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Abstract

Safe and reliable design and operation of fixed and floating marine structures often located in remote and hostile en-

vironments is challenging. Rigorous extreme value analysis of meteorological and oceanographic data can greatly aid

the design of such structures. Extreme value analysis is typically undertaken for single spatial locations or for small

neighbourhoods; moreover, non-stationary effects of covariates on extreme values are typically accommodated in an

ad-hoc manner. The objective of the work summarised here is to improve design practice by estimating environmental

design conditions (such as return values for extreme waves, winds and currents) for a whole ocean basin, including

additional covariate effects (such as storm direction) as necessary, in a consistent manner. Whole-basin non-stationary

extreme value modelling is computationally complex, requiring inter-alia the estimation of tail functions, the paramet-

ers of which vary with respect to multi-dimensional covariates characterised by us using tensor products of penalised

B-splines. We outline two technical contributions which make whole-basin non-stationary analysis feasible. Firstly, we

adopt generalised linear array methods to reduce the computational burden of matrix manipulations. Secondly, using

high-performance computing, we develop a parallel implementation of maximum likelihood estimation for the gener-

alised Pareto distribution. Together, these innovations allow estimation of rigorous whole-basin extreme value models

in reasonable time. We evaluate the new approach in application to marginal extreme value modelling of storm peak

significant wave heights in two ocean basins, accommodating spatial and directional covariate effects.
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1. Introduction

1.1. Background

Safe exploration and production of oil and gas from offshore locations requires the design and construction of mar-

ine structures able to withstand severe environmental conditions, more extreme than the worst foreseeable during the

required structural lifetime, associated with an annual probability of failure typically less than 1 in 10,000. Robust mod-

elling of extreme environmental conditions is therefore critical for safe day-to-day operation and long-term structural

reliability. This requires the specification of return values for oceanographic phenomena such as waves, winds, currents

and associated variables. The metocean engineer faces the challenge of analysing huge samples of measured or hind-

cast meteorological and oceanographic data exhibiting complex dependencies, including non-stationarity with respect

to multiple covariates and spatial dependence of extremes, in order to estimate both marginal and joint return values for

a large number of wave-, wind- and current-related variables.

Extreme value analysis is motivated by asymptotic arguments. In the metocean context, only the largest values in

the sample (for example, observations exceeding some threshold) should be used for extreme value modelling, but the

sample size must also be sufficient for good empirical modelling. Therefore, the amount of data available for analysis

at a specific location is often limited. Reducing the threshold value runs the risk of invalidating asymptotic arguments

underlying the modelling strategy. Increasing the threshold value reduces sample size still further. One pragmatic

solution to the sample size issue is to aggregate observations from a neighbourhood of spatial locations and analyse the

pooled sample. However, neighbouring locations in general have different extreme value characteristic, and observations

from neighbouring locations are typically not statistically independent. Naive analysis of spatial extremes over spatial

neighbourhoods can lead therefore to erroneous inferences. Fortunately, recent developments in statistical modelling

of extreme ocean environments offer solutions other than pooling; a recent review is presented in [JE13]. [JER13] and

[JRWE14] present recent progress in the spline-based modelling of covariates effect. Here, we further develop these

methods for basin-wide marginal modelling of extremes, incorporating non-stationarity due to direction, longitude and
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latitude, and adjusting for spatial dependence between locations in all uncertainty analyses. An outline of the modelling

procedure is given at the start of §2.

At present, preliminary design conditions for a specific location are typically estimated by the metocean engineer

based on data for (the neighbourhood of) that location. This process is typical time-consuming and technically challen-

ging. Moreover, industry design procedures are sufficiently vague that there could be inconsistency between estimated

design conditions for the same location made by different metocean engineers, using different data sources, modelling

assumptions and procedures. With a basin-wide extreme value model in place, spatio-directional return values for all

locations in the ocean basin of interest can be estimated. The estimates obtained provide outline directional design con-

ditions for locations of interest in the basin based on rigorous, consistent statistical analysis, allowing fair comparison of

environmental risk for those locations. The estimates might further be pre-computed, stored in a database and accessed

via a graphical user interface to a device of choice querying the database. In practice, it may further be necessary to

calibrate hindcast data to measurements at specific locations.

