ as x→ x∗.
This is an issue, as over-conservatism in some aspects of design can lead to increased risks in other aspects,
particularly when resources are constrained. If asymptotic dependence is not a reasonable assumption
for a particular application, alternative approaches admitting asymptotic independence must be used.
The conditional extremes model of Heffernan and Tawn (2004) and the hybrid model of Wadsworth and
Tawn (2012) are possibilities, but the field of modelling asymptotically independent spatial extremes is
considerably less well developed in general.

These risks of over- and under-design illustrate that we must justify the specific assumptions made concern-
ing extremal dependence in any metocean application. Therefore reliable diagnostic methods for identifying
between the asymptotic independence and asymptotic dependence classes of extremal dependence based
on a sample of data are required. Tawn and co-workers (e.g., Ledford and Tawn 1997; Heffernan and Tawn
2004; Wadsworth and Tawn 2013) have developed the description of asymptotic independence, and have
offered different characterisations. A number of diagnostic statistics for the form of extremal dependence
have been proposed (see e.g., Coles et al. 1999) and applied in metocean settings (see e.g., Eastoe et al.
2013). In ideal situations, these provide good guidance regarding the nature of extremal dependence in
play in a particular application. However, for a typical metocean application, where sample size might be
small, the distributions of X and Y vary with respect to multiple covariates, and are observed only with
error (either from a physical hindcast model or from observation), such diagnostics tend to be inconclusive.

This article attempts to refine the way diagnostics for extremal dependence are employed in practice, to
improve their interpretability. We develop improved diagnostics for differentiating between asymptotic
independence and dependence, which leads to increased assurance in model selection. In turn, we hope
this facilitates better understanding of the dependence of extremes of ocean environmental variables, so
that joint design conditions may be estimated with improved confidence. A key component of our method
is the novel idea to supplement measures of extremal dependence with a measure of the dependence for
the body of the data. This enables the assessment of extremal dependence in the light of the general
dependence and we find that it noticeably increases diagnostic performance.

The layout of the article is as follows: in Section 2 we summarise measures of asymptotic independence
and illustrate their value for a range of the widely used extremal models; in Section 3 we explore a range
of inference methods to aid the diagnostic process; in Section 4 we conduct a simulation study to illustrate
the performance of the diagnostic methods for a range of distributions and samples sizes; and in Section 5
we apply the methods to North Sea significant wave height data; show that the tail dependence changes
with wave direction and distance between spatial locations; and infer that in many cases the assumption of
asymptotic independence is more plausible, and in all cases that the presence of asymptotic independence
cannot be dismissed. In Section 6 we conclude with a discussion.

2. Extremal dependence

2.1. Different dependence measures for typical and extreme value data

In standard statistical analysis the Pearson correlation coefficient ρP is often used to determine the depend-
ence between two variables. A weakness of this measure is that it is not invariant to non-linear monotone
increasing transformations of the marginal variables. For oceanographic applications this means we have
different correlations between wave heights at two locations and their associated wave powers. To overcome
this issue we use Spearman’s rank correlation coefficient ρ (Spearman, 1904), but we could have also used
the broadly equivalent Kendal τ . In the context of oceanographic variables it is reasonable to interpret a
value of ρ close to 0 (and 1) as indicating near independence (and near perfect dependence) respectively.
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Spearman’s rank correlation measures dependence for the body of the distribution, i.e., typical values, as
all observations are given equal weighting in the assessment of dependence. When dealing with extremes,
the dependence can no longer be measured using any form of correlation estimate, as the dependence
in the body can be quite different from the extremal or tail dependence. This property is illustrated in
Sections 4 and 5. A nice illustration of this feature arises in time series: a Gaussian autoregressive process
has temporal dependence as measured by the autocorrelation function but no tail dependence as measured
by χ (Sibuya, 1960); whereas the reverse holds for the ARCH and GARCH processes (de Haan and Resnick
(1989), Laurini and Tawn (2012)).

Therefore in Section 2.2 we introduce some measures of dependence structure specific to extreme values and
illustrate these on different probabilistic models for spatial processes. As there is limited information in the
extreme values, there is typically not sufficient evidence from these extremal dependence measures for them
to be effective diagnostic tools when identifying the form of the extremal dependence, e.g., whether the
processes the data are observed on are asymptotically dependent or asymptotically independent. Therefore,
the novel approach we take in this paper is to supplement these measures of extremal dependence with ρ,
measuring dependence of typical values. The combined information from these two dependence measures
improves diagnostic performance for extremal dependence, as ρ provides a context in which to assess
estimated values of extremal dependence.

2.2. Measures of Extremal Dependence

There exist several summary statistics for extremal dependence, see Coles et al. (1999), Beirlant et al. (2004)
and Wadsworth and Tawn (2013). Here we focus on four measures which identify different characteristics
of the joint tail for asymptotically independent and asymptotically dependent distributions.

In Section 1 we introduced χ, with 0 ≤ χ ≤ 1, as a measure of extremal dependence for variables which
are identically distributed. This measure holds more generally when X and Y have marginal distribution
functions FX and FY , and associated inverses F−1X and F−1Y , respectively, with

χ = lim
q→1

Pr{Y > F−1Y (q)|X > F−1X (q)} = lim
q→1

Pr{FY (Y ) > q|FX(X) > q}. (3)

The interpretation of χ is as in Section 1. From an oceanographic context this corresponds to the the limit
of the probability that one variable exceeds its T year return level given that the other variable exceeds its
T year return level as T →∞, thus there is a greater risk for metocean designs the larger the value of χ.

All measures of extremal dependence can be specified on general and different marginal forms, like for χ,
but it is often more simple mathematically to present them for identical marginal distributions; compare
expressions (2) and (3). The concept of copulas (Nelsen, 2006), shows there is no loss of generality in
presenting extremal measures for a specific marginal distribution choice. Specifically when presenting the
measure for variables X̃ and Ỹ with common marginal distribution choice F , then we need to transform
(X,Y ) to (X̃, Ỹ ), by

X̃ = F−1{FX(X)} and Ỹ = F−1{FY (Y )}. (4)

To apply this transformation in practice, we estimate FX and FY using the empirical distribution functions.
Alternatively, we could replace the empirical distributions in the upper tail with a generalised Pareto
distribution (Coles and Tawn, 1991). Various measures are more simple to present mathematically for a
specific marginal choice, which then dictate the choice of common distribution function F . Specifically
in this paper we use Pareto margins, F (x) = 1 − x−1 for x ≥ 1 with (X̃, Ỹ ) then denoted by (XP , YP ),
Fréchet margins, F (x) = exp(−x−1) for x > 0 with (X̃, Ỹ ) then denoted by (XF , YF ), and Laplace margins,
F (x) = exp(x)/2 for x 6 0 and 1 − exp(−x)/2 for x > 0 with (X̃, Ỹ ) then denoted by (XL, YL). Note
that Pr{XF > x} = 1 − exp(−x−1) = x−1 + x−2 + O(x−3) ≈ x−1 = Pr{XP > x} for large x. Hence,
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the marginal tails of the Pareto and Fréchet distributions are approximately equivalent and so these two
margins can be used inter-changeably when focusing on the upper tail.

The measure χ has limitations: all asymptotically independent variables have χ = 0; it does not provide
information about the dependence at levels of interest, e.g., at the 50 year return level; and it is hard
to estimate as it involves an extrapolation. In particular, there could be stronger dependence at the 50
year level for asymptotically independent variables than for asymptotically dependent variables. Therefore
we need a more refined measure than χ. The second extremal dependence measure χ(x) is presented for
Pareto marginal variables, with

χ(x) = Pr{YP > x|XP > x} for x > 1 (5)

and χ = limx→∞ χ(x). On this scale x corresponds to the return period on the marginal scale, so x = 50
is the one in every 50 observations return level. It follows from Section 1 that for positively dependent
variables x−1 6 χ(x) 6 1, the bigger the value of χ(x), for large x, the stronger the level of extremal
dependence.

