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Structural damage

Tke, Gulf of Mexico, 2008 (Joe Richard) North Sea, Winter 2015-16 (The Inertia)
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Motivation

m Rational and consistent design and assessment of marine structures

m Reduce bias and uncertainty in estimation of structural integrity
m Quantify uncertainty as well as possible

m Non-stationary marginal, conditional, spatial and temporal extremes

m Multiple locations, multiple variables, time-series
m Multidimensional covariates

m Improved understanding and communication of risk

m Incorporation within established engineering design practices
m Knock-on effects of improved inference

The ocean environment is an amazing thing to study ... especially if you like to
combine beautiful physics, measurement and statistical modelling!
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Motivation

m Environmental extremes vary smoothly with multidimensional covariates
m Model parameters are non-stationary

m Environmental extremes exhibit spatial and temporal dependence
m Characterise these appropriately

m Uncertainty quantification for whole inference

m Data acquisition (simulator or measurement)

m Data pre-processing (storm peak identification)

m Hyper-parameters (extreme value threshold)

m Model form (marginal measurement scale effect, spatial extremal dependence)

m Statistical and computational efficiency

m Slick algorithms
m Parallel computation
m Bayesian inference
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This work

Directional models for storm peak Hg
m Different covariate representations
m Penalised B-splines (or P-splines)
m Bayesian adaptive regression splines
m Voronoi partition

Generic modelling framework

Bayesian inference

Northern North Sea case study as motivation

Simulation study for comparison

Focus on the generalised Pareto (GP) inference

m Extensions to multidimensional covariates

Copyright of Shell Shell & Lancaster University

September 2019

6/33



Motivating application

Typical data for northern North Sea. Storm peak Hg on direction, with 7 = 0.8 extreme value threshold.

Hg [m]

direction
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Model
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Observational model

m Sample of peaks Y over threshold 1, with covariates 8
m Ois 1D in current work : directional
m Ois nD later : e.g. 4D spatio-directional-seasonal

m Extreme value threshold 1 assumed known

m Estimated as the 7 = 0.8 quantile of a directional gamma model to full data
m Essential in general to capture uncertainty in

m Y assumed to follow generalised Pareto distribution with shape &, (modified)
scale v (=0(1+¢))

m &, v are functions of 6

m Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011], Randell
et al. [2016], Northrop et al. [2017]
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Generalised Pareto

far(yl&,v) = }; <1 + g (y— 4,)1/51)
mv=0(l+¢)
my >, € (—00,00)

m Shape parameter ¢ € (—o0, 00) and scale parameter v € (0, co)
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Covariate representations

Index set Zy = {65} ; on periodic covariate domain Dy

Each observation belongs to exactly one 6;
On 7y, assume

n
ns = Z BsBr,s=1,2,...,m, or
k=1

n = B} in vector terms

mne(,v)

m B = {By}."),_, basis for Dy

m 3 = {pi}}_, basis coefficients

m Inference reduces to estimating n¢, n, B:, By, B and 3,

P-splines, BARS and Voronoi are different forms of B
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P-splines

m 1 regularly-spaced knots on Dy
m B consists of n B-spline bases

m Order d

m Each using d 4 1 consecutive knot
locations

m Local support

m Wrapped on Dy

m Cox - de Boor recursion formula

m 7 is fixed and “over-specified”
m Knot locations {r¢}}_; fixed

m Local roughness of 3 penalised
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BARS basis

m 7 irregularly-spaced knots on Dy
m B consists of n B-spline bases

m Knot locations {ry}}_; can change
m Number of knots 7 can change
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Voronoi partition

m 7 irregularly-spaced centroids on
Dy
m Define n neighbourhoods or
“cells”

m B consists of n basis functions

m Piecewise constant on Dy
m = 1 “within cell”, = 0 “outside”

m Centroid locations {r;}}_; can
change
m Number of centroids #n can change
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Prior for (3 (all representations)

1
prior density of B exp (—2ﬁ’P/3>
m P = AD'D, D is an x n (wrapped) differencing matrix
m P-splines: D represents first-difference; prior equivalent to local roughness
penalty
m BARS and Voronoi: D is I,; prior is “ridge-type” for Bayesian regression
Prior for A (all representations)
A~ gamma
Prior for n (BARS and Voronoi)
n ~ Poisson