The paper is organised as follows. §2 presents the model formulation for extreme values subject to spatio-directional

non-stationarity, outlining computational challenges to its implementation basin-wide. §3 describes generalised linear

array methods and reports their performance by incorporation within the extreme value model. §4 describes parallel

adaption of the generalised Pareto algorithm and quantifies computational improvements achieved. §5 describes the

practical application of the above methodology to estimation of basin-wide return values for ocean storm severity in two

ocean basins. Discussion, conclusions and opportunities for further development are summarised in §6.

2. A spatio-directional marginal extreme value model

The objective is the estimation of marginal return values for storm severity (quantified using significant wave height)

for locations within a spatial neighbourhood, accounting for spatial and storm directional variability of extremal charac-

teristics.

2.1. Model Components

Following the work of [JE08] and [JE11], summarised in [JRWE14], we model storm peak significant wave height,

namely the largest value of significant wave height observed at each location during the period of a storm event. At

a given location, storm peak events are reasonably assumed to be statistically independent given covariates since they

correspond to occurrences of independent atmospheric pressure fields. We assume that each storm event is observed at all

locations within the neighbourhood under consideration. For a sample {żi}ṅi=1
of ṅ storm peak significant wave heights

(henceforth HS ) observed at locations {ẋi, ẏi}ṅi=1
with dominant wave directions {θ̇i}ṅi=1

at storm peak HS (henceforth

“storm directions”), we proceed using the peaks-over-threshold approach as follows.

We first estimate a threshold function φ above which observations ż are assumed to be extreme. The threshold varies

smoothly as a function of covariates (φ
△

= φ(θ, x, y)) and is estimated using quantile regression. We retain the set of

n threshold exceedances {zi}ni=1
observed at locations {xi, yi}ni=1

with storm peak directions {θi}ni=1
for further modelling.

We next estimate the rate of occurrence ρ of threshold exceedance using a Poisson process model with Poisson rate ρ

(
△

= ρ(θ, x, y)). Finally we estimate the size of occurrence of threshold exceedance using a generalised Pareto (henceforth

GP) model; the GP probability density function is given in the Appendix. The GP shape and scale parameters ξ and σ

are also assumed to vary smoothly as functions of covariates, with ξ real and σ > 0. Positivity of GP scale is ensured

throughout in the optimisation scheme. The GP shape parameter is unrestricted in the full optimisation, but limited to

the interval (-0.5, +0.2) in the estimation of the GP starting solution.

This approach to extreme value modelling follows that of [CDD05] and is equivalent to direct estimation of a non-

homogeneous Poisson point process model ([DTV98], [JE13]). Appendix A provides an outline of the corresponding

penalised likelihood optimisations required to estimate model parameters. We emphasise that, in common with [CDD05]

and [JE13], we perform marginal non-stationary extreme value analysis across a grid of (dependent) spatial locations,

accounting (per location) for directional and spatial variability in extremal characteristics. We further account for the

effects of (extremal) spatial dependence between locations on inferences using a block bootstrapping scheme.

2.2. Parameterising covariates

Applying the model to whole-basin applications is methodologically straightforward, but computationally challen-

ging. Physical considerations suggest we should consider parameters φ, ρ, ξ and σ to be smooth functions of covariates

θ, x, y [RYJE13]. For estimation, this can be achieved by expressing the value of each parameter in terms of a linear

combination of appropriate basis for the domain D of covariates, where D = Dθ × Dx × Dy. Here Dθ = [0, 360) is

the (marginal) domain of storm peak directions, and Dx,Dy are the domains of x- and y-values (e.g. longitudes and

latitudes) under consideration.

For each covariate (and marginal domain) in turn, we first calculate a B–spline basis matrix for an index set of size

m (m << n) of covariate values; potentially we could calculate the basis matrix for each of the n observations, but

usually avoid this for computational and statistical efficiency. For instance in the case of Dθ, we calculate an mθ × pθ
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basis matrix Bθ such that the value of any function at each of the mθ points in the index set for storm direction can be

expressed as linear combination Bθβθ for some pθ × 1 vector βθ of basis coefficients. Note that periodic marginal bases

can be specified if appropriate (e.g. for Dθ).