A complication with χ(x) is that it is a function over x > 1 and so not parsimonious. Ideally what is
required is a formulation for how χ(x) behaves for large x. Ledford and Tawn (1996) prove that under
weak conditions

Pr{XP > x, YP > x} = L(x)x−1/η for x > 1, (6)

where η ∈ (0, 1] is termed the coefficient of the tail dependence, and L is any positive slowly varying
function at infinity, i.e.,

lim
t→∞
L(tx)/L(t) = 1, (7)

provided the derivative with respect to x of the right hand side of expression (6) is non-negative for all
x > 1. This formulation gives that

χ(x) = L(x)x−(1−η)/η for x > 1. (8)

From expression (8) the relevance of η is apparent. When the variables (XP , YP ) are perfectly independent
(perfectly dependent) expression (1) shows that η = 1

2 and L(x) = 1 (η = 1 and L(x) = 1), respectively.
More generally, when η = 1 and L(x) → c with 0 < c ≤ 1, it follows that χ = c and the variables are
asymptotically dependent. Furthermore, χ(x) converges to c slower than any power of x for large x, and
hence, for practical cases, can be viewed as constant for large x, i.e., χ(x) = c for x > u for some large u.
When 0 < η < 1 then χ(x) → 0 as x → ∞, so χ = 0 and the variables are asymptotically independent.
However, the value of η provides additional information about the level of asymptotic independence as
η describes the rate of convergence to 0, and therefore is key in determining the difference between χ(x)
and χ. Specifically 1

2 < η < 1 corresponds to positive extremal dependence and 0 < η < 1
2 to negative

extremal dependence. An example when 0 < η < 1 occurs is for the Gaussian dependence structure, with
η = (1 + ρP )/2, where ρP is the Pearson correlation coefficient, so 0 < ρP < 1 implies 1

2 < η < 1, i.e., all
non-perfectly dependent Gaussian dependence structure variables are asymptotically independent.

Although the characterisation of Ledford and Tawn (1996) provides a more concrete formulation for the
structure of asymptotic independence, it is restricted to situations where both variables are large. A more
general formulation, based on slightly different assumptions, has been proposed by Heffernan and Tawn
(2004) and found to have substantial uses in metocean applications (see e.g., Jonathan et al. 2013 and
Eastoe et al. 2013). The formulation is most apparent in Laplace margins, i.e., we have (XL, YL), with the
connection for large values of these variables with the Pareto variable case being that XL ≈ log(XP /2) and
YL ≈ log(YP /2). Under weak assumptions, a combination of Heffernan and Tawn (2004) and Heffernan
and Resnick (2007) show that there exist values α and β, with −1 6 α 6 1, 0 6 β < 1, for x > 0 and
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−∞ < z <∞, such that

lim
u→∞

Pr

{
YL − αXL

Xβ
L

< z,XL − u > x

∣∣∣∣∣XL > u

}
= exp(−x)G(z), (9)

where G is a non-degenerate distribution function. It follows that α, β and G jointly determine the
form of extremal dependence. Here, if α = 1 and β = 0 the variables are asymptotically dependent with
χ =

∫∞
0 [1−G (−t)] exp(−t)dt > 0, but otherwise χ = 0. Specifically, the form of asymptotic independence

is given by

χ(x) = Pr{YL > xL|XL > xL}

=

∫ ∞
0

[
1−G

(
xL − α(xL + t)

(xL + t)β

)]
exp(−t)dt, (10)

where xL = log(x/2). For statistical purposes, Heffernan and Tawn (2004) assume that limit (9) holds

exactly for a large finite u. As a consequence, conditionally on XL > u, XL − u and (YL − αXL)/Xβ
L are

independent random variables, and conditionally on XL, with XL > u, we have

YL = αXL +Xβ
LZ, (11)

where Z has mean µ and variance σ2, with distribution function G. It follows that E[YL|XL] = αXL+Xβ
Lµ

and Var(YL|XL) = X2β
L σ2 for XL > u. Then maximum likelihood methods can be used, under a working

assumption of normality for G, to estimate α̂, β̂, µ̂ and σ̂. Rearranging (11) gives

Ẑ =
YL − α̂XL

X β̂
L

, for XL > u,

and using the empirical distribution of such Ẑ’s gives an estimate of the distribution G, i.e., we estimate
the distribution of Z using all pairs (XL, YL) with XL > u.

2.3. Extremal Dependence Models

Introduction

We will consider three classes of spatial processes: max-stable process, Gaussian processes and inverted
max-stable processes. Max-stable processes can be asymptotically dependent or perfectly independent
only. In contrast, Gaussian processes and inverted max-stable processes are asymptotically independent
always. The max-stable family is the most studied asymptotically dependent model, but it has no finite
parametrisation. To illustrate some of the max-stable process features we will present a range of parametric
sub-models that are widely used in applications. For each of the three classes of processes we will present
the dependence measures χ, χ(x) for large x, η and α and β to reveal different features of their dependence
structures. These processes are also used in Section 4 in a simulation study for assessing the performance
of the estimation methods of Section 3.

Max-stable Processes

Max-stable processes arise as the class of marginally non-degenerate limit distributions for componentwise
maxima of independent and identically distributed replicates of a spatial process. For such processes all
finite dimensional distributions are multivariate extreme value distributions (Beirlant et al. (2004), Ch. 8).
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Max-stable fields are typically presented via the following constructive approach (see e.g., de Haan (1984);
Schlather (2002), de Haan and Ferreira (2006), Ch. 9).

For a max-stable process on the space S, let {ri}, i = 1, . . ., be the points of a Poisson process on (0,∞),
with intensity dr, and define the spectral function to be {W (s) ≥ 0; s ∈ S}, a continuous random function
on S, satisfying E{W (s)} = 1 for all s ∈ S. Then if the processes Wi(·) for i = 1, . . . are independent and
identically distributed copies of W (·), then

XF (s) = max
i
Wi(s)/ri for s ∈ S

is a max-stable random field with unit Fréchet margins and d-dimensional distribution function

Pr{XF (s1) ≤ x1, . . . , XF (sd) ≤ xd} = exp

(
E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}])
for xi > 0, i = 1, . . . , d.

To motivate this representation from a practical point of view, we can view the ith event having magnitude
1/ri, and event profile/shape over space S of Wi(·), so the ith event for the process is Wi(s)/ri for s ∈ S.
Thus, XF (s) is the componentwise maxima of these events at location s ∈ S. The dependence structure
of the max-stable process is determined by the form of the exponent function, V ,

V (x) = E

[
max

{
W (s1)

x1
, . . . ,

W (sd)

xd

}]
,

with x = (x1, . . . , xd) for all x and all d. Here 1 ≤ V (x) ≤ d, with the lower and upper bounds achieved
when the variables are perfectly dependent and perfectly independent respectively. Key to the properties
of max-stable processes is homogeneity of order −1 of V , i.e., V (nx) = n−1V (x) for all n and x. Thus

Pr{XF (s)/n ≤ x(s), s ∈ S}n = Pr{XF (s) ≤ x(s), s ∈ S},

i.e., XF (·) and the maximum of n independent copies of XF (·)/n have the same distribution.

All max-stable processes are pairwise asymptotically dependent or perfectly independent. Dropping the
index notation for sites, we have the joint survivor function of (XF , YF ) = (XF (s1), XF (s2)) as

Pr{XF > x, YF > x} = 1− 2 exp(−1/x) + exp{−V (x, x)}
= 1− 2 exp(−1/x) + exp{−V (1, 1)/x}

=
2− V (1, 1)

x
+

[
V (1, 1)2

2
− 1

]
/x2 +O(x−3), as x→∞. (12)

It follows that

χ(x) = 2− V (1, 1) +

[
V (1, 1)2

2
− 1

]
/x+O(x−2), as x→∞.

Hence, χ = 2−V (1, 1) > 0 if V (1, 1) < 2, i.e. the variables are asymptotically dependent when they are not
perfectly independent, and χ = 0 when V (1, 1) = 2, i.e., the variables are only asymptotically independent
when they are perfectly independent. For the bivariate extreme value distribution with V (1, 1) < 2, η = 1,
α = 1 and β = 0, with G(z) = −V1(1, ez), where V1(·, ·) is the first derivative of V (·, ·) (see Heffernan and
Tawn (2004), Section 8.4).

