
Flexible covariate representations for extremes

Slides and draft paper at www.lancs.ac.uk/∼jonathan

Elena Zanini, Emma Eastoe, Matthew Jones, David Randell, Philip Jonathan
Shell & Lancaster University

Copyright of Shell Shell & Lancaster University September 2019 1 / 33



Thanks

Colleagues at Shell: Vadim Anokhin, Graham Feld, Emma Ross
Colleagues at Lancaster: Jonathan Tawn

Copyright of Shell Shell & Lancaster University September 2019 2 / 33



Structural damage

Ike, Gulf of Mexico, 2008 (Joe Richard) North Sea, Winter 2015-16 (The Inertia)
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Motivation

Rational and consistent design and assessment of marine structures
Reduce bias and uncertainty in estimation of structural integrity
Quantify uncertainty as well as possible

Non-stationary marginal, conditional, spatial and temporal extremes
Multiple locations, multiple variables, time-series
Multidimensional covariates

Improved understanding and communication of risk
Incorporation within established engineering design practices
Knock-on effects of improved inference

The ocean environment is an amazing thing to study ... especially if you like to
combine beautiful physics, measurement and statistical modelling!

Copyright of Shell Shell & Lancaster University September 2019 4 / 33



Motivation

Environmental extremes vary smoothly with multidimensional covariates
Model parameters are non-stationary

Environmental extremes exhibit spatial and temporal dependence
Characterise these appropriately

Uncertainty quantification for whole inference
Data acquisition (simulator or measurement)
Data pre-processing (storm peak identification)
Hyper-parameters (extreme value threshold)
Model form (marginal measurement scale effect, spatial extremal dependence)

Statistical and computational efficiency
Slick algorithms
Parallel computation
Bayesian inference
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This work

Directional models for storm peak HS

Different covariate representations
Penalised B-splines (or P-splines)
Bayesian adaptive regression splines
Voronoi partition

Generic modelling framework
Bayesian inference

Northern North Sea case study as motivation
Simulation study for comparison
Focus on the generalised Pareto (GP) inference

Extensions to multidimensional covariates
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Motivating application

Typical data for northern North Sea. Storm peak HS on direction, with τ = 0.8 extreme value threshold.
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Model
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Observational model

Sample of peaks Y over threshold ψ, with covariates θ
θ is 1D in current work : directional
θ is nD later : e.g. 4D spatio-directional-seasonal

Extreme value threshold ψ assumed known
Estimated as the τ = 0.8 quantile of a directional gamma model to full data
Essential in general to capture uncertainty in ψ

Y assumed to follow generalised Pareto distribution with shape ξ , (modified)
scale ν (=σ(1 +ξ))

ξ , ν are functions of θ

Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al. [2011], Randell
et al. [2016], Northrop et al. [2017]
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Generalised Pareto

fGP(y|ξ ,ν) =
1
σ

(
1 +

ξ

σ
(y−ψ)−1/ξ−1

)

ν = σ(1 +ξ)

y > ψ, ψ ∈ (−∞, ∞)

Shape parameter ξ ∈ (−∞, ∞) and scale parameter ν ∈ (0, ∞)
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Covariate representations

Index set Iθ = {θs}m
s=1 on periodic covariate domain Dθ

Each observation belongs to exactly one θs

On Iθ, assume
ηs =

n

∑
k=1

Bskβk, s = 1, 2, ..., m, or

η = Bβ in vector terms

η ∈ (ξ ,ν)
B = {Bsk}m;n

s=1;k=1 basis for Dθ
β = {βk}n

k=1 basis coefficients
Inference reduces to estimating nξ , nν, Bξ , Bν, βξ and βν

P-splines, BARS and Voronoi are different forms of B
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P-splines

n regularly-spaced knots on Dθ
B consists of n B-spline bases

Order d
Each using d + 1 consecutive knot
locations
Local support
Wrapped on Dθ
Cox - de Boor recursion formula

n is fixed and “over-specified”
Knot locations {rk}n

k=1 fixed
Local roughness of β penalised Periodic P-splines
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BARS basis

n irregularly-spaced knots on Dθ
B consists of n B-spline bases
Knot locations {rk}n

k=1 can change
Number of knots n can change

Periodic BARS knot birth and death
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Voronoi partition

n irregularly-spaced centroids on
Dθ

Define n neighbourhoods or
“cells”

B consists of n basis functions
Piecewise constant on Dθ
= 1 “within cell”, = 0 “outside”

Centroid locations {rk}n
k=1 can

change
Number of centroids n can change Periodic Voronoi centroid birth and

death
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Prior for β (all representations)

prior density of β ∝ exp
(
−1

2
β′Pβ

)
P = λD′D, D is a n× n (wrapped) differencing matrix
P-splines: D represents first-difference; prior equivalent to local roughness
penalty
BARS and Voronoi: D is In; prior is “ridge-type” for Bayesian regression

Prior for λ (all representations)

λ ∼ gamma

Prior for n (BARS and Voronoi)

n ∼ Poisson

Prior for rk, k = 1, 2, ..., n (BARS and Voronoi)

rk ∼ uniform
Copyright of Shell Shell & Lancaster University September 2019 15 / 33