Then we define a basis matrix for the three-dimensional domain D using tensor products of marginal basis matrices.

Thus

B = By ⊗ Bx ⊗ Bθ (1)

provides an m × p basis matrix (where m = mθmxmy, and p = pθpx py) for modelling each of φ, ρ, ξ and σ on the

corresponding “spatio-directional” index set of size m. Any of φ, ρ, ξ and σ (η, say, for brevity) can then be expressed

in the form η = Bβ for some p × 1 vector β of basis coefficients. Model estimation therefore reduces to estimating

appropriate sets of basis coefficients for each of φ, ρ, ξ and σ. The value of any marginal pi (i.e. pθ, px, or py) is equal to

the number qi of spline knots specified for periodic domains (e.g Dθ), and to qi + di for aperiodic domains (e.g Dx and

Dy), where di is the order of the B-spline function specified (always 3 in this work, so that spline functions are twice

differentiable).

The roughness R of any function η defined on the support of the spline basis can be easily evaluated on the index

set (at which η = Bβ). For a one-dimensional (e.g. directional) spline basis, following the approach of [EM10], writing

the vector of differences of consecutive values of β as ∆β, and vectors of second and higher order differences using

∆kβ = ∆(∆k−1β), k = 2, 3, ..., the roughness R of η is given by

R = β′Pβ (2)

where P = (∆k)′(∆k) for differences of order k (with appropriate modifications to preserve periodicity as necessary). For

a spatio-directional spline basis, the penalty matrix P can be similarly defined using

P = Py ⊗ Px ⊗ Pθ (3)

in the obvious notation. We use k = 1 throughout this work. With this choice of k, heavy roughness penalisation results

in stationarity of parameters with respect to periodic and aperiodic covariates. To avoid potential over-fitting, parameter

estimation requires that the (negative log) likelihood function is penalised (see the appendix) using a linear combination

of parameter roughnesses with roughness coefficients λη (for each model parameter η). The choice of optimal penalty

coefficients is determined by block cross-validation, further adding to computational complexity. Since each storm is

observed as a spatially-dependent event at all spatial locations, we define a storm “block” to be the set of occurrences

of a particular storm at all locations for the purposes of both cross-validation (in estimation of model smoothness) and

bootstrapping (for uncertainty quantification). For the spatio-directional problem, it is also possible to vary the relative

size of basis penalisation with respect to direction, longitude and latitude. In this work, the same penalty value was

adopted for both spatial co-ordinates, and the relative value of the directional to spatial penalty was decided using a

series of experiments with different penalty choices.

2.3. Managing computational burden

We manage the considerable computational challenges of basin-wide extreme value modelling using the following

techniques:

• Generalised linear array model (GLAM) framework ([CDE06]) for fast computation of matrix inner products and

matrix vector products (described in §3)

• Parallel adaption of the generalised Pareto optimisation loop to exploit modern parallel computing environment

(described in §4)

We outline these developments and the potential computational gains in the next two sections.

3. Generalised linear array model

As an illustration of the complexity of explicit matrix operations necessary for spatio-directional inference, consider

the back-fitting iteration ([Dav03], referred to in equations A.32 and A.33 of the appendix) for estimation of generalised

Pareto (and Poisson) spline basis coefficients and parameter estimates. Estimation involves repeated solution (for β) of

equations of the form

(B′H0B + λP)β = B′H0u0 (4)

where B is a tensor product of marginal spline bases Bd ⊗ · · · ⊗ B1, and Bi is the mi × pi basis matrix for the ith mar-

ginal covariate (θ, x and y respectively for i=1,2,3 in the spatio-directional problem). Computation of the inner product