Typically, it is difficult to derive V explicitly, and this is the limiting factor in finding tractable max-stable
models. There exists a slowly growing set of models for which the bivariate distributions are available; see,
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e.g., Smith (1990), Schlather (2002), Kabluchko et al. (2009), Davison et al. (2012) and Wadsworth and
Tawn (2012). We list the details of the most widely used below:

Smith process: Smith (1990) takes Wi(s) = φd(s−ti,Σ), where d = dim(S), φd(·,Σ) is the d-dimensional
multivariate normal density function where the vector mean is 0 and variance is Σ, and where ti have
measure dt over Rd. For this model the pairwise exponent measure for locations o, the origin, and h is

Vh(x, y) = x−1Φ

{
ψ(h)

2
+

1

ψ(h)
log
(y
x

)}
+ y−1Φ

{
ψ(h)

2
+

1

ψ(h)
log

(
x

y

)}
, (13)

where x > 0 and y > 0, Φ is the standard normal distribution function, and ψ(h) =
√
hTΣ−1h is the

Mahalanobis distance between h and o. It follows that the level of asymptotic dependence at separation h
is χh = 2[1−Φ{ψ(h)/2}] for which χh → 0 as h→∞, and χh → 1 as h→ 0, spanning the range of possible
asymptotic dependencies. At all finite separations of the locations we have asymptotic dependence.

Schlather process: Schlather (2002) took Wi(s) = max{0, Zi(s)} where the Zi(s) are independent replic-
ates of a stationary process Z(s) on Rd, satisfying E[max{0, Z(o)}] = 1, where o denotes the origin. When√

2πZ(s) is a stationary Gaussian process with mean zero, variance 2π and correlation function ρ(h), then
the pairwise exponent measure for locations o, the origin, and h is

Vh(x, y) =
1

2

(
1

x
+

1

y

)
×

(
1 +

[
1− 2

(ρ(h) + 1)xy

(x+ y)2

]1/2)
,

where x > 0 and y > 0. Here χh = 1− {[1− ρ(h)]/2}1/2. When d = 2, because ρ(h) is a positive definite
function, χh ≥ 0.162. This means that the model cannot account for processes with low asymptotic
dependence at any separation.

Brown-Resnick process: Brown and Resnick (1977) let W (s) = exp{ε(s) − γ(s)}, where ε(s) is a
fractional Brownian process with semivariogram γ(h) = (h/c)α, 0 < α 6 2, c > 0, h > 0, and ε(0) = 0
almost surely. Here χh = 2[1− Φ{{2γ(h)}1/2/2}]. A special case is the Smith model when α = 2.

Extremal-t process: Demarta and McNeil (2005) assume that

W (s) =
√
π2−ν/2+1[Γ{(ν + 1)/2}]−1 max{ε(s), 0}ν ,

where ν > 1, Γ is the Gamma function, and ε(x) is a stationary Gaussian random field with mean zero
and correlation function ρ(h). The case when ν = 1 corresponds to the Schlather process. The level
of asymptotic dependence between locations o and h is χh = 2[1 − Tν+1(

√
(ν + 1)[1− ρ(h)]/[1 + ρ(h)])],

where Tν denotes the cumulative distribution function of a student-t random variable with ν degrees of
freedom.

Gaussian Processes

Gaussian processes are the simplest and most well-known asymptotically independent processes. Let
{Z(s), s ∈ S} be a stationary Gaussian process with E{Z(s)} = 0, Var{Z(s)} = 1 and Corr{Z(o), Z(h)} =
ρ(h). Define

XF (s) = −1/ log Φ(Z(s)),

then XF (s) has Fréchet margins and a Gaussian process copula. For this process, χh = 0 for all h 6= o,
and ηh = {1 + ρ(h)}/2, where ηh is the measure in (6) for the process at the pair of sites o and h. For
large x we have

χh(x) = Lh(x)/x1/ηh ,
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with Lh a slowly varying function. Furthermore, in the Heffernan and Tawn formulation, the dependence
parameters (α, β) for the process at the pair of sites o and h are

αh = (ρ(h))2 sign (ρ(h)) and βh = 1/2.

The limiting conditional distribution Gh (corresponding to G in equation (9)) is Gaussian with variance
2ρ(h)2[1− ρ(h)2]. This shows that simply using a Gaussian copula for asymptotically independent cases is
not a sufficiently general approach as both βh and Gh have restrictive forms relative to the more general
Heffernan and Tawn class.

Inverted Max-Stable Processes

Wadsworth and Tawn (2012) introduce an alternative class of asymptotically independent processes - the
inverted max-stable processes. Essentially, these processes have the same copula as max-stable processes,
but with the copula inverted, so that lower tail dependence translates to upper tail dependence, and vice
versa. Formally, if XMS(·) and XIMS(·) are a max-stable process and an inverted max-stable process,
respectively, both with Fréchet margins, then

XIMS(s) = −1/ log[1− exp{−1/XMS(s)}], for s ∈ S. (14)

This process has χh = 0 for all h 6= o, and

χh(x) = x−1/Vh(1,1) +O(x−1−1/Vh(1,1)) for large x,

so ηh = 1/Vh(1, 1), where Vh is the exponent measure for XMS(o) and XMS(h). The form of the conditional
extremes parameters (αh, βh) is complicated in general, see Papastathopoulos and Tawn (2015). We focus
in particular on the example where V (x, y) corresponds to the logistic model (Tawn, 1988)

V (x, y) =
(
x−1/γ + y−1/γ

)γ
where x > 0, y > 0 and γ ∈ (0, 1], with γ → 1 implying independence and γ → 0 implying perfect depend-
ence. Then the joint distribution function for the inverted bivariate logistic extreme value distribution
is

F (x, y) = exp(−1/x) + exp(−1/y)− 1 + exp

{
−

[(
−1

log(1− e−1/x)

)−1/γ
+

(
−1

log(1− e−1/y)

)−1/γ]γ}
.

(15)
For this distribution η = 2−γ , α = 0 and β = 1− γ.

3. Estimation

In this section we introduce several methods for estimating the dependence measures described in Section 2.
The performance of these methods will be explored in Section 4. Our particular focus is on the estimation
of η and χ(x); the former as it gives a single number summary indicating how close the joint tail is to
asymptotic dependence, and the latter as it provides a clear picture of the implications of the nature of
the extremal dependence on actual joint occurrences. We base our estimation of η on methods of Ledford
and Tawn (1996), and propose new models and constraints. Equations (8) and (10) present different
formulations for χ(x); we present inference based on both of these.
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3.1. Estimating η

To estimate the tail dependence given in representation (6) it is useful to define T = min(XP , YP ) and
note that

Pr{T > x} = Pr{min(XP , YP ) > x}
= Pr{XP > x, YP > x}
= L(x)x−1/η for x > 1. (16)

Thus, 0 < η ≤ 1 is the tail index of the variable T . This means that, even though dependence is a
bivariate feature, univariate techniques can be used to estimate η simply by using data on T constructed
from (XP , YP ). To estimate η using the tail form (16), we need to make some modelling assumptions about
the positive slowly varying function L(x) above a high threshold u, in addition to the property (7) and
expression (16) representing a valid survivor function. In previous studies the only constraint imposed when
parametric models have been specified for L(x) for x ≥ u is that 0 < Pr{T > u} ≤ 1, so 0 < L(u) ≤ u1/η.
However, from conditional probability (8) we have the stronger condition 0 < L(u) ≤ u(1−η)/η. For the tail
of T to have a density fT (x) > 0 for x > u, we also require that

L(x) > ηxL′(x) for all x ≥ u.

Possible choices for L(x), for x > u, that have been suggested in the past are:

L1(x) = c (17)

L2(x) = c+ dx1/η−2 (18)

L3(x) = λ

[
x

(
1 +

η(x− u)

σ

)]−1/η
. (19)

Model (17) leads to the Hill estimator for η and model (19) corresponds to a generalised Pareto tail with
the shape η > 0, scale σ > 0 and threshold exceedance rate 0 < λ < 1. In contrast, the two-term
model (18) attempts to capture a natural second order decay rate with the tail cx−1/η + dx−2, so for this
to be the second term, we additionally require η > 1/2, corresponding to positive extremal dependence.
Our constraints impose that 0 6 c 6 u(1−η)/η for model (17), and cu−(1−η)/η + du−1 6 1 and if d < 0 that
c > 2η|d|u−2+1/η for model (18). Additionally, we imposed that η must be in the range (0, 1].