Prior forr, k= 1,2,...,n (BARS and Voronoi)

e ~ uniform
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Parameter set QO

m P-splines: Q = {B:, A, Bv, Ay} with ng, r¢, ny, and r,, pre-specified
m BARS and Voronoi: Q = {ng, v, Bz, Ae, v, Ty, Bv, Ay}

m wherer = {r};_,, B={Br}{_1,
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Updating 3, A (all representations) and r (BARS and Voronoi)

m Gibbs sampling when full conditionals available

m Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms, mMMALA where possible

m Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al.
[2014]

Conditional structure

fBnly, Q\Bn) o< f(ylBy, Q\ By) X f(BnlAy)
FAaly, Q\Ay) o< f(BylAg) X f(Ay)
flraly, Q\ ) o< f(ylr, Q\ry) x f(ry),

m wheren € (&,v)
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Dimension-jumping (BARS and Voronoi)
m Update 7, and birth or death elements of r, 3 using reversible-jump MCMC

m Green [1995], Richardson and Green [1997], Biller [2000], Zhou and Shen
[2001], DiMatteo et al. [2001], Wallstrom et al. [2008], Costain [2008], Bodin
and Sambridge [2009]

Birth-death Metropolis-Hastings acceptance probability
m Jump from current Q = (ny, 1y, Ay, By) to proposed Q* (=(Q \ w, w*))
m w = (ny, By, ry) in current and w* = (n;, B, 1) in proposed

min <1 flQ") f(@) glwlw) (@) )
F310) Fl@) glerTw) | 3w
m f(y|Q)/f(y|Q*) sample lik. ratio m g(w*|w)/q(w|w*) proposal ratio

N . m Final term Jacobian for
| w w rior ratio
flo)/fla")p transformation

m Sample from prior!
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Dimension-jumping birth for 3

m Location r* of the new knot is sampled uniformly on Dy

m Current knot locations = {r,}}_; and proposed r* = ({ri}{_,, ")

m Establish bijection between augmented coefficient vector 3% = (3, up)
(ug ~ N(0, »)) for current state, and vector 3* for proposed

m Motivation: make B3 and B*3* as similar as possible

m Regression solution is 3* = [(B*'B*)"'B*'B| B = GiB

m Set
0
By = "o | [”ﬁ] = 1if)
1

m Jacobian for a birth is |G|
m For death transition, essentially use F -1
m Zanini et al. [2019]
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North Sea application
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Posterior parameter estimates for £, v and p for northern North Sea

P-splines BARS Voronoi
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Posterior densities for locations » and numbers n
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Posterior densities for penalty coefficients A
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m Ridge penalties for BARS and Voronoi, but roughness for P-splines
m A somewhat lower for Voronoi, but also this has smaller n
m General consistency
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Directional posterior predictive distribution of T = 1000-year maximum

N NE E SE S sSw w NW Omni

m Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles
m Uncertainties larger for P-splines?
m General consistency
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Fit diagnostic

m Empirical tail (blue)

m Posterior means
and 95% credible
intervals for

quantile levels from
different models

m General consistency
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Simulation study
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Set-up

m 15 = 100 samples, each containing exactly np = 1000 observations of
threshold exceedances with a generalised Pareto distribution

m True Poisson rate p, shape & and scale v vary systematically with covariate 0.

m Functional forms of £(6), v(6) and p(6) generated using sum of 10 weighted
(wrapped) Gaussian kernels of standard deviation 30°, randomly located on
the periodic covariate domain

m Weights drawn at random from suitable distributions, so that &(0), v(6) and
p(0) like North Sea sample

m Distribution of T-year maxima (T = 10 x the period of sample, Tp) estimated
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Ilustrative realisation

10To year maximum
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m True &(0), v(0) and p(0) for typical realisation

m Directional distribution of 10Tp-year maximum for 8 octants, and “omni”
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Performance summary
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Where next?

Copyright of Shell Shell & Lancaster University September 2019 30/ 33



2D covariates: a qualitative comparison for the South China Sea

P-splines: n; = 6 X 6,11y = 6 X 6 BARS: nz’" =3x3,n0 =4x4 Voronoi: ng”’ =1,n° =7

P
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Summary

Covariate effects important in environmental extremes

Need to tackle big problems = need efficient models

Need to provide solutions as “end-user” software = stable inference

P-splines: straightforward, global roughness per dimension
BARS: optimally-placed knots
All splines: nD basis is tensor product of marginal bases

Voronoi: piecewise constant, naturally nD

m Combinations useful

m Conditional, spatial and temporal extremes
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