B′p×mH0m×mBm×p results in a p × p matrix for inversion. Since non-sparse weight matrix H0 and working variable u0 are

functions of the starting value β0 of β at the current iteration, the inversion must be repeated a number of times (espe-

cially in the case of generalised Pareto, as will be illustrated below) before convergence. This computational challenge
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increases with increasing number m (=
∏

mi) of covariate bins and total number p (=
∏

pi) of spline coefficients. For a

basin-wide spatio-directional model on a 1000 x 1000 spatial grid compared to a directional model for a single location,

the value of m would increase by a factor of one million, and the value of p by a factor of 10,000. Block cross-validatory

choice of λ, and bootstrap uncertainty analysis, further increases the number of inversions required. Explicit computa-

tion of inner products and their manipulation would be very demanding; but fortunately, due to generalised linear array

model (GLAM) methodology, these computations are not necessary. Estimation requires computation of linear forms

Bβ and B′H0u0, and inner products of the form B′H0B. These and similar matrix operations on d-dimensions are pos-

sible without explicitly evaluating full linear forms and inner products, dramatically reducing the number of arithmetic

operations and memory requirements.

Let us illustrate this with a specific 2D case. The linear form Bβ can be written

(B2 ⊗ B1) β
p1 p2×1

≡ B1 M(β)
p1×p2

B
′

2 (5)

where the p1 × p2 matrix M(β) is the p1 p2 × 1 vector β arranged in matrix form, and “≡” denotes this equivalence.

Computationally, the right hand side of (5) provides a major advantage: it avoids explicit computation of B. The number

of multiplications to evaluate it is very much smaller than that needed to evaluate the left-hand side: if B1 and B2 are

both 103 × 102 then the left-hand side requires 1010 multiplications whereas the right-hand side requires just over 108

multiplications. In general, for m1 = m2 = m and p1 = p2 = p, evaluation of the left hand expression involves m2 p2

multiplications, compared with (m + p)mp for the right hand expression. Similarly, the computational complexity of

the inner product operation is greatly reduced when the operation is expressed in terms of the row tensor operator G(B),

namely the tensor product of the ith row of B with itself

G(B) = (B ⊗ 1′) ∗ (1′ ⊗ B). (6)

Here, 1 is a column vector of appropriate length, each element of which is unity. The inner product B′H0B becomes

(B2 ⊗ B1)
′

H0
m1m2×m1m2

(B2 ⊗ B1) ≡ G(B1)
′ M(H0)

m2
1
×m2

2

G(B2) (7)

where m2
1
×m2

2
matrixM(H0) is a rearranged form of the m1m2 ×m1m2 matrix H0 . Again, the right hand side provides

marked improvement in computational efficiency.

3.1. Improved computational efficiency

We now present the results of applying the GLAM approach for basin-wide extreme value analysis. We compare

execution times and peak memory usage for an explicit non-GLAM (“baseline”) analysis with a GLAM implementation

as a function of the number of covariate bins m, for relatively small problems only. We estimate the spatio-directional

model for a fixed number of spatial and directional knots, (specifically for fixed p = px py pθ = 13 × 13 × 32 = 5408),

for successively larger spatial domains, resulting in increasing sample sizes and number of covariate bins. For example,

a model for 32 directional bins on a 10 × 10 spatial grid corresponds to 3200 covariate bins, and for 32 directional bins

on a 20 × 20 spatial grid 12, 800 bins. All experiments were run on an 8 core Intel Xeon 2.5GHz with 35 GB RAM.

Results are illustrated in Figure 1. Identical inferences were obtained from both the baseline and GLAM analysis, but

both run time and peak memory usage are considerably lower for the GLAM implementation. For larger problems, we

are unable to execute the baseline analysis.

4. Parallel generalised Pareto algorithm

Here we present a parallel adaptation of maximum likelihood estimation for the non-stationary generalised Pareto

likelihood, exploiting a multi-processor, multi-node distributed computing architecture. Using simulation we quantify

the reduction in execution time achieved compared with sequential execution, and propose a strategy to optimise ar-

chitecture given problem characteristics. Finally we incorporate bootstrap uncertainty analysis, exploiting the natural

massive parallelism of the bootstrapping procedure.