The models given above can be fitted using a censored likelihood approach. We take the likelihood to be

L(θ) =

{
nu∏
i=1

fT (ti)

}
Pr{T 6 u}n−nu , (20)

where θ is the vector parameter for the tail of T , T = min(XP , YP ), nu is the number of points above
the threshold u, and t1, . . . , tnu is an enumeration of the values of T > u. We use constrained maximum
likelihood to impose our restrictions on the parameter space when estimating θ = (c, η), θ = (c, d, η)
or θ = (λ, σ, η) for models (17), (18) and (19), respectively. For model (17) analytical estimates can be
obtained

θ̂ = (ĉ, η̂) =

(
nu
n
u1/η̂,min

{
1

nu

nu∑
i=1

log

(
ti
u

)
, 1

})
.

The other two models require constrained numerical maximisation of the likelihood to obtain parameter
estimates as no tractable solutions exist.
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Simply using the likelihood function doesn’t exploit knowledge about the processes involved, e.g., they
are positively dependent in the extremes, nor our caution in the inference about being conservative from
the outset, i.e., expecting the extremal dependence structure to be more like asymptotic dependent than
asymptotic independence prior to seeing data. To incorporate this information it is natural to adopt
a Bayesian framework to the inference. Although much work (see e.g., Lee 2012) has been undertaken
on selecting priors to represent our lack of knowledge (i.e., non-informative priors), less work exists for
guiding the incorporation of informative prior knowledge. A key development in the latter has been
through the approach of Simpson et al. (2014). They introduce the penalised complexity (PC) prior as a
way of constructing prior distributions for situations where there is a natural nested structure in the model
components; i.e., there is a more flexible model that is an extension of a base model. PC priors penalise
the complexity induced by deviating from the simpler base model. For our context, a natural base model is
asymptotic dependence and the more flexible model covers both asymptotic independence and dependence
parametrised by η. Focusing on exceedances of the threshold u by T and adopting model (17) for L(x),
the base model is

g(x) =
u

x2
, x > u,

and the more flexible model is

f(x) =
u1/η

ηx1/η+1
, x > u, 0 < η 6 1, u > 0.

So, f(x) = g(x) when η = 1. The penalised complexity prior for η (derived in Appendix A) is then

π(η;λ) =
λ(1− η) exp

(
−λ
√
−2 log η + 2(η − 1)

)
η
√
−2 log η + 2(η − 1)

, for 0 < η ≤ 1,

where the parameter λ > 0 controls the shape of the prior. The value of λ determines the strength of the
prior belief that a model close to an asymptotically dependent model is appropriate to the data. In the
studies in this paper we chose λ such that π(η > 0.5;λ) = 0.99, which essentially ensures positive extremal
dependence. From this it follows that λ = 7.409. We use this prior with the likelihood given in (20) to
obtain a maximum a posteriori (MAP) estimate of η. Although the prior is only presented for model (17),
a similar prior form is given in Kereszturi (2016) for model (18).

3.2. Estimating χ(x)

Though it is possible to estimate χ(x), defined by probability (5), empirically, this restricts estimates to
x in the range of the data. To estimate beyond the data we need to use a model; here we use asymptotic
forms (8) and (10).

Using the Ledford and Tawn model (8), with estimates η̂ and L̂(x) for each of the models (17)-(19),
substituting the maximum likelihood estimates of the parameters, gives

χ̂i(x) ≈ L̂i(x)

x1/η̂−1
, for x > u, i = 1, 2, 3. (21)

Now consider inference for χ(x) using the conditional extremes model (9), with χ(x) given by the integral
expression (10). The simplest way to evaluate this integral is through Monte Carlo methods using estimated
values α̂, β̂ and Ĝ of α, β and G, as shown in the algorithm below.
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Algorithm 1: Algorithm for Monte Carlo evaluation of χ(x) using conditional extremes model

1 Simulate XL above xL = log(x/2) as XL = xL + v, where v is a realisation of an Exponential(1)
random variable;

2 Simulate Z from Ĝ independently of XL;

3 Set YL = α̂XL + (XL)β̂Z;
4 Repeat steps 1-3 m-times;
5 Set χ̂HT (x) as the proportion of the m simulated pairs (XL, YL) with YL > xL.

4. Simulation study

Here we compare different methods for the estimation of η and χ(x) presented in Section 3 for samples
from asymptotically dependent and asymptotically independent models given in Section 2.3. We further
investigate how sample size and threshold choice affect estimation.

4.1. Design

Simulation processes

We simulate samples from the max-stable Smith, Schlather, Brown-Resnick and extremal-t processes, the
Gaussian process, and from the inverted logistic bivariate extreme value distribution.

Simulating from a max-stable process is relatively straightforward; for details, see Schlather (2002). In
this paper we used the SpatialExtremes package in R (Ribatet 2008), which gives samples on Fréchet
margins that can then be transformed to the desired margins using the probability integral transform. We
simulated from the processes over 10 equally spaced locations on a straight line. For the Smith process,
we set Σ = {σij} with σ11 = σ22 = 2 and σ12 = σ21 = 0, in order to give a good range of Spearman’s ρ on
(0,1) between pairs of locations. For similar reasons, we simulated the Schlather process with correlation
function ρP (h) = exp(−h/4) and the Brown-Resnick process with semivariogram γ(h) = exp(−h/0.8). For
the extremal-t simulation, the correlation function used was ρP (h) = exp(−h/3) with ν = 5 degrees of
freedom.

The Gaussian process samples were simulated over 15 equally spaced locations on a line, with a distance
of one unit between the closest sites. The process has correlation function ρP (h) = e−λh, where h is the
distance between two locations, and λ was chosen such that ρP (1) = 0.6. Hence, ρP (mh) = ρP (h)m, for
m = 1, . . . , 15, leading to a process at the observed sites being a first order Markov process. We generated
the samples using the mvtnorm package in R (Genz et al. 2014). The chosen combination of number of
sites and first order dependence parameter λ ensures a good coverage of the range (0,1) for Spearman’s ρ.

Samples from the inverted logistic distribution were obtained by simulating from the bivariate extreme
value distribution using the evd package in R (Stephenson 2002), and then inverting the lower tail of this
using (14). We simulated over 10 equally spaced locations on a line, and the dependence parameter γ was
chosen such that a good range of Spearman’s ρ is obtained over (0,1).

General behaviour of η and χ(x) with ρ

First we explore how values of η and χ(x) link to Spearman’s ρ for the different processes we have introduced
above. Here we evaluate each of these properties using estimates obtained from replicates of very large
samples.

Figure 1 illustrates the relationship between median estimates for η and χ(x) and values for ρ from 1000
realisations of samples of size 106 from each of the processes, with η estimated using model (19) with
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threshold probability q = Pr{T 6 u} = 0.99, and χ(x) estimated empirically using equation (5) with
x = 100. The point-wise (2.5%, 97.5%) uncertainty band is also shown. Here ρ̂ denotes the median
estimate of ρ over the 1000 sample realisations. The width of the 95% confidence interval for ρ̂ is at most
0.01 for this large sample size, so the ρ estimates are very precise. The relationship between η̂ and ρ̂ is
very similar for all asymptotically dependent max-stable processes, as is the relationship between χ̂(x) and
ρ̂. The behaviour of the asymptotically independent Gaussian process and inverted logistic distribution
is clearly different for both η̂ with ρ̂ and χ̂(x) with ρ̂. However, for asymptotic dependence, the known
limiting value of unity for η is only achieved (approximately) for max-stable processes with ρ̂ exceeding
0.2. Similarly, for asymptotic independence, the known limiting value of zero for χ(x) is never achieved
for either the Gaussian process or inverted logistic distribution for our choices of x. This suggests that
relying purely on sample estimates for η and χ(x) approximating limiting values, even for large samples,
is not a useful diagnostic for extremal dependence. However, the obvious differences in behaviour between
estimates of η with ρ, and χ(x) with ρ suggest that distinction between asymptotic dependence and
asymptotic independence is possible.

[Figure 1 about here.]

We confirmed by simulation that the functional relationships between η and ρ, and χ(x) and ρ, are not
strongly dependent on the values of model parameters for a specific model. The results we present in the
remainder of this section are therefore effectively independent of the model parameter specification.

Estimators, sample sizes and thresholds

We investigate the performance of the set of estimators for η and χ(x) for samples from different processes,
with different sample sizes and threshold choices. Since the characteristics of all max-stable models (for
given sample size and threshold) are found to be very similar, we choose here to illustrate their behaviour
using results for the Smith process only; corresponding results for other max-stable processes are given in
Kereszturi (2016).

