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Motivation

Rational design an assessment of marine structures:

Reducing bias and uncertainty in estimation of structural
reliability
Improved understanding and communication of risk

Non-stationarity with respect to covariates has important
implications:

Extreme value analysis assumes stationarity
Typically need to incorporate covariates in extreme value
models for credible design criteria
For storm severity, storm direction is typically an influential
covariate
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Case studies

Storm peak significant
wave height Hsp

S on
storm peak direction θsp

for the 8 locations. From
right to left, top to
bottom: Gulf of Mexico
(GOM), North-West
Shelf of Australia
(NWS), Northern North
Sea (NNS), Southern
North Sea (SNS), South
Atlantic Ocean (SAO),
Alaska (Als), South
China Sea (SCS) and
West Africa (WAf)
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Case studies

The physical and sample characteristics of case studies are as
follows:

GOM: Hurricanes; from Atlantic; ≈ 3 p.a.; ≈ 60 years

NWS: Tropical cyclones; from north-east, rotation important;
≈ 2 p.a.; ≈ 40 years

NNS: Winter storms; from Atlantic, Norwegian Sea, North
Sea; ≈ 30 p.a.; ≈ 20 years

SNS: Winter storms; from Atlantic, Norwegian Sea, North
Sea; ≈ 70 p.a.; ≈ 40 years

SAO: Extra-tropical lows; from North Atlantic, South
Atlantic; ≈ 100 p.a.; ≈ 10 years

Als: Extra-tropical lows; from Bearing Sea, Gulf of Alaska,
East Siberian Sea; ≈ 20 p.a.; ≈ 20 years

SCS: Monsoonal; from south-west and north-east; ≈ 60 p.a.;
≈ 50 years

WAf: Swell; from south to south-west; ≈ 30 p.a.; ≈ 15 years
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Questions

Which environments are most severe?

Which environments show greatest variability in extreme
events?

For which environments does incorporating non-stationarity
make the biggest difference to estimated return values?

Does incorporating non-stationary increase or decrease
estimates return values in general?

Does incorporating non-stationary increase or decrease spread
of return values in general?
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Model

Sample {żi}ṅi=1 of ṅ storm peak significant wave heights
observed with storm peak directions {θ̇i}ṅi=1

Model components:

1. Threshold function ψ above which observations ż are
assumed to be extreme estimated using quantile regression

2. Rate of occurrence of threshold exceedances modelled using

Poisson model with rate ρ(
M
= ρ(θ))

3. Size of occurrence of threshold exceedance using generalised
Pareto (GP) model with shape and scale parameters ξ and σ
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Model components

Rate of occurrence and size of threshold exceedance
functionally independent (Chavez-Demoulin and Davison
2005)

Equivalent to non-homogeneous Poisson point process model
(Dixon et al. 1998)

Smooth functions of covariates estimated using penalised
B-splines (Eilers and Marx 2010)

Slick linear algebra (c.f. generalised linear array models, Currie
et al. 2006)

Large number of parameters to estimate

Computational efficiency essential
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Penalised B-splines

Physical considerations suggest model parameters
ψ, ρ, ξ and σ vary smoothly with covariates θ

Values of (η =)ψ, ρ, ξ and σ all take the form:

η = Bβη

for B-spline basis matrix B (defined on index set of covariate
values) and some βη to be estimated

Wrapped basis for periodic directional covariate

Roughness Rη defined as:

Rη = β′ηPβη

where effect of P is to difference neighbouring values of βη

Parameter smoothness controlled by roughness coefficient λ
in roughness-penalised maximum likelihood estimation
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Wrapped periodic B-spline basis

Figure: Illustrative wrapped B-spline basis on [0, 10)
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Quantile regression model for extreme value threshold

Estimate smooth quantile ψ(θ; τ) for non-exceedance
probability τ of z (storm peak HS) using quantile regression
by minimising penalised criterion `∗ψ with respect to basis
parameters:

`∗ψ = `ψ + λψRψ

`ψ = {τ
n∑

ri≥0

|ri |+ (1− τ)
n∑

ri<0

|ri |}

for ri = zi − ψ(θi , φi ; τ) for i = 1, 2, ..., n, and roughness Rψ
controlled by roughness coefficient λψ

(Non-crossing) quantile regression formulated as linear
programme (Bollaerts et al. 2006)
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Poisson model for rate of threshold exceedance

Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

`∗ρ = `ρ + λρRρ

(Negative) penalised Poisson log-likelihood (and
approximation):

`ρ = −
n∑

i=1

log ρ(θi , φi ) +

∫
ρ(θ)dθdxdy

ˆ̀
ρ = −

m∑
j=1

cj log ρ(j∆) + ∆
m∑
j=1

ρ(j∆)

{cj}mj=1 counts of threshold exceedances on index set of m
(>> 1) bins partitioning covariate domain into intervals of
volume ∆

λρ estimated using cross validation or similar (e.g. AIC)
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GP model for size of threshold exceedance

Generalise Pareto model for size of threshold exceedance
estimated by minimising roughness penalised log-likelihood:

`∗ξ,σ = `ξ,σ + λξRξ + λσRσ

(Negative) conditional generalised Pareto log-likelihood:

`ξ,σ =
n∑

i=1

log σi +
1

ξi
log(1 +

ξi
σi

(zi − ψi ))