Parameter set Ω

P-splines: Ω = {βξ , λξ ,βν , λν} with nξ , rξ , nν and rν pre-specified

BARS and Voronoi: Ω = {nξ , rξ ,βξ , λξ , nν , rν ,βν , λν}

where r = {rk}n
k=1, β = {βk}n

k=1,
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Updating β, λ (all representations) and r (BARS and Voronoi)

Gibbs sampling when full conditionals available
Otherwise Metropolis-Hastings (MH) within Gibbs, using suitable proposal
mechanisms, mMALA where possible
Roberts and Stramer [2002], Girolami and Calderhead [2011], Xifara et al.
[2014]

Conditional structure

f (βη|y, Ω \βη) ∝ f (y|βη, Ω \βη)× f (βη|λη)
f (λη|y, Ω \ λη) ∝ f (βη|λη)× f (λη)
f (rη|y, Ω \ rη) ∝ f (y|rη, Ω \ rη)× f (rη),

where η ∈ (ξ ,ν)
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Dimension-jumping (BARS and Voronoi)
Update n, and birth or death elements of r,β using reversible-jump MCMC
Green [1995], Richardson and Green [1997], Biller [2000], Zhou and Shen
[2001], DiMatteo et al. [2001], Wallstrom et al. [2008], Costain [2008], Bodin
and Sambridge [2009]

Birth-death Metropolis-Hastings acceptance probability
Jump from current Ω = (nη, rη, λη,βη) to proposed Ω∗ (=(Ω \ω,ω∗))
ω = (nη,βη, rη) in current andω∗ = (n∗η,β∗η, r∗η) in proposed

min
(

1,
f (y|Ω∗)
f (y|Ω)

f (ω∗)
f (ω)

q(ω|ω∗)
q(ω∗|ω)

∣∣∣∣∂(ωa∗)

∂(ωa)

∣∣∣∣)
f (y|Ω)/ f (y|Ω∗) sample lik. ratio
f (ω)/ f (ω∗) prior ratio

q(ω∗|ω)/q(ω|ω∗) proposal ratio
Final term Jacobian for
transformation

Sample from prior!
Copyright of Shell Shell & Lancaster University September 2019 18 / 33



Dimension-jumping birth for β

Location r+ of the new knot is sampled uniformly on Dθ
Current knot locations r = {rk}n

k=1 and proposed r∗ = ({rk}n
k=1, r+)

Establish bijection between augmented coefficient vector βa = (β, uβ)
(uβ ∼ N(0, •)) for current state, and vector β∗ for proposed
Motivation: make Bβ and B∗β∗ as similar as possible
Regression solution is β̂∗ =

[
(B∗′B∗)−1B∗′B

]
β = G jβ

Set

β∗j =


0

G j
...
0
1

×
[
β j
uβ

]
= Fjβ

a
j .

Jacobian for a birth is |G|
For death transition, essentially use F−1

Zanini et al. [2019]
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North Sea application
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Posterior parameter estimates for ξ , ν and ρ for northern North Sea

Note colour scheme
Rate ρ and ν very
similar
Voronoi gives
almost constant ξ
Voronoi piecewise
constant
Land shadow
effects
General agreement
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Posterior densities for locations r and numbers n

Knot placement
uniform for ξ , clear
effect for ρ
n close to 1 for
Voronoi ξ
General agreement
Effect of different
priors on n checked
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Posterior densities for penalty coefficients λ

Ridge penalties for BARS and Voronoi, but roughness for P-splines
λ somewhat lower for Voronoi, but also this has smaller n
General consistency
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Directional posterior predictive distribution of T = 1000-year maximum

Box-whiskers with 2.5%, 25%, 50%, 75% and 97.5% percentiles
Uncertainties larger for P-splines?
General consistency
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Fit diagnostic

Empirical tail (blue)
Posterior means
and 95% credible
intervals for
quantile levels from
different models
General consistency
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Simulation study
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Set-up

nS = 100 samples, each containing exactly nO = 1000 observations of
threshold exceedances with a generalised Pareto distribution
True Poisson rate ρ, shape ξ and scale ν vary systematically with covariate θ.
Functional forms of ξ(θ), ν(θ) and ρ(θ) generated using sum of 10 weighted
(wrapped) Gaussian kernels of standard deviation 30◦, randomly located on
the periodic covariate domain
Weights drawn at random from suitable distributions, so that ξ(θ), ν(θ) and
ρ(θ) like North Sea sample
Distribution of T-year maxima (T = 10× the period of sample, TO) estimated
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Illustrative realisation

True ξ(θ), ν(θ) and ρ(θ) for typical realisation
Directional distribution of 10TO-year maximum for 8 octants, and “omni”
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Performance summary

Compare posterior
predictive
distribution for
10TO-year
maximum with
truth
Median offset small
KL divergence
more variable for
Voronoi
BARS slightly
better?
General consistency
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Where next?
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2D covariates: a qualitative comparison for the South China Sea
P-splines: nξ = 6× 6, nν = 6× 6 BARS: nmo

ξ = 3× 3, nmo
ν = 4× 4 Voronoi: nmo

ξ = 1, nmo
ν = 7
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Summary

Covariate effects important in environmental extremes
Need to tackle big problems⇒ need efficient models
Need to provide solutions as “end-user” software⇒ stable inference

P-splines: straightforward, global roughness per dimension
BARS: optimally-placed knots
All splines: nD basis is tensor product of marginal bases
Voronoi: piecewise constant, naturally nD

Combinations useful
Conditional, spatial and temporal extremes
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