In Sections 4.2 and 4.3, we examine the performance of different estimators for η and χ(x), respectively,
for samples from the Smith max-stable process and the Gaussian process. In Section 4.4, we assess the
effect of sample size on estimates for η and χ(x), for samples from the Smith and Gaussian processes, and
the inverted logistic distribution. We also consider in Section 4.4 the effect of the threshold probability q
and level x on estimates for η and χ(x), respectively, for these samples.

We consider three sample sizes, motivated by the North Sea application discussed in Section 5: a large
sample with n = 106 observations (probably unrealistically large for typical metocean applications, but
useful to assess large sample performance), and two more realistic sample sizes of n = 58585 (medium size,
equivalent to the size of the sea-state significant wave height sample), and n = 916 (small size, equivalent
to the size of the storm-peak significant wave height sample). For each sample size, we adjust the threshold
probability q and the level x to achieve acceptable numbers of observations for estimation of η and χ(x),
respectively. For the large sample, high threshold probabilities and levels are chosen, whereas for the more
realistically-sized medium and small samples we are forced to choose lower threshold probabilities.

The key feature of figures shown in this section is the degree of agreement between sample estimates for
η and χ(x) and their known limiting behaviour given the underlying process (or distribution) used to
simulate the sample. For asymptotically dependent samples, we expect estimates for η close to unity, and
estimates for χ(x) bounded away from zero even for large x. For asymptotically independent samples, we
expect estimates for η less than unity, and estimates for χ(x) approaching zero for large x. We expect
that agreement between sample estimate and limiting behaviour further depends on the overall extent of
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dependence in the full sample, hence we plot these estimated extremal dependence features against the
Spearman’s rank correlation ρ.

4.2. Comparison of estimation methods for η

We denote the estimators of η given by the censored likelihood approach (20) for the models (17)-(19) by
η̂1, η̂2 and η̂3 respectively. We also estimated models (17) and (18) with the Bayesian penalised complexity
(PC) prior described in Section 3.1. However, we found that the estimates were effectively unchanged
unless very strong priors were used. Hence, we only show these results for the smallest sample size, where
the prior is not dominated by the sample likelihood. See Kereszturi (2016) for the full results.

We compare estimators for the following combinations (n, q) of sample size n and threshold probability q:
(106, 0.99), (58585, 0.90) and (916, 0.90). For each sample size, 1000 replicate samples are generated from
each of the Smith and Gaussian processes to allow estimation of 2.5% and 97.5% quantiles of the sampling
distribution of the estimator of η. Since ρ is relatively precise to estimate, with the width of the 95%
confidence interval around ρ̂ at most 0.01 for the large sample and at most 0.1 for the small sample, we
use the median of ρ̂ over the 1000 sample replications. Figure 2 shows estimates for η using the different
methods, represented by lines of different colour, for the large sample from the Smith (see Figure 2(a))
and Gaussian processes (see Figure 2(b)), plotted against Spearman’s ρ.

The Gaussian process is asymptotically independent, with η = (1+ρP )/2 < 1. The estimates in Figure 2(b)
are consistent with this. There is no material difference between the means of the sampling distributions for
the different methods for estimating η here. However, note that the variance of the sampling distributions
is slightly larger for model (18). This is likely due to the additional term in the tail model.

The Smith model is asymptotically dependent over all distances, so the true value of η is unity for all pairs.
Whilst there is some difference between the different estimation methods, all estimators underestimate η
for asymptotically dependent samples when dependence is low and the sample size is relatively small (see
Figure 2(a)). All η estimators are close to unity for large ρ̂, but η̂2 and η̂3 seem to perform better than η̂1
for pairs with lower ρ̂, as these better capture the higher order features of the tail decay.

The following argument helps understand why η estimates start to perform poorly for the Smith process
with weak dependence. For the Smith process, using expression (12), we know that

F̄T,h(x) = Pr(min(X(s), X(s+ h)) > x)

= Pr(X(s) > x,X(s+ h) > x)

=
(2− 2Φ{a(h)/2})

x
+

2Φ2{a(h)/2} − 1

x2
+O(x−3), for large x, (22)

where Φ is the standard normal distribution function and a(h) is the Mahalanobis distance between h and
the origin o. For two locations with Spearman’s ρ approximately equal to 0.1, the upper tail in equation
(22) becomes F̄T,h(x) ≈ cx−1 + dx−2 + O(x−3), with c = 0.004 and d = 0.991. In order for the first term
to dominate we would need cx−1 � dx−2, but this can only be achieved if x is very large. Even to just
have cx−1 > dx−2, for x > u, we need u ≈ 250 on the Fréchet scale, which means a threshold quantile of
approximately 99.995% for T . Hence, for practical sample sizes and threshold choices, the estimator η̂1
will be biased for pairs with low Spearman’s ρ.

[Figure 2 about here.]

Figures 3 and 4 present analogous estimates of η for the medium and small sample sizes, respectively. Note
that the smaller the sample size, the η estimates for the Smith model have more bias for pairs with low
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dependence, and show more uncertainty (see Figures 3(a) and 4(a)). However, when the sample size is
small, the prior is more important and its inclusion gives better estimates, drawing η̂ towards unity (see
Figure 4(a)). For the Gaussian process the estimates are consistent with the true η value, but here too
there is more uncertainty in the estimates due to the small sample sizes. The increased uncertainty means
that unity lies within the confidence bounds for pairs with ρ > 0.6 (see Figure 4(b)), so in these cases
asymptotic dependence might be selected incorrectly.

[Figure 3 about here.]

[Figure 4 about here.]

4.3. Comparison of estimation methods for χ(x)

For samples of size n = 58585 from the Smith and Gaussian processes, we compare different methods
for estimating χ(x) outlined in Section 3.2. Specifically, model-based estimates χ̂1(x), χ̂3(x) and χ̂HT (x)
are compared with empirical estimate χ̂EMP (x). We estimate χ̂EMP (x) using the conditional probability
given in (5), by simply counting the points in the region {YP > x,XP > x} and dividing by the number
of points in the region {YP > x} . Estimates for χ̂2(x) are omitted in figures for clarity due to their close
similarity to those for χ̂1(x). For the model-based estimates χ̂1(x) and χ̂3(x) a modelling threshold u was
chosen such that Pr{T 6 u} = 0.90. For the third model-based estimate χ̂HT (x) we estimated the model
parameters α, β, µ, and σ above a 90th percentile threshold (see Section 2.2). We estimate χ(x) at the
level x = 10000. This level was chosen, since it is a very high quantile of the sample, with only 5 data
points above this level, so the empirical estimate is expected to be poor. Hence, we can better compare
the model-based estimates. We have also compared the estimators at the level x = 100, which is within
the data, but at this level all the estimators were performing very similarly, so these results are not shown
here.

The different estimates are shown against estimates of Spearman’s ρ in Figure 5. The empirical estimate
is not reliable, due to the small number of points above this level. The model-based estimates perform
similarly for the Gaussian sample (see Figure 5(b)) However, for the Smith model, χ̂3(x) gives higher mean
values and wider uncertainty bands than the other model-based estimators. This might be due to the tail
model (19) that this estimator is based on. Note the different pattern of relationship between χ̂(x) and
ρ̂ for the two processes, as already noted on Figure 1; the asymptotically dependent Smith process shows
higher levels of tail dependence than the asymptotically independent Gaussian process across all levels of
Spearman’s ρ̂. At the high level x = 10000, χ̂(x) approaches 0 for the Gaussian process sample, which is
the limiting value as x→∞.

In summary, it appears that the different estimation methods lead to fairly similar estimates for both
processes, when x is set to a level that is within the data. For this reason, in Section 4.4, we adopt the
empirical estimate only due to ease of computation. We note however that model-based estimates offer
the additional benefit of extrapolation to rare levels (beyond the sample) when necessary.

[Figure 5 about here.]

4.4. Effect of sample size and threshold effect

Here we assess the effect of sample size, threshold probability and level x on selected estimates for η
and χ(x) for samples from the Smith and Gaussian processes, and the inverted logistic distribution. The
estimator η̂3 as given by model (19) is used for η estimation, and the empirical estimate χ̂EMP (x) for χ(x).
For estimating η, the following pairs (n, q) of sample size n and threshold probability q are considered:
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(106, 0.99), (106, 0.999), (106, 0.9999), (58585, 0.80), (58585, 0.90) and (58585, 0.99). For estimating χ(x),
the level x was set so that the same number of observations would be used for estimation as for the
corresponding η estimation. This gives the following pairs (n, x) of sample size n and level x: (106, 100),
(106, 1000), (106, 10000), (58585, 5), (58585, 10) and (58585, 100).

