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Abstract

Modelling extreme storm severity is critical to design and reliable operation of marine structures.

Extreme hindcast storm peak significant wave heights (HS) for 816 locations throughout the North

Sea are modelled, using the four parameter Poisson point process model of Wadsworth et al.

(2010), incorporating measurement scale variability via a Box-Cox transformation. The model

allows estimation of the posterior distribution for measurement scale parameter and point process

parameters within a Bayesian framework. The effect of measurement scale on return values of

significant wave height (HS) is quantified by comparison with a three parameter Poisson point

process model ignoring measurement scale uncertainty. It is found that the median value (over

all locations) of the median posterior Box-Cox parameter (per location) is approximately 0.7,

suggesting that the appropriate measurement scale for extreme value analysis is H0.7
S . The value

of the median Box-Cox parameter (per location) varies considerably between locations, with a 90%

uncertainty band of approximately (0.2, 2.2) and quartiles of 0.4 and 1.2; the value of Box-Cox

parameter is also influenced by threshold choice for extreme value analysis in particular. The ratio
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(over all locations) of the (posterior median) return value from the four parameter model, to the

return value from the three parameter model (and a return period of 100 times the period of the

hindcast) has a median value of 0.92, suggesting that median return values may be reduced for this

data set by better modelling of measurement scale effects. The ratio of return values has a 90%

uncertainty band of approximately (0.72, 1.37), illustrating the extra variability in return values

that incorporation of measurement scale uncertainty introduces.

1. Introduction

Typical results of an extreme value analysis on a sample of data are generally not invariant to

measurement scale. In an ocean engineering context, we might perform extreme value modelling

of data for significant wave height HS to estimate a return value corresponding to some return

period. We might also choose to perform extreme value modelling on the squared values of the

data, motivated by the fact that wave forcing on a drag-dominated structure is proportional to

the square of wave height (Tromans and Vanderschuren, 1995), then estimate the return value and

square-root it. Estimates for return values from inferences on the linear and square scales will be

different in general.

A simple simulation study illustrates this feature. Samples of size 500, 1000, 10000 and 100000

are generated at random from a generalised Pareto distribution with parameters typical of North

Sea storm conditions with negative shape parameter (resulting in a finite upper end point to the

distribution). Return values (on the linear scale) corresponding to different return periods are

then estimated from the samples by extreme value analysis on linear and square scales. Figure 1

compares estimates of mean return values from 1000 realisations of random samples of different

sizes (broken lines) with the known values (solid). Estimates on the linear scale are close to the

true curve. However, estimates from analysis on the square scale show considerable bias, which

reduces as sample size increases. Inspection of diagnostic plots, such as the mean excess or shape

parameter with threshold, does not typically permit the selection of a preferred modelling scale.

In this example, data are simulated on the linear scale, the scale that is usually tacitly assumed

(in this case correctly) by practitioners; but the example demonstrates the need for development

of extreme value models which are less sensitive or invariant to measurement scale.

[Figure 1 about here.]
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The reason for the apparent inconsistency in estimation of return values on different measurement

scales is poor convergence of the distribution of sample maxima (or threshold exceedances) to the

corresponding asymptotic distributional forms used to model the sample, on one or both of the

measurement scales. Modelling extreme values using an asymptotic distributional form requires an

assumption that the sample data are sufficiently large that the asymptotic distributional form is

valid. In practice, we can never be sure of this; bias introduced by assuming an asymptotic distri-

butional form, when this form is not appropriate, can be large, as is evident in Figure 1, especially

for small samples. However, the asymptotic assumption will be better on some measurement scales

than others.

The rate of convergence of maxima or threshold exceedances from the distribution from which the

data are drawn (henceforth the parent distribution to avoid ambiguity) to the asymptotic form

can be improved by judicious choice of measurement scale, thereby reducing bias in estimation

of return values. Improving the rate of convergence is therefore a strong motivator to consider

scale transformation prior to extreme value inference. For example, Cook (1982) proposes extreme

value modelling of dynamic pressure (linearly related to the square of wind speed) instead of wind

speed itself. Assuming that wind speed (for the United Kingdom) is (approximately) Rayleigh

distributed, the square of wind speed is exponential distributed. Cook (1982) demonstrates that

the rate of convergence of maxima from the distribution of wind speed to the asymptotic Gumbel

form is slower than the rate of convergence of maxima from the distribution of squared wind speed

to the same asymptotic form. Moreover, convergence of maxima from the distribution of wind

speed is from below (in the sense that Gumbel fitting would over-estimate return values), whereas

convergence of maxima from the distribution of squared wind speed is from above (so that Gumbel

fitting under-estimates return values). These ideas are extended by Cook and Harris (2004) and

Harris (2004). Following Cook (1982), Harris (1998) proposes that maxima of squared wind speeds

should be modelled using the Gumbel distribution. Taylor and Goh (2000) investigate measurement

scale effects in extreme value analysis of the most probable maximum wave height in a storm event,

HMP . They suggest performing extreme value analysis on the square scale; squared observations

of HMP are found to be approximately exponentially distributed. Two simple illustrations of the

benefit of scale transformation are given in Appendix 1, for Weibull and generalised Pareto parent

distributions.