4.1. Parallel Adaption of GP

The computational efficiency of generalised Pareto (GP) optimisation, using the back-fitting algorithm, has already

been markedly improved using GLAM methods, as described in §3. However, in a trial modelling study involving 7

analyses employing between 3,000 and 384,000 covariate bins, estimation of GP parameters accounted for between

65% and 90% of overall computation time, making it an obvious candidate for further improvement in computational

efficiency.

Algorithm 1 illustrates the naive approach to estimating GP shape and scale parameters, each of which is modelled as

a linear combination of spline basis functions. In order to identify optimal spline roughness penalty coefficients, cross-

validation ([Sto74]) is used; this involves repeated optimisation for nCV pre-specified subsets of the original sample and
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Figure 1: (a) Execution time for estimation with explicit (non-GLAM) “baseline” (red) and GLAM (blue) computation as a function of number of

covariate combinations m on log scale; (b) Analogous comparison of peak memory usage.

input : Input data dat, number of penalties nλ, number of cross-validations nCV

output: Optimal value of λ parameter

//loop over penalty coefficients;

for iλ ← 1 to nλ do

//loop over cross-validations;

for iCV ← 1 to nCV do

//Divide the data into fit and test;

datfit← SplitDat (dat = iCV );

dattst← SplitDat ( dat , iCV );

σ, ξ← GPFit ( datfit, iλ );

LOFiCV
← ComputeLOF (dattst, σ, ξ);

end

LOFiλ ← Σ
nCV

1
(LOFiCV

);

end

LOF ← min(LOFiλ );

λ← ComputeOptLmb (LOF);

Algorithm 1: Serial algorithm for GP fitting with nested loops over roughness penalty and cross-validations.

input : Input data dat, number of penalties nλ, number of cross-validations nCV

output: Optimal value of λ parameter

//loop over both penalty coefficients and cross-validation sets;

for iLoop← 1 to nλ × nCV do

//Obtain penalty and cross-validation set membership;

iλ, iCV = LookUpTable ( iLoop ) ;

//Divide the data into fit and test;

datfit← SplitDat (dat = iCV );

dattst← SplitDat ( dat , iCV );

σ, ξ← GPFit ( datfit, iλ );

LOFiCV ,iλ ← ComputeLOF ( dattst, σ, ξ ) ;

end

for iλ ← 1 to nλ do

LOFiλ ← Σ
nCV

1
(LOFiCV ,iλ );

end

LOF ← min(LOFiλ );

λ← ComputeOptLmb (LOF);

Algorithm 2: Parallel adaption for GP fitting with single loop.
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Figure 2: (a) Overall modelling work-flow showing parallel GP tasks. (b) Deployment of the parallel adaption of the generalised Pareto algorithm in

a distributed memory high-performance computing environment.

nλ pre-specified values for spline roughness penalty. The optimal penalty is that which minimises the predictive lack

of fit (LOF) of the GP model. There is clear scope to unroll this double loop over nCV and nλ, allocating tasks across

multiple computing units.

Algorithm 2 illustrates the proposed parallel GP optimisation of effectively independent tasks over multiple comput-

ing cores. The double loop of algorithm 1 has been unrolled into a single loop using a pre-computed look-up table of

combinations of roughness penalty and boolean memberships (for partitioning the sample into training and test subsets)

for each cross-validation. This is a classic case of task parallelism where essentially the same computational task is per-

formed in parallel on slightly different sets of data. The algorithm also illustrates the merging of results from different

tasks so that overall predictive LOF can be evaluated.

Figure 2 (a) illustrates how the parallel GP algorithm described above is integrated into the modelling work-flow.

Analysis steps prior to GP modelling (i.e., quantile regression for threshold estimation, Poisson modelling for estimation

of rate of threshold exceedances, and a GP starting solution) are performed serially using improved GLAM algorithms

described in §3. Subsequently, the parallel GP algorithm is executed in a high-performance computing environment and

resulting output consolidated to estimate model parameters. Figure 2 (b) illustrates the distributed memory computing

system. The parallel algorithm has nλ × nCV threads to compute, achieved by assigning up to nλ × nCV computing cores

spread over many nodes. In the illustration shown we assume n independent nodes each with k cores, totalling N(= k×n)

parallel cores. If we set nλ × nCV = N, each thread can be assigned a unique core. If N < nλ × nCV , fewer operations are

performed in parallel; the reminder are scheduled after tasks from earlier batches are complete. In the next section, we

discuss metrics to determine the optimal number of cores for efficient and rapid analysis.