For asymptotically dependent samples, we expect η estimates close to unity, and χ(x) estimates bounded
away from zero for all x. Results for the Smith process clearly show that χ̂(x) > 0 even for large x and
small ρ (see Figure 6(b) and 6(d)). Further, η ≈ 1 for pairs with high dependence in the body (as measured
by Spearman’s ρ), however, η is underestimated for pairs with weak dependence in the body, particularly
for smaller sample sizes and lower thresholds. Figure 6(a) shows that the η estimate is good for our large
sample, but this sample size and threshold probability are not typically achievable in practice. For realistic
sample sizes and threshold probabilities, η is underestimated for low levels of dependence (see Figure 6(c)).
This is the case for other asymptotically dependent models as well. We conducted the same analysis for
the other max-stable processes described in Section 2.3 with similar results (see Kereszturi 2016).

[Figure 6 about here.]

For asymptotically independent samples, the limiting value of η is less than 1 for all pairs, and so χ = 0.
For both the Gaussian and the inverted logistic samples, η̂ < 1 for all pairs (see Figures 7(a,c) and 8(a,c)).
However, χ̂(x) is approximately 0 only for pairs with low dependence in the body of the data for all levels
of x considered here. At high levels x, estimates approach the limiting value (see Figures 7(b,d) and
8(b,d)). Face-value interpretation of χ(x) estimates suggests asymptotic dependence; and we know this is
not the case. This shows the critical importance η plays in distinguishing asymptotic independence from
asymptotic dependence.

We note also that η̂ and χ̂(x) appear to decrease faster with decreasing ρ̂ for the inverted logistic sample
than for the Gaussian sample (compare Figures 7 and 8). This behaviour is not affected by the distribu-
tional parameters chosen for sample simulation from these processes; these only affect the range of ρ, not
the relationship between ρ and η and χ(x). These features therefore provide a valuable tool for model
diagnostics for asymptotically independent processes, and will be used in Section 5.

[Figure 7 about here.]

[Figure 8 about here.]

5. Application

5.1. Data

Characterisation of marginal and spatial dependence for extremes of significant wave height HS is essential
to reliable design and operation of marine and coastal installations. Sea-state HS is defined as four times
the standard deviation of the ocean surface elevation in a given time period. The data examined here
consists of time-series for HS for three hour sea-states (from the hindcast of Reistad et al. 2011) for the
period September 1957 to December 2012 on a grid of 150 northern North Sea locations, covering an area of
approximately 5◦ longitude by 5◦ latitude; see Figure 9. The univariate extreme value characteristics of HS

from the hindcast have been examined by Aarnes et al. (2012) and Breivik et al. (2013). We analyse this
sample of sea-state HS and a further sample of 916 independent storm-peak HS values extracted from the
sea-state data using the procedure of Ewans and Jonathan (2014): briefly, contiguous intervals of sea-state
HS above a low peak-picking threshold are identified, each interval corresponding to a storm event. The
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maximum of HS during the interval is taken as the storm-peak HS for the storm. Consecutive values of
sea-state HS at a location typically exhibit temporal dependence, whereas consecutive storm-peak values
do not.

[Figure 9 about here.]

[Figure 10 about here.]

The distribution of sea-state HS varies with wave direction θ due to the combination of prevailing wind field
and land shadow effects. Figure 10 shows (θ,HS) for one location. Note that θ represents the direction
from which waves emanate, measured clockwise from North. The density estimates for θ|HS > v for
v = 0, 4, 8m and 10m are also shown. It can be seen that as the threshold v increases, the density is
increasingly concentrated in the [320, 10] and [120, 200] directional sectors. This suggests that for this
particular location the biggest waves come from these directions, corresponding to storms emanating from
the North North-West and South South-East approximately, respectively, roughly the orientation of the
blue strip in Figure 9. We therefore might expect directional effects to influence spatial dependence, and
that ignoring θ in assessing spatial dependence might not be justified. Focusing on strips of locations with
different orientations helps us assess and illustrate directional influences on spatial dependence in a more
straightforward way. Hence, we proceed to examine the extremal dependence between pairs of locations on
the four straight-line strips, shown on Figure 9. The blue strip has approximately North-South orientation
with long along-strip fetches in both directions. The red and black strips are both aligned North-West
– South-East. The westerly end of the red strip is in the land shadow of the Shetland islands, but the
westerly end of the black strip is located between the Shetland and Orkney islands, so has a long fetch
from the North-West Atlantic Ocean. The green strip has a South-West – North-East orientation with
along-strip fetch limited by the land masses of the Britain Isles and Norway.

5.2. Identification of extremal dependence

Figure 11 illustrates that the dependence between locations on each of the strips varies with inter-location
separation. In Figure 11(a), plots of convex hulls for sea-state HS from pairs of locations on the black
strip corresponding to inter-location separations of 1, 5 and 10 are shown (or separations of 0.5◦, 2.3◦

and 4.5◦ respectively). Figure 11(a), and corresponding figures for other strips (not shown), suggests that
dependence reduces with increasing separation as expected. Because of the orientation of the location
grid used for the hindcast, inter-location separation along the red and black strips is approximately the
same; however, inter-location separations along the green and blue strips are different. Figure 11(b) shows
convex hulls of sea-state HS for pairs from all strips with inter-location separation of approximately 2.4◦,
achieved by taking an inter-location separation of 5 for the red and black strips, 6 for the blue and both
6 (approximately 2.2◦) and 7 (approximately 2.6◦) for the green strip. From Figure 11(b) it is difficult to
identify differences in dependence between strips for pairs at a separation of approximately 2.4◦; however
there is some suggestion that the dependence between sea-state HS for pairs of locations on the red and
black strips is similar. Blue and green strips also appear to be relatively similar. The corresponding plots
for the storm-peak sample are given in Figure 11(c, d), with very similar characteristics.

[Figure 11 about here.]

We next estimate ρ, η and χ(x) for sea-state and storm-peak HS for pairs of locations on each of the
four strips. Each of η, χ(x) and ρ were estimated for sea-state HS at pairs of locations on the four strips
shown on Figure 9. We used the estimator η̂3 for η estimation, and χ̂EMP (x) for χ(x) estimation, as in
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Section 4.4. The estimates are shown in Figure 12. Equivalent estimates for simulated samples of the same
size from the Smith and Gaussian processes and the inverted logistic distribution are also shown. This
enables us to compare the patterns of relationship between η, χ(x) and ρ for the different asymptotically
dependent and asymptotically independent processes that we observed in Figure 1 with the pattern the
data exhibits. It appears that behaviour on the blue (North-South) and green (South-West – North-East)
strips is reasonable well represented by the Gaussian model, whereas the dependence characteristics on
black and red strips (North-West – South-East) are better captured by the inverted logistic model. Both
the functional relationships between η and ρ and χ(x) and ρ support this fit. This is particularly clear for
higher threshold probabilities q and levels x. Both these best-matching distributions are asymptotically
independent. This clearly shows how our novel approach of supplementing measures of extremal dependence
with ρ improves diagnostic performance.

[Figure 12 about here.]

We further estimate η, χ(x) and ρ for pairs of values of storm-peak HS from locations on each of the
four strips. Figure 13 illustrates these estimates together with the corresponding estimates from simulated
samples of the same size from the Smith and Gaussian processes and the inverted logistic distribution.
It appears that storm-peak HS dependence is consistent with the asymptotically independent Gaussian
process for all strips, but due to small sample size there is a large overlap between the estimated uncertainty
bands for different models. Inferring the nature of extremal dependence from samples of this size is
extremely difficult.

[Figure 13 about here.]

5.3. Design implications

The choice of extremal dependence structure of storm-peak significant wave height values at neighbouring
locations has material implications for structural design and reliability assessment. To illustrate the type
of difference, consider the storm-peak significant wave heights (X,Y ) at two of our North Sea locations
separated along a strip by approximately 2.6◦. If the risk of joint extremes at the two locations is of
interest, then we would want to find the distribution of Y given that X was equal to its 100 year return
level, denoted by x100, i.e. we want to find yp, the pth conditional quantile, such that

P (Y < y|X = x100) = p.