Importantly, once convergence is effectively achieved on a particular measurement scale, we can
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estimate return values reliably on that scale, and thereby estimate return values consistently on

the original measurement scale using the inverse measurement scale transformation. Were we to

achieve convergence on a number of measurement scales, there would be consistency between the

estimates of return values on all of those scales.

In the statistics literature, Smith (1987) introduces so-called penultimate approximations of the nth

power of any parent distribution, and the corresponding conditional distribution for excesses of a

high threshold from the parent distribution, provided that the parent distribution is in the domain

of attraction of a max-stable distribution. These approximations motivate the adoption of gen-

eralised extreme value (GEV) and generalised Pareto asymptotic forms respectively for statistical

inference. Moreover, Smith (1987) evaluates the rate of convergence of the penultimate approxima-

tions to the corresponding asymptotic forms. Teugels and Vanroelen (2004) and Wadsworth et al.

(2010) demonstrate that the rate of convergence of penultimate approximations can be improved by

measurement scale transformation using the Box-Cox transformation. A brief statistical motivation

is provided in Appendix 2.

Physical considerations also motivate measurement scale transformation in some instances. As

already mentioned, since the square of wave height is linearly related to drag force on an offshore

structure, some practitioners prefer this scale for extreme value analysis.

In practical application, it is not possible to specify a particular best measurement scale for extreme

value analysis, since the parent distribution is generally unknown. To improve convergence and

reduce bias in these circumstances, Wadsworth et al. (2010) suggest a four parameter Poisson point

process model for extreme values in which measurement scale is treated as a model parameter,

removing the need to select a particular measurement scale. Measurement scale variability is incor-

porated using the Box-Cox transformation (y = xλ−1
λ , see Box and Cox (1964), with λ > 0 here),

the Box-Cox parameter λ being estimated in the modelling. Specifically, within a Bayesian frame-

work, the joint posterior distributions of point process location, scale and shape, and (Box-Cox)

measurement scale parameter is estimated using Markov Chain Monte Carlo (MCMC) simulation.

The objective of the current work is to explore the application of the four parameter Poisson point

process model to hindcast storm peak significant wave height data for the North Sea, in particular

to compare estimates of return values with those from a three parameter Poisson point process

model fitted on the linear scale, thereby quantifying the effect of measurement scale uncertainty

on return values. The extreme value analysis of significant wave heights is probably the most
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important application of extremal analyses in the offshore industry; it is almost certainly the most

frequently applied extreme value analysis in this field. For most offshore structures, environmental

loading is dominated by wave loading; accurate estimates of low probability extreme wave events

are necessary to ensure the structure’s design is adequate and that the annual probability of failure

of the facility due to environmental loading is at the appropriate level. Sea states from the North

Sea are a good choice for examining measurement scale effects, due to widely varying wave climate

from north to south. The northern North Sea is open to windows with very long fetches to the

west and is exposed to severe winter storms moving from west to east at northern latitudes. The

southern North Sea is relatively sheltered by adjacent coast lines, is more distant from severe winter

storms, and wave heights are limited by shallow-water dissipation effects. Thus, the northern North

Sea has significantly more extreme wave conditions than the southern North Sea, and this might

be expected to be reflected in measurement scale variation.

The paper is arranged as follows. In Section 2 we introduce the North Sea hindcast data, and

describe data pre-processing performed prior to extreme value analysis. This is followed by an

overview of the four parameter point process model in Section 3. In Section 4, approximately

30 years of hindcast data for 816 locations in the North Sea are modelled. Return values for

periods ranging from 0.1 to 100 times the period of the hindcast estimated and measurement

scale uncertainty quantified by comparing estimates with a three parameter Poisson point process

model. Spatial variability of parameter estimates and return values is also explored. Section 5

provides a discussion of results, conclusions, and suggestions for further work. Appendix 1 illustrates

the usefulness of measurement scale transformation in two elementary examples. Appendix 2

outlines the theory of penultimate approximation underpinning the four parameter model. We

emphasise that the objective and focus of the current work is to quantify the effect of incorporating

measurement scale variability in the estimation of extreme value models, rather than to estimate

particular extreme quantiles for offshore design purposes.

2. Data

The data examined are significant wave heights (HS) from the NEXTRA North Sea hindcast for

the period 1st October 1964 to 31st March 1995 inclusive, sampled continuously at 3h intervals for

a total of 816 locations. It is essential to accommodate covariate effects in extreme value analysis

(Jonathan et al., 2008). To create a homogeneous sample for subsequent extreme value analysis,
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the effects of seasonal and directional covariates need to be eliminated as far as practicable. To

reduce seasonal effects, since the most severe storms occur during the winter period, observations

per location corresponding to the six month period from 1st April to 30th September were omitted

from each year. Reduction of directional effects was achieved by selecting data corresponding to

a ±30o angular sector around the direction associated with the largest values of HS per location,

henceforth referred to as the peak direction, as illustrated in Figure 2.

[Figure 2 about here.]

The peak direction associated with the largest value of HS per location is shown spatially in

Figure 3. In most regions, there is local consistency between values of peak direction. However,

it is interesting that peak direction changes markedly in some regions, particularly around Orkney

and Shetland. Further, there appear to be approximately linear boundaries between regions of

consistent peak direction, for example, running north-east from Aberdeen, running south-east from

Aberdeen, and running south-east from Shetland. We assume that these boundaries are the result

of most severe storm events with different directional characteristics, at least in part due to the

influence of nearby land masses. In the northern North Sea, peak direction corresponds to waves

from the Atlantic, whereas in the central North Sea, peak direction corresponds to waves from the

North.