Parameters: shape ξ, scale σ

Threshold ψ set prior to estimation

λξ and λσ estimated using cross validation or similar. In
practice set λξ = κλσ for fixed κ
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Extreme value analysis of H sp
S for SAO

Figure: Threshold ψ, rate ρ, shape ξ and scale σ with storm peak
direction θsp using τ = 0.8. Bootstrap median (solid black) and 95%
uncertainty band (dashed black). Sample (grey) shown with ψ
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Return values

Estimation of return values by simulation under model

Simulate the desired return period multiple (≈ 1000) times

Sample number of events in period, directions of events, sizes
of events

Estimate the cumulative distribution function (CDF) for the
return value of interest

By simulating for return period equal to period of sample, can
perform model validation
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Validation of H sp
S model for SAO

Figure: CDFs from original sample (red) and from 1000 realisations
under model (black) for period of original sample, with 95% uncertainty
bands. LHS: Omnidirectional. RHS: For 8 directional octants. Titles:
numbers of actual and average simulated events. Good agreement
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Comparisons of return value distributions

Return value distributions for directional octants (centred on
cardinal and semi-cardinal directions) per location

Identify differences in directional effects per location

Omni-directional return value distributions per location
Compare environments by severity

Centred and scaled omni-directional return value distributions
per location

Which environments have longer tails of return value
distributions?

Assess the effect of sample size on width of return value
distribution

How does width of return value distribution vary with sample
size?

Compare return value distributions from stationary and
non-stationary models

How does incorporating direction change characteristics of
return value distribution?
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100-year H sp
S for GOM, NWS, NNS and SNS

Figure: CDFs for omnidirectional (black) and directional octant (colour)
return values, from simulation under directional model, incorporating
uncertainty in parameter estimation using bootstrap resampling

Copyright of Shell Statistics and Chemometrics June 2014 17 / 28



100-year H sp
S for SAO, Als, SCS and WAf

Figure: CDFs for omnidirectional (black) and directional octant (colour)
return values, from simulation under directional model, incorporating
uncertainty in parameter estimation using bootstrap resampling
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Characteristics of 100-year H sp
S distributions

Obvious directional differences for all locations

One directional octant dominating

e.g. SAO (SW), SCS (N), WAf (S)

Sub-set of directional octants dominating

e.g. GOM (E, SE, S), SNS (N, NW, W)

Obvious land shadows

e.g. NNS (NE,E), SNS (SE), SCS (E, SE)

Some surprises?

e.g. NWS (W) due to large rate of occurrence
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Omni-directional 100-year H sp
S

Figure: GOM and NNS are most severe, with longer tails
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Centred and scaled omni-directional 100-year H sp
S

Figure: CDFs centred (LHS) and scaled (RHS) with respect to median
value per sample. Once scaled, NWS and WAf have shortest tails.
Ratio of 95%ile to median ≈ 1.5 for all other locations
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IQR of 100-year H sp
S distributions

Figure: Inter-quartile range (IQR) for 100-year Hsp
S distributions against

sample size. Dashed lines: min and max IQR from 25 randomly-chosen
time-intervals (of given size) from SNS sample. LHS: IQR on original
scale, RHS: median-scaled. GOM and WAf unusual
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Comparing stationary and non-stationary CDFs

Return value distributions for 100-year Hsp
S estimated using three

models and compared.

Fully-directional

All of quantile extreme value threshold ψ, rate of threshold
exceedance ρ, generalised Pareto shape ξ and scale σ are
functions of direction

“Semi-directional”

ψ and ρ are directional, but ξ and σ are constants with
direction

Stationary (or constant)

All model parameters are constant with respect to direction
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Comparing stationary and non-stationary CDFs

Figure: Omnidirectional 100-year Hsp
S CDFs from fully-directional

(black), “semi-directional” (blue) and constant (or stationary, red)
models
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Comparing stationary and non-stationary CDFs

For the case studies examined here it appears that:

Estimated CDFs are very similar for GOM

CDFs from fully-directional and “semi-directional” models
agree well

Accommodating covariate effects in threshold and rate is
sometimes sufficient
Accommodating covariate effects GP shape and scale is
sometimes - but not always - less important
SNS is an exception

Characteristics of CDFs from constant model unpredictable
(relative to others)

No systematic difference in width or median value of CDFs
from constant model relative to fully-directional and
“semi-directional” models
Not possible to predict how reliable CDFs from a constant
model will be in practice
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Summary

Directional extreme value models for Hsp
S from 8 locations

Return value distributions vary with direction and location in
line with physical intuition

Omni-directional return value distributions sometimes
dominated by single directional octant, sometimes by sub-set
of octants. Land shadow effects obvious

Ratio 95%ile to median for distribution of 100-year Hsp
S ≈ 1.5

NWS and WAf are exceptions, showing ratios nearer 1.2

Distribution 100-year Hsp
S for GOM unusually wide

Width of distributions for other locations consistent with SNS
WAf is an exception, with unusually narrow distribution

CDFs for 100-year Hsp
S from fully-directional and

“semi-directional” models generally consistent
SNS is exception. Directional effects in GP parameters important
Characteristics of CDFs from constant model unpredictable relative to those from full and “semi”

Generally important to accommodate covariate effects in
threshold and rate, sometimes in GP shape and scale
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