For simplicity of calculation we make the assumption that the marginal distribution of X and Y is identical
to a typical site in our region shown in Figure 9. This is a reasonable assumption, as over this spatial scale,
away from land shadows, the marginal distributions do not change rapidly. As mentioned in Section 1, a
näıve approach is to assume perfect dependence, and hence yp = x100 for all p. Under strong asymptotic
dependence similar values for yp arise. The question is what reduction can we get in yp from using our
best fitting model for extremal dependence, i.e., an asymptotically independent distribution, which we
take here as the Gaussian dependence structure. For the storm-peak significant wave heights we take a
threshold u and assume that the marginal conditional distribution of threshold exceedances is described
by a generalised Pareto distribution

F (x) = P (X < x|X > u) = P (Y < x|Y > u) = 1−
(

1 + ξ
x− u
σ

)−1/ξ
+

, for x > u,

where ξ and σ > 0 are the shape and scale parameters respectively and t+ = max(t, 0). Threshold u
is selected using parameter stability plots (Coles 2001). Here we choose P{X > u} = φ = 0.5, and
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estimate the parameters ξ and σ using maximum likelihood. For our data, u = 6.66m and the estimates
are (ξ̂, σ̂) = (−0.23, 2.48). Then the expected number of storm peaks above some value x in 100 years is

100× npy × φ×
[
1 + ξ̂

x− u
σ̂

]−1/ξ̂
, (23)

where npy is the average number of storm peaks per year (npy = 30.11 for our data). Setting expression
(23) to 1 when x = x100, and rearranging, we find the marginal 100-year return value x100 for location X
to be the marginal quantile of storm peaks with non-exceedance probability F (x100) = 1 − (100npyφ)−1,
corresponding to a value x100 ≈ 15.5m. Thus under perfect dependence yp = 15.5m.

The conditional extremes model of Heffernan and Tawn (2004) is most straightforward to apply on Laplace
margins. To transform to Laplace margins we use expression (4) which transforms quantiles of F to the
same quantile of the Laplace distribution FL. Hence the transformed 100-year level on Laplace scale
is xL100 where F (x100) = FL(xL100), giving xL100 = − log[2(100npyφ)−1]. Now suppose further that the
extremal dependence between the locations corresponds approximately to the asymptotically independent
Gaussian process with correlation ρP , which is consistent with our findings of Section 5.2. We had found
in our analysis that two locations at separation of approximately 2.6◦ correspond to a Spearman’s ρ value
of approximately 0.8 (see Figure 13), which, in turn, corresponds to a Gaussian process with Pearson
correlation coefficient of ρP = 0.8. The conditional extremes model of Heffernan and Tawn then suggests
for Gaussian processes, with Laplace margins (XL,YL), that

P

{
YL − ρ2PXL

X
1/2
L

< z

∣∣∣∣∣XL = xL100

}
≈ Φ

(
z

ρP (1− ρ2P )1/2

)
; (24)

see Section 8 of Heffernan and Tawn (2004) for more details. If we assume that approximation (24) holds
for xL100 then the pth quantile of the distribution of YL|(XL = xL100) is

yLp = ρ2Px
L
100 + ρP (1− ρ2P )1/2(xL100)

1/2Φ−1(p), (25)

where Φ is the distribution function of a standard normal variable. Here yLp is on Laplace scale, and
converting back to the original scale, quantile to quantile transformation suggests that yp satisfies F (yp) =
FL(yLp ). This means that the associated quantile of storm-peak significant wave height at the neighbouring
location will be

yp = u+
σ̂

ξ̂

({
1

2φ
exp

(
−yLp

)}−ξ̂
− 1

)
,

where yLp is given by expression (25). For our data the yp values are plotted against p (see Figure 14). For
almost all values of p, yp � 15.5m, so the estimated risk is much less than under perfect dependence; for
example, the median is 2m lower. Only for ρP very close to 1 is there essentially no practical difference
between the two approaches.

[Figure 14 about here.]

6. Discussion and conclusions

The extremal dependence between contemporaneous observations of significant wave height at neighbouring
locations determines the rate and size of occurrences of joint extremes at those locations. In this work
we examined the extremal dependence of significant wave height for pairs of locations from a North Sea
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hindcast. We showed that the characteristics of extremal dependence vary systematically with distance
between locations and with orientation of locations, given prevailing atmospheric conditions and fetch
variation. Using the variation of coefficient of tail dependence η and the χ(x) statistic with (full-sample)
Spearman rank correlation ρ to quantify extremal dependence, we find that a sample of sea-state significant
wave height exhibits asymptotic independence consistent with either the Gaussian process or inverted
logistic models. The nature of extremal dependence for a sample of storm-peak significant wave height
is very difficult to estimate, due to its small size of approximately 1000 in comparison to 58000 for the
full sample. However, again the extremal dependence of the sample examined is consistent with either
the Gaussian process or the inverted max-stable model. Had we found instead that our sample exhibits
asymptotic dependence, a choice between various max-stable model needs to be made. Our diagnostics
are not ideal for this; for more details about model selection for asymptotic dependence see Davison et al.
(2012).

We examined the behaviour of different estimators for η and χ(x) for simulated samples from processes with
different known extremal dependencies. We found that, in general, different estimators yield consistent
estimates for η and χ(x). As might be expected, the bias of estimates reduces with increasing tail threshold,
and variance of estimates reduces with increasing tail sample size. For samples with sizes of the order of 104

typical for metocean applications, interpretation of plots of estimated η and χ(x) as a function of estimated
ρ is difficult. In particular, when estimated ρ is small, η estimated from asymptotically dependent processes
is biased, and χ(x) from asymptotically independent processes only approaches the limiting value of zero
for levels x that are unachievable in practice. It appears that comparison of sample-based plots of η and
χ(x) with ρ for significant wave height with those for samples of the same size from bivariate processes
with known extremal dependence provides more intuitive interpretation.

The extremal spatial dependence of sea-state and storm-peak significant wave height in the North Sea ap-
pears, at the very least, not to be inconsistent with asymptotic independence, implying that extreme value
models admitting asymptotic independence should be sought for such applications. The great majority of
models for spatial extremes which have been applied to environmental problems, motivated by max-stable
assumptions, admit asymptotic dependence only; these are not ideal therefore for the current application.
The conditional extremes model of Heffernan and Tawn (2004) provides a potential solution, although
the approach does not lend itself naturally to spatial modelling over continuous space. The hybrid model
of Wadsworth and Tawn (2012) is an alternative more suitable to spatial application; but considerable
effort would be needed to develop a reliable engineering implementation. We found that the asymptotic-
ally independent Gaussian process and the inverted max-stable processes seem to fit well to the data. As
the inverted max-stable models benefit from the recent investment of model development in max-stable
processes, we foresee future spatial modelling of extremes of HS using these models.

Inspection of Figure 13 shows that identifying the appropriate form of extremal dependence for storm-peak
significant wave height is problematic for samples of size approximately 1000. Since this is critical to reliable
design, and since samples of size less than 1000 are typical for metocean applications, it is appealing to
seek means of improved identification of extremal dependence for storm-peak HS . The obvious approach
is to gather larger samples of storm-peak values, but this is often impossible in practice. Another approach
might be to assume that the dependence between contemporaneous values of sea-state HS (for which
sample size is large, and identification of extremal dependence somewhat easier) is similar if not equal to
that of contemporaneous peak-over-threshold values. However, in reality, times of storm-peak occurrences
at neighbouring locations are not the same; for example, they are obviously associated with the storm
trajectory in space and time across the neighbourhood. Perhaps estimates of extremal dependence for
time-series of sea-state HS , appropriately time-lagged such that storm-peak events are contemporaneous,
offer an approximate solution.

In some ocean basins, pooling of samples from locations within a spatial neighbourhood is performed
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routinely to increase sample size for extreme value modelling (see e.g., Heideman and Mitchell 2009).
Data from the different locations that are pooled are assumed to follow a common marginal extreme value
distribution, so that any marginal spatial non-stationarity is neglected. Moreover, the extremal dependence
of values from different locations is also typically ignored; at best, uncertainties in estimated return values
are inflated to reflect dependence using a suitable bootstrapping scheme. A well-informed spatial extremes
model, accommodating the appropriate form of extremal dependence, offers reduced bias and improved
uncertainty quantification.