[Figure 3 about here.]

To eliminate serial correlation, block maxima for contiguous 48 hour intervals of the reduced data

are then isolated. Block maxima exceeding the median block maximum are retained and used for

all subsequent analysis. The selection of observations by direction and season reduces the number

of (block maxima) available for analysis. The proportion of block maxima (for all directions and

seasons) over median threshold (of the reduced data only) retained for extreme value analysis per

location is shown in Figure 4, and is seen to vary from approximately 20% to 60%. An interval of

48 hours for blocking is considered reasonable since this corresponds to the period of longer North

Sea storms.

[Figure 4 about here.]

6



We explored the characteristics of the four parameter model as a function of blocking period

(examining periods of 24, 48 and 72 hours), and found that estimates were reasonably stable.

We judged that adoption of a median threshold (per location) for rejection of smaller values of

block maxima was appropriate by examining the stability of the four parameter model for other

thresholds (including 60%ile, 70%ile, 80%ile and 90%ile). Although there was general consistency

(for example in the estimate for extreme quantiles) using different thresholds, sample size limitations

became particularly problematic at locations for which directional-seasonal sub-sampling results in

elimination of a large part of the original data.

3. Method

We follow the modelling procedure described by Wadsworth et al. (2010). We assume that indepen-

dent threshold exceedances follow a Poisson process model (see, e.g. Coles (2001)) on a Box-Cox

transformed (Y ) measurement scale with Box-Cox parameter λ, rather than the original (X) scale.

For given measurement scale parameter λ, the sample likelihood is written in terms of transformed

exceedances {yi}mi=1 of threshold uY as:

exp

{
−m(1− ξY

σY
(uY − µY ))−1/ξY

} m∏
i=1

1

σY

(
1− ξY

σY
(yi − µY )

)−1/ξY −1
,

where µY , σY and ξY are Poisson process location, scale and shape parameters respectively on the

transformed (Y ) scale. Note that the factor m in the first (exponential) term of the likelihood is

arbitrary. As explained in Wadsworth et al. (2010), a factor equal to m is used to preserve the

close correspondence between the form of the likelihood and that of the corresponding generalised

extreme value model for a sample of m independent observations. (A factor equal to m is also found

to improve the mixing in the Markov chain Monte Carlo (MCMC) inference (see, e.g. Gamerman

and Lopes 2006) used for parameter estimation.)

We estimate the parameters of the Poisson process model on the original rather than the trans-

formed scale, in terms of location, scale and shape parameters µX , σX , ξX respectively and λ,

since model parameters µY , σY , ξY and λ on the transformed scale exhibit strong dependence. To

achieve this, we need to relate quantities on the Y scale with their counterparts on the X scale.

The transformed sample is related to the original by the Box-Cox transformation with parameter

λ:
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yi =
xλi − 1

λ

for i = 1, 2, ...,m.

Threshold uY on the transformed scale is therefore related to threshold uX on the original scale by

uY =
uλX−1
λ . Using the theory of penultimate approximation (Smith 1987, outlined in Appendix

2), Wadsworth et al. (2010) show that the scale parameter on the transformed scale, σY , is related

to corresponding parameter on the original scale, σX , by:

σY = σXµ
λ−1
X .

Similarly, the location parameter on the transformed scale, µY , is related to location on the original

scale, µX , by:

µY =
µλX − 1

λ
.

The relationship between the shape parameter on the transformed scale, ξY , and its equivalent on

the original scale, ξX , is somewhat more complicated. Its form follows:

ξY = ξX + c(λ− 1)

for some unknown constant c. Following Wadsworth et al. (2010) we choose to estimate c up-front

using the profile likelihood of ξY as a function of λ, as illustrated in Appendix 2.

Thus, on the original X scale, the transformed likelihood of exceedances {xi}mi=1 of threshold uX

is:

L(µX , σX , ξX , λ) = exp

{
−m(1− ξY

σY
(uY − µY ))−1/ξY

} m∏
i=1

xλ−1i

σY

(
1− ξY

σY
(
xλi − 1

λ
− µY )

)−1/ξY −1
,

the factor xλ−1i inside the product arising from the Jacobian of the Box-Cox transformation. The

posterior density for µX , σX , ξX and λ is given by:

f(µX , σX , ξX , λ|{xi}ni=1) = KL(µX , σX , ξX , λ)f(µX)f(σX)f(ξX)f(λ)
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with constant of integration, K. We generate a random sample from the posterior using MCMC

inference, assuming vague Gaussian priors for µX , loge(σX) and ξX , and a uniform prior for λ. We

use Gaussian random walk Metropolis-Hastings acceptance sampling to update the four parameters

µX , σX , ξX and λ in turn. As is conventional in MCMC inference, we incorporate a simulation

burn-in period and subsequent sequence thinning. We also found it useful to vary the standard

deviation of the Gaussian proposal distribution automatically during MCMC simulation to maintain

the acceptance rate of the Metropolis-Hastings step at values between 0.25 and 0.50. To preserve

positivity of σX , we also choose to model in terms of loge(σX) rather than σX .

Estimates for posterior medians and 95% credible intervals for µX , σX , ξX and λ for a reference

central North Sea location are given in Figure 5, as a function of threshold for extreme value

modelling. We observe that parameter estimates are relatively constant with threshold, implying

reasonable model fit, until we exceed the 80% threshold. We conclude that, for this location at

least, any threshold between the median and 80% quantile would be reasonable. We select the

median threshold to retain as much data as possible consistent with the Poisson process model.

[Figure 5 about here.]

Figure 6 shows the posterior median and 95% credible interval for the Q100 extreme quantile

(corresponding to a return period of 100 times the period of the hindcast). We calculate the return

value QT corresponding to a return period of T times the period of the original hindcast, using

the standard expression for return value on the transformed scale, applying the inverse Box-Cox

transformation to the result:

1− 1

mT
= exp

−
1 + ξY

QλT−1
λ − µY
σY

−1/ξY
 .

For the reference central North Sea location, the Q100 quantile estimate appears stable until con-

siderably beyond the 80% threshold.

[Figure 6 about here.]
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4. Application

We apply the four parameter Poisson process model to block maxima from directionally and sea-

sonally sub-sampled data which exceed the corresponding median value per location, independently

for each of 816 grid locations in the North Sea. To illustrate the general characteristics of parameter

estimates, Figure 7 gives posterior distributions for the four parameter model for reference locations

in the northern, central and southern North Sea, together with three parameter model maximum

likelihood point estimates for comparison. We observe that the posterior distributions for location

parameter µX are approximately symmetric at each location, with modes corresponding to the

three parameter model point estimates; the location parameter in the southern North Sea is seen

to be smaller than in the central North Sea, which in turn is smaller than in the northern North

Sea. The same trend is seen in the estimates of scale parameter σX . Interestingly, the posterior

mode for scale is lower than the three parameter point estimate at each location. The posterior

modes for shape parameter ξX are similar to the three parameter point estimate for the central

and northern North Sea, but lower for the southern North Sea. Finally, the posterior distribution

of measurement scale parameter λ is similar for all locations, with mode considerably below unity

(corresponding to the original scale), with relatively little mass above unity.

[Figure 7 about here.]

The corresponding posterior distributions for return values Q0.1, Q1, Q10 and Q100 (corresponding

to return periods of 0.1, 1, 10 and 100 times the period of the hindcast) are shown in Figure 8 as

dashed, solid, dotted and dot-dashed lines respectively. The modes of the posteriors in each case are

lower than, but still generally consistent with, the corresponding three parameter point estimates.

[Figure 8 about here.]

In applying the four parameter model at all locations in turn, we find that for some locations,

estimation is particularly problematic. We assess lack of fit by inspecting the median likelihood

value for the model fit per location from the MCMC simulation. Large likelihoods suggest generally

good model fit. As seen in Figure 9, fit is particularly poor, for example, at two locations south-

east of Shetland, and four locations south-east of Aberdeen. On further investigation, it was found

that at these and a few other locations with low median likelihoods, storm direction fluctuates
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considerably (see, e.g. Figure 4). As a consequence, it is possible that directional sub-sampling

would not perform reasonably; it was decided to eliminate a total of 11 locations from subsequent

analysis.

[Figure 9 about here.]

Posterior median parameter estimates for the four parameter Poisson model at the remaining

805 locations are summarised on the left hand side in Figures 10-12, and compared with point

estimates (on the right hand side) from the three parameter maximum likelihood estimation. There

is excellent agreement between estimates for location µX ; there is a trend of decreasing µX with

decreasing latitude. There is also good agreement between estimates for scale σX ; larger values

are observed to the North and particularly to the West of Shetland. There is a band of larger σX

values extending down the North Sea, somewhat nearer to Norway (and then Denmark) than to

the U.K.

[Figure 10 about here.]

[Figure 11 about here.]

Agreement between posterior median values from the four parameter Poisson process model and

the maximum likelihood estimates from the three parameter model are also good for shape ξX .

Large values of shape parameter are observed between Shetland and Norway as might be expected

for both models, since these locations are exposed to long fetches. It is curious however that large

values of shape are observed off the English coast in the region of Newcastle-upon-Tyne for both

models (but note that the corresponding value of scale, σX , is small at these locations).

[Figure 12 about here.]

Figure 13 illustrates the values of posterior median measurement scale parameter λ per location, for

the four parameter model. Larger, darker circles correspond to larger values of λ. There are clear

trends in λ with location. In the northern North Sea, north-east of Shetland, values between 0.3 and

0.9 are observed away from coastal regions. Larger values are observed north-west of Shetland, and

south of Shetland. Particularly small values are observed in the region of 55oN, 1oE. Larger values
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are observed off the coast of Denmark. There are peculiarly large values in the English Channel

near Dover; these correspond to locations with different peak storm direction characteristics to

their neighbours (c.f. Figure 3).