The diagnostic tools explored in this work are of general relevance to any application in which understanding
the characteristics of the joint occurrences of extreme events is of interest. For example, the nature of
extremal dependence between HS at two locations may differ from location to location within an ocean
basin, and between ocean basins. Application of the diagnostic analysis suggested here for other locations
in the North Sea, and for other ocean basins, would quantify this. We might explore the spatial behaviour
of joint extremes of variables other than HS , such as wind speed between locations (or altitudes), or
current speed between locations (or water depths). There is no reason to expect that wind speed and
current speed exhibit the same form of extremal dependence as HS , and the form of dependence may
differ temporally depending on prevailing conditions at the locations of interest. For example, if we are
interested in understanding the loading on risers of a moored vessel, appropriate models for extreme current
profiles with depth are required, incorporating appropriate forms for extremal dependence; otherwise biased
estimates of riser loads and tensions may result, as explained in Section 5 above.

The current work is also relevant in improving understanding of engineering design practices which impli-
citly assume, often with little justification, a particular form of extremal dependence between variables: an
estimate of return value for a particular oceanographic variable, with corresponding estimate of associated
return value for another related variable, falls into this category. For example, any parametric model for
the joint structure of two oceanographic variables (e.g., HS and peak wave period TP , or HS and wind
speed) is usually estimated by fitting the model to observations, usually not exclusively of jointly extreme
events. We therefore expect that the assumed parametric form explains the bulk of observations well. But
the parametric form also imposes a specific structure on the extremal dependence between variables which
may or may not be justified. Estimating the type of extremal dependence present explicitly using the
current diagnostics for jointly extreme events is at least advisable if not essential in demonstrating that
the parametric form used is also appropriate for joint extremes.

When there is doubt concerning the nature of extremal dependence present, conventional wisdom is that
the metocean engineer should err on the side of caution and assume asymptotic dependence, since this will
yield more and larger joint occurrences of large events. However, this approach too may have undesirable
knock-on consequences. For example, consider the design of a multi-component system. The incorrect
assumption of asymptotic dependence for variables in one component (which actually exhibit asymptotic
independence) might result in greater build cost for that component. When overall build cost is constrained,
this might lead to less build resources for other system components. That is, over-conservatism in one
aspect of design causes lack of conservatism in others, and hence overall increased structural risk. A
sensible approach in such circumstances is to balance risk in a statistically valid manner with respect to
competing design requirements, requiring consistent assessment of risk throughout design. In a metocean
context, specification of consistent return values for a set of oceanographic variables is challenging, because
of the difficulty of quantifying the dependence between extreme values of two or more variables. The
current work provides diagnostics to assist in quantifying extremal dependence rationally.
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Appendices

A. Derivation of the PC prior

Simpson et al. (2014) use the Kullback-Leibler divergence (KLD) to measure the increased complexity
from g to f . In other words, it is a measure of the information lost when the base model g is used to
approximate the more flexible model f . This is defined by

KLD(f ||g) =

∫
f(x) log

(
f(x)

g(x)

)
dx.

For g(x) and f(x) as defined in Section 3.1, we can calculate the KLD between g and f as,

KLD(f ||g) = − log η + η − 1.

This can be transformed onto a physically interpretable distance scale:

dfg =
√

2KLD(f ||g)

=
√
−2 log η + 2(η − 1)

Simpson et al. (2014) assume that the penalisation rate is constant, which implies an exponential prior
on the distance scale. Hence, dfg ∼ Exponential(λ) and πλ(dfg) = λ exp(−λdfg), λ > 0. Since dfg is a
function of η (d =

√
−2 log η + 2(η − 1)), we can use Jacobian transformation to obtain a prior for η; i.e.

πλ(η) = πλ(dfg) · |J |, where J = ddfg/dη. This gives the following prior for η,

π(η;λ) =
λ(1− η) exp

(
−λ
√
−2 log η + 2(η − 1)

)
η
√
−2 log η + 2(η − 1)

.
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Figure 1: Estimates for (a) η and (b) χ(x) against estimates for Spearman’s ρ for sample size n = 106, from the Smith
(magenta), Schlather (red), Brown-Resnick (blue), extremal-t (green) and Gaussian (black) processes, and the inverted logistic
distribution (cyan). Estimation methods use model (19) for η with q = 0.99, and the empirical estimate for χ(x) with x = 100.
Solid lines are median estimates from 1000 sample replications, dashed lines give 2.5% and 97.5% quantiles.
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Figure 2: Estimates for η against Spearman’s ρ for sample size n = 106 with q = 0.99, from (a) Smith process and (b) Gaussian
process. Estimation methods are model (17) (red), model (18) (blue), and model (19) (black). Solid lines give the median
from 1000 sample replications, dashed lines give 2.5% and 97.5% quantiles. The solid grey line shows a correct limiting value
for η. The dashed grey line shows a limiting value that η should not take.
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Figure 3: Estimates for η against Spearman’s ρ for sample size n = 58585 with q = 0.90, from (a) Smith process and (b)
Gaussian process. Lines are as described in Figure 2.
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Figure 4: Estimates for η against Spearman’s ρ for sample size n = 916 with q = 0.90 from (a) Smith process and (b) Gaussian
process. Lines are as described in Figure 2. Additionally, estimation methods using model (17) with PC prior (green) and
model (18) with PC prior (cyan) are shown.
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Figure 5: Estimates for χ(x) against Spearman’s ρ for sample size n = 58585 with x = 10000 from (a) Smith process and (b)
Gaussian process. Estimation methods are empirical χEMP (x) (black), χ1(x) (blue), χ3(x) (red) and χHT (x) (green). Solid
lines give the median from 1000 sample replications, dashed lines give 2.5% and 97.5% quantiles.
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Figure 6: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from the Smith model. Sample size is
n = 106 (top row) and n = 58585 (bottom row). Threshold probabilities for the η estimation are q = 0.9999 (green line),
q = 0.999 (red line), q = 0.99 (black line), q = 0.90 (cyan line) and q = 0.80 (magenta line). Corresponding levels for the χ(x)
estimation are x = 10000 (green line), x = 1000 (red line), x = 100 (black line), x = 10 (cyan line) and x = 5 (magenta line).
Solid lines give the median from a 1000 sample replications, dashed lines give the 2.5% and 97.5% quantiles. The solid grey
line shows a correct limiting value for η.
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Figure 7: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from the Gaussian process. Sample size is
n = 106 (top row) and n = 58585 (bottom row). Lines are as described on Figure 6. The dashed grey line shows a limiting
value for η that the estimates should not take.
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Figure 8: Estimates of η and χ(x) plotted against Spearman’s ρ for simulated data from the inverted logistic model. Sample
size is n = 106 (top row) and n = 58585 (bottom row). Lines are as described on Figure 6. The dashed grey line shows a
value for η that the estimates should not take.
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Figure 9: Map of location of data, showing four colour-coded sets of locations lying on straight lines with particular orientations,
referred to in the text as “strips”.
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Figure 10: Sea-state HS against wave direction θ for a central location, and corresponding density estimates for θ|HS > v for
v = 0m (magenta), v = 4m (purple), v = 8m (cyan) and v = 10m (dark green).
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Figure 11: Convex hulls for pairs of sea-state significant wave heights HS illustrating dependence. (a) Convex hulls for
locations from the black strip (see Figure 9) are plotted, corresponding to inter-location separation of 0.5◦ (light grey), 2.3◦

(grey) and 4.5◦ (black); (b) convex hulls for locations with inter-location separation of approximately 2.4◦ are plotted, for all
strips, coloured accordingly. Since there are no pairs of locations on the green strip corresponding to separation of 2.4◦, those
with separation 2.2◦ (light green) and 2.6◦ (dark green) are shown. The corresponding convex hulls for the storm-peak sample
are shown in plots (c) and (d).
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Figure 12: Estimates of η with (a) q = 0.90 and (c) q = 0.99, and χ(x) with (b) x = 10 and (d) x = 100, plotted against
Spearman’s ρ for sea-state HS sample of size n = 58585. Coloured points identify estimates from corresponding strip. Lines
identify estimates using simulated samples of same size from Smith (black) and Gaussian (red) processes, and from the inverted
logistic distribution (green).
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Figure 13: Estimates of (a) η with q = 0.90 and (b) χ(x) with x = 10, plotted against Spearman’s ρ for storm-peak HS sample
of size n = 916. Points and lines as described in Figure 12.
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Figure 14: Values of yp plotted against values of p.
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