Maps showing the spatial variation of extreme quantile Q100 are given in Figure 14, from maximum

likelihood estimation using the three parameter model on the left hand side, and as the median value

from the MCMC trace for the four parameter on the right. The two figures are generally consistent;

larger values of Q100 are observed in the northern North Sea, and reduce with reducing latitude. In

the left hand figure, larger values of Q100 extend somewhat further down the North Sea. Posterior

median return values differ somewhat from the corresponding three parameter maximum likelihood

estimates at each location. To further aid comparison, Figure 15 maps the ratio of the median four

parameter Q100 return levels to the corresponding return levels from the three parameter point

process model parameter estimates per location. The ratio of return values has a median value of

0.92 across all locations and a 90% uncertainty band of approximately (0.72, 1.37). This illustrates

the extra variability in return values that measurement scale uncertainty introduces.

[Figure 13 about here.]

[Figure 14 about here.]

[Figure 15 about here.]

5. Discussion

The four parameter Poisson point process model introduced by Wadsworth et al. (2010) provides

a means to reduce bias in extreme value modelling without knowledge of the parent distribution

(from which the sample is drawn) by exploiting transformation of measurement scale, without the

requirement to specify a particular scale transformation. For a given application, the joint posterior

distribution of the measurement scale parameter λ, together with the Poisson point process location

µX , scale σX and shape ξX parameters is estimated. Note that, although parameters µX , σX and

ξX are referred to as being on the original scale, they might more strictly be thought of as part of

a re-parameterisation. In particular, the estimate of ξX will be affected by the estimate of c, the

slope in the profile likelihood (see Appendix 2).
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Figure 13 shows that the measurement scale parameter λ varies considerably spatially, yet Figures

14-15 suggest that the impact of this variation on return values is perhaps smaller than might

be expected. As illustrated by Cook (1982), measurement scale influences rate of convergence to

asymptotic form. Lack of convergence may result in bias, in the form of under- or over- estimation

of return values, depending on the characteristics of the parent distribution. As illustrated in

Figure 5, estimates for measurement scale λ and other model parameters for a reference location

in the central North Sea are relatively insensitive to threshold choice, for thresholds below the

80%ile. Above this level, estimates for λ in particular increase and become more uncertain due to

sample size reduction. (Interestingly, once convergence is achieved approximately for some set of

values of λ, the actual value of λ estimated (from within that set) is arbitrary, since any of the

values are then appropriate; hence increasing variability of λ at convergence is expected!) The

corresponding return value estimate Q100 is stable up to a 90%ile threshold. Above this level,

estimates of Q100 increase and become more uncertain. These trends are typical of the North Sea

data examined. Threshold selection is of considerable concern to realistic modelling. Recent work

by MacDonald et al. (2011) and Wadsworth and Tawn (2012) provide approaches to overcome

difficulties in threshold selection, but these methods are applicable to homogeneous samples only.

Stability of shape parameter or of mean excess (e.g. Coles 2001) as a function of threshold is critical

to reliable modelling. Indications of lack of threshold stability suggest poor model fit. For example,

upward trends in these diagnostics with threshold can be indicative of underlying Normal (Fisher

and Tippett 1928) or Weibull (Cook and Harris (2004)) distributions respectively, even though the

shape parameter estimate remains negative.

Figures 13 and 15 are visually very similar, suggesting that locations where scale differs from unity

also yield Q100 estimates that differ most from the 3-parameter model analyses. Inspection of Figure

9 shows that median likelihoods, indicating quality of fit, are lower for locations off Denmark and

north of Aberdeen, suggesting relatively poor model fit. Referring to Figure 13, these regions also

correspond to larger posterior median estimates for Box-Cox parameter λ, perhaps suggesting that

estimates for λ are less reliable for these cases. This observation is further supported by the trend in

estimated λ with quantile threshold level shown in Figure 5; as quantile threshold increases, median

λ also increases. We propose that, at locations of good model fit (see Figure 9), the four parameter

model offers realistic estimates of measurement scale uncertainty and improves estimates of return

values. For example, off the Northumberland coast, model fit is good, estimated λ is smaller than

unity and 100-year return levels from the four parameter model are considerably smaller than those
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provided by the three parameter model (see Figures 14 and 15).

For the current hindcast data, the median value (over all locations) of the median posterior λ (per

location) is approximately 0.7, with a 90% uncertainty band of approximately (0.2, 2.2), suggesting

that accommodating spatial variation is important. Estimation of the corresponding statistics for

hindcasts of other ocean basins, and for measured data, would provide an interesting comparison

and additional experience with the approach for practical applications.

In this work, since our aim is to investigate the effect of measurement scale, we avoid the need to

consider the effect of covariates (such as storm direction and season) on the extreme value analysis,

by judiciously selecting data corresponding to a narrow directional sector in winter months. This

ensures the sub-sample used is approximately homogeneous. Estimates of λ show some sensitivity

to the size of the directional sector used. A better approach, certainly for serious application of

the method to structural design, would be to parameterise the extreme value model in terms of

covariates, thereby avoiding the need to sub-sample, following for example Coles and Walshaw

(1994), Cook et al. (2003) or Jonathan and Ewans (2007).

We use the median posterior values of parameter and quantiles from the four parameter model

to compare with maximum likelihood estimates from the three parameter model. In Wadsworth

et al. (2010), the posterior predictive return value is used in place of the median posterior quantile;

for the current application, comparisons (not shown) confirm that these two quantities yield very

similar estimates.

We choose to model individual locations independently for simplicity. In reality, the marginal

characteristics of neighbouring locations will be similar. This suggests that spatially smooth rep-

resentations for the parameters of both three and four parameter models should be considered.

Often, joint return values for two or more environmental variables (such as HS and the peak wave

period TP ) are sought. Extension of the current approach to joint modelling is an area for future

investigation.

In this work, we quantify the uncertainty in estimates of extreme quantiles for ocean design due

to arbitrary choice of measurement scale. We find that 100-year return value estimates can vary

by as much as ±30%, specifically that the ratio of median return values per location from the

four parameter (incorporating measurement scale uncertainty) and three parameter models has a

90% uncertainty band of approximately (0.72, 1.37). We also find that the median value of this
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ratio is approximately 0.92, suggesting somewhat lower return values using the four parameter

model in this application. The four parameter model is more sensitive to small sample size, due

to its extra flexibility, and should therefore be used with care when data are limited. The current

implementation of the four parameter model also relies on directional data pre-processing, itself

sensitive to sample size; an improved approach would incorporate directional and other covariates

explicitly within the extreme value model.
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Appendix 1: Motivating scale transformation

The purpose of this appendix is to demonstrate that in particular circumstances, judicious choice

of measurement scale improves the quality of extreme value inference.

Weibull maxima

Suppose that we know that the parent distribution of a set of n independent random values {Xi}ni=1

is a Weibull distribution with exponent κ:

Pr(Xi ≤ x) = 1− e−xκ ∀ i, x > 0 .

Suppose further that we are prepared to transform measurement scale using the power transfor-

mation z = xs (s > 0) and perform extreme value modelling on the set {Zi}ni=1, the distribution

function of which is:

F (z) = Pr(Zi ≤ z) = Pr(Xs
i ≤ z) = Pr(Xi ≤ z1/s) = 1− e−z(κ/s) ∀ i .

We define the n-event return value zn by:
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F (zn) = 1− 1

n
or n(1− F (zn)) = 1.

The distribution of the maximum M = maxi=1,...,n{Zi} is therefore:

Pr(M ≤ z) = Fn(z)

= (1− (1− F (z)))n

=

(
1− 1− F (z)

n(1− F (zn))

)n
∼ exp

{
− 1− F (z)

(1− F (zn))

}

for large n, according to the Cauchy limit limn→∞(1 +x/n)n = ex. Substituting the form of F into

the above yields:

Pr(M ≤ z) = e−e
−y

where:

y = zκ/s − zκ/sn .

Following Cramer (1946) and Cook and Harris (2004), Taylor expansion of zκ/s about z
κ/s
n gives:

y =
κ

s
z
(κ
s
−1)

n (z − zn)(1 +
1

2
(
κ

s
− 1)

(z − zn)

zn
+

1

6
(
κ

s
− 1)(

κ

s
− 2)

(z − zn)2

zn
+ ...) .

The leading order term of y is linear in z, indicating that the appropriate asymptotic limiting form

for the distribution of M is the Gumbel distribution (i.e. Fisher-Tippett Type 1). Moreover the

rate of convergence of the distribution of the maximum to the Gumbel is determined by the leading

error terms.

When the error terms are large, the difference between the distribution of the maximum M and the

limiting Gumbel form will be large, and inference based on Gumbel fitting will be suspect. Best

inferences from Gumbel fitting will be possible when the error terms are small. In the case s = κ, all

error terms are zero identically (even for non-integer κ), suggesting that convergence will be rapid
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(with rate determined by the rate of convergence of the Cauchy approximation above only). This

observation strongly suggests transforming the scale of data (from X to Z = Xκ) to improve rate

of convergence, thereby reducing bias in parameter estimation using the (correct) limiting Gumbel

distribution.

For example, when the parent distribution is Rayleigh (κ = 2), bias can be reduced by Gumbel

fitting squared data (s = κ = 2). Rayleigh (or near-Rayleigh) behaviour is typical of many

environmental phenomena, such as wind speed and individual ocean wave heights.

In practice, however, we are rarely confident of the true value of κ, nor indeed of the form of the

parent distribution (nor its asymptotic limiting form). For example, Simiu et al. (2001) cast doubt

on the appropriateness of the Gumbel distribution for modelling squared wind speed, since the

parent distribution of wind speed is not generally Rayleigh.

Note that, were it possible to achieve approximate convergence on both scales, consistent estimates

for return value would be obtained. From the definition of zn above and the known Weibull parent

distribution:

zn = F−1(1− 1

n
) = (log n)s/κ

from which:

xn = z1/sn = (log n)1/κ

independent of measurement scale s. In reality, rate of convergence would vary as a function

of s; we would therefore base our return value estimation on the scale s with best convergence

characteristics.

Generalised Pareto exceedances

More generally, suppose we have a sample of n independent threshold exceedances {Xi}ni=1 which

(exactly) follow the generalised Pareto distribution:

Pr(Xi > x|Xi > u) =

(
1 +

ξ

σ
(x− u)

)−1/ξ
∀ i

from which the unconditional distribution function is:
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Pr(Xi < x) = 1− Pr(Xi > x|Xi > u) Pr(Xi > u)

= 1− p(1 +
ξ

σ
(x− u))−1/ξ ∀ i, x > u,

for some threshold u, where Pr(Xi > u) = p. The n-event return value xn, defined as before using:

Pr(Xi < x) = 1− 1/n

is given by:

xn =
σ

ξ

(
(np)ξ − 1

)
+ u.

Suppose that we choose (misguidedly) to model the sample on a power-transformed scale z = xs.

For the transformed sample:

Pr(Zi ≤ z) = Pr(Xs
i ≤ z) = Pr(Xi ≤ z1/s)

= 1− p
(

1 +
ξ

σ
(z1/s − u)

)−1/ξ
∀ i .

This distribution is clearly not generalised Pareto. Therefore, fitting threshold exceedances of the

transformed sample using the generalised Pareto distribution would yield biased estimates. We

can perform a Taylor expansion of z1/s about us to find a generalised Pareto approximation to the

distribution, however. Since:

z1/s = u+
1

s
u1−s(z − us) +

1

2s2
(1− s)(z − us)2 +O((z − us)3)

we obtain:

Pr(Zi ≤ z) = 1− p
[
1 +

ξ

σsus−1
(z − us)

{
1 +

1

2
(1− 1

s
)us−1(z − us) +O((z − us)2)

}]−1/ξ
∀ i.

For sufficiently large u, we can neglect all but the leading term, showing asymptotically that the

transformed data are still generalised Pareto distributed, with the same shape ξ but different scale
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σsus−1. The rate of convergence of the threshold exceedances on the transformed scale to the

generalised Pareto limit is determined by the second term in general. We note that when s = 1 this

term is zero (since in this case we would return to the original scale), and rate of convergence is

optimal. Otherwise, as s increases beyond 1, the rate of convergence decreases, and is determined

by the size of us−1. As s decreases below 1 to 0, the rate of convergence decreases due to the

(1− 1/s) factor.

Using the leading term above only, we can derive the analogous expression for the n-event return

value zn:

zn =
σsus−1

ξ

{
(np)ξ − 1

}
+ us.

To see the correspondence between return values estimated on the original and transformed scales,

we note that:

xsn = us(1 +
σ

ξu

{
(np)ξ − 1

}
)s.

Binomial expansion yields:

xsn = us

[
1 +

σs

ξu

{
(np)ξ − 1

}
+
s(s− 1)

2

{
σ

ξu

(
(np)ξ − 1

)}2

+O(u−3)

]
.

The leading two terms correspond to the expression for zn above, demonstrating that for sufficiently

large u, xn ∼ z(1/s)n . Rate of convergence is determined by the third term above. In the case s = 1

we note that the third and subsequent terms are zero.

The current work, motivated by that of Wadsworth et al. (2010), seeks to exploit scale transfor-

mation to reduce bias in extreme value modelling without knowledge of the parent distribution or

the requirement to specify a particular scale transformation. For a given application, the statistical

characteristics of the appropriate scale transformation parameter are estimated; once convergence

is effectively achieved on transformed measurement scale, we can estimate return values on that

scale, and thereby estimate return values consistently on the original measurement scale using the

inverse Box-Cox transformation.
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Appendix 2: Penultimate approximations and scale transformation

We motivate the modelling strategy employed in Section 3 using block maxima, a common alter-

native to modelling exceedances, following Wadsworth et al. (2010).

Suppose we have a set of n independent, identically distributed random variables {Xi}ni=1 (in the

domain of attraction of a max-stable random variable) with distribution function FX , density fX

and (possibly infinite) upper end point xF , whose maximum is MX,n. Since the distribution is

max-stable, we know there exists a sequence of normalising constants aX,n(> 0) and bX,n such

that:

Pr(
MX,n − bX,n

aX,n
≤ x)→ GX(x) as n→∞

where GX(x) = exp{−(1 + ξXx)−1/ξX}, denoted GEV (0, 1, ξX), where convergence is in distribu-

tion.

Smith (1987) showed that suitable normalising constants aX , bX (henceforth we omit subscript n

in notation) could be derived from the reciprocal hazard function:

hX(x) =
1− FX(x)

fX(x)

of the form:

bX = FX(1− 1

n
), aX = hX(bX).

Moreover, the value of ξX is given in terms of the first derivative of the reciprocal hazard function,

h′X :

ξX = lim
x→xF

h′X .

Smith (1987) further showed that:

FX(aXx+ bX)n = exp{−(1 + h′X(z)x)−1/h
′
X(z)}
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for some unknown value z = bX + εX , εX ∈ [min{aXx, 0},max{aXx, 0}]. This suggests the approx-

imation:

ξ∗X = h′X(bX)

as a so-called penultimate approximation for ξX . Notably, when estimating the shape parameter

assuming normalising constants aX , bX , the estimated value of the shape parameter will correspond

to the value of the derivative of the reciprocal hazard function near, but not at bX .

On the transformed scale:

Y =
Xλ − 1

λ
for λ > 0

we can easily relate the value of the sample maximum MY,n to MX,n using:

MY =
Mλ
X − 1

λ
.

Some further straight-forward algebra yields similar relationships for the normalising constants:

bY =
bλX − 1

λ
, and aY = aXb

λ−1
X

and for the derivative of the reciprocal hazard function:

h′Y (y(x)) = h′X(x) +
hX(x)

x
(λ− 1) .

The last expression leads (with x = bX) to:

ξ∗Y = ξ∗X +
aX
bX

(λ− 1)

relating the penultimate approximations for ξX , and (in the limit as x→ xF ):

ξY = ξX + lim
x→xF

hX(x)

x
(λ− 1)

relating the limiting shape parameters.
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When we estimate the GEV model on original and transformed scales, we substitute the GEV

location and scale parameters (µX , σX on the original scale, and µY , σY on the transformed scale)

with bX , aX , bY and aY respectively. With these substitutions, we can relate the GEV parameter on

the original and transformed scales to facilitate MCMC inference. However, the corresponding GEV

shape parameters γX , γY will not correspond to either the penultimate approximations (ξ∗X , ξ
∗
Y ) or

the limiting forms (ξX , ξY ). Unfortunately, therefore, the relationship between ξX and ξY cannot be

obtained analytically. Instead, following Wadsworth et al. (2010), we assume that the relationship

between ξY and λ− 1 will be linear, and estimate the gradient c of the relationship by evaluating

the profile likelihood of ξY with respect to λ as a function of λ. For given data, the value of c needs

be estimated once-only prior to MCMC simulation. Moreover, at λ = 1 we have ξY = ξX . Hence,

for MCMC inference, we use:

ξY = ξX + c(λ− 1).

Figure 16 illustrates the estimation of c based on the profile likelihood of ξY with respect to ξ.

[Figure 16 about here.]
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Figure 1: Mean return values estimated using generalised Pareto data (GP, with shape −0.2, scale 1 and threshold
0) simulated on a linear scale, and modelled on linear (left) and square (right) scales, as a function of return period.
Solid lines give true return values. Broken lines are return values estimated using GP fitting on the largest 100
individuals in the sample, for different sample sizes, n, of 500, 1000, 10000 and 100000, assuming 1000 occurrences
per annum. Return values estimated on the (correct) linear scale are all relatively close to the true curve. Return
values estimated on the square scale show systematic bias (due to poor convergence to the asymptotic distributional
form) which reduces with increasing sample size.
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Figure 2: Significant wave height as a function of wave direction (upper) and day of the year (lower) for a reference
central North Sea location. The local maximum value of HS with direction is estimated using a moving median
(solid line in upper plot). Observations within ±30o of the direction corresponding to the maximum of the moving
median with direction (vertical line, upper plot) which occur during the winter period (1st October to 31st March)
are retained for extreme value analysis (and shown in black). Observations not retained are shown in grey.
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Figure 3: Peak direction per location. Most regions show local consistency of peak direction. Some regions show
considerable local variability from location to location. There are also approximately linear boundaries between
regions of consistent peak direction.
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Figure 4: Proportion of block maxima events retained as a result of selection of data from winter months corresponding
to directional sector of ±30o with respect to the peak direction per location.
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Figure 5: Median parameter estimates with associated 95% credible intervals as a function of threshold for a reference
location in the central North Sea. Parameter values remain relatively stable up to an 80% quantile after which
parameter instability occurs due to a lack of data, at which point estimates for λ become unstable.
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Figure 6: Q100 posterior median return values with associated 95% uncertainty bands as a function of threshold for
the reference location in the central North Sea. Return value remains stable up to 80% threshold.
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Figure 7: Posterior distributions for four parameter model parameters at reference locations northern North Sea
(dashed line), central North Sea (solid line) and southern North Sea (dotted line), with three parameter maximum
likelihood point estimates for µX , σX and ξX (vertical lines).
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Figure 8: Posterior distributions for Q0.1 (dashed line), Q1 (solid line), Q10 (dotted line) and Q100 (dot-dashed line)
return values for four parameter model at three reference locations. Maximum likelihood point estimates are also
shown (vertical lines).
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Figure 9: Map of median likelihood per location from the Monte Carlo Markov Chain. Larger and darker points
indicate a better fit. Very small likelihoods are taken as an indication of poor fit with the data. Fit is particularly
poor, for example, at two locations south-east of Shetland, and four locations south-east of Aberdeen.
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Figure 10: Maps showing parameter estimates for µX with three parameter maximum likelihood estimates (left) and
four parameter median posteriors from the MCMC (right). Larger and darker points correspond to larger parameter
estimates. Locations which have very small likelihoods for the four parameter model are removed and plotted as a
circle with a cross.
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Figure 11: Maps showing parameter estimates for σX with three parameter maximum likelihood estimates (left) and
four parameter median posteriors from the MCMC (right). Larger and darker points correspond to larger parameter
estimates.
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Figure 12: Maps showing parameter estimates for ξX with three parameter maximum likelihood estimates (left) and
four parameter median posteriors from the MCMC (right). Larger and darker points correspond to larger parameter
estimates.
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Figure 13: Map illustrating posterior medians for λ from the four parameter model. Larger and darker points
correspond to larger parameter estimates.
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Figure 14: Maps showing Q100 return value estimates based on three parameter maximum likelihood estimates (left)
and four parameter posterior medians (right). Larger and darker points correspond to larger return values.
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Figure 15: Map showing the ratio of median four parameter Q100 to the corresponding three parameter maximum
likelihood estimates per location. Larger and darker points correspond to more severe estimates from the four
parameter model.
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Figure 16: Profile likelihood for ξY against λ based on three parameter model for reference location in the central
North Sea and linear fit (dashed line). The gradient of the dashed line is used as an estimate for c, relating the shape
parameter ξY on the transformed scale to the measurement scale λ. The value of the dashed line at λ = 1 is an
estimate for ξX .
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