4.2. Reduction in execution time

The parallel GP algorithm provides considerable reduction in execution time over serial. Figure 3 (a) shows the

average run time (over three runs) of the parallel GP algorithm, as a function of the total number of cores N, for a trial

analysis with nλ = 13 and nCV = 10. Serial computations previously taking days to execute are now complete in a few

hours. Reductions of close to two orders of magnitude in execution times are achieved until N ≈ 75, beyond which run

time improvement diminishes. Figure 3 (b) compares execution time tN for an N-core architecture against execution

time t1 using a single core. Defining “Speedup Factor” as

Speedup Factor =
t1

tN

(8)

we can compare the realised speedup factor with the idealised speedup factor (= N for an N-core architecture). Realised

and idealised speedup factors diverge for N > 75, indicating limitations to the scalability of the parallel implementation

due to communication, memory, thread wait and other overheads incurred. Quantifying these overheads is essential for

judicious choice of architecture and estimation of execution times. Speedup characteristics are of course dependent on

the architecture of computing resources available.

Figure 4 (a) illustrates that execution times for individual parallel tasks vary quite markedly, due to different values

of penalty coefficient and cross-validation sample partition. Since the full analysis is complete only when all individual

tasks are complete, this suggests different approaches to resource utilisation. We might fully subscribe as many cores as

the number of parallel tasks (N = nλ×nCV ). Alternatively we might under subscribe cores, such that N < nλ×nCV . When

we fully subscribe (as shown in Figure 4 (a)), different tasks take different times. Once a core completes a relatively

quick task it remains idle until it receives a communication that all tasks are complete; only then are resources released

for other tasks. This leads to obvious inefficiencies and diminishing returns as more cores are added.
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Figure 3: (a) Execution time of parallel GP algorithm as a function of the number of cores N assigned demonstrating close to two orders of magnitude

reduction in execution time for N < 75. (b) Comparison of realised and idealised speedup factors which diverge with N > 75.

Parallel task number

0 50 100 150 200

R
u
n
 t
im

e
 (

m
in

)

40

60

80

100

120

Parallel GP individual task run time

Avg.

Min.

Max.

Number of cores, N
1 25 75 100 175 210

S
ca

lin
g 

ef
fic

ie
nc

y 
(%

)

20

40

60

80

100
Parallel scaling efficiency

Strong (t1)/(tN N)

Weak (t1*/tN*)

(a) (b)
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4.3. Performance Test using Scalability Measures

We introduce two measures of scalability ([Kam13]) to determine the optimal number of cores empirically. For a

constant problem size, we increase the number of cores and measure execution time and define a metric known as strong

scaling efficiency:

ESTRONG =
t1

tN × N
× 100% (9)

where t1 and tN are defined as earlier. Using this measure, we determine a “sweet-spot” facilitating computations within

reasonable time whilst also using allocated computing resources efficiently. A second measure of weak scaling efficiency

is estimated by increasing problem size as a function of number of cores so that each core receives the same quantum of

task:

EWEAK =
t∗
1

t∗
N

× 100% (10)

For example, we could use one core to fit one GP (say t∗
1

for a given λ, CV), then two cores to fit two GP fits (t∗
2
) and so

on. Figure 4 (b) shows that both strong and weak scaling efficiencies drop below 50% with increasing N, corroborating

inferences from Figure 4 (a). Setting expected efficiencies to around 60% and number of cores N = 75 appears a

reasonable compromise.

The high performance computing architecture adopted here is a generic distributed memory computing system with

multiple nodes. Each node has multiple CPU cores and shared memory linked via a high speed network. Additional

enhancements to parallel task scheduling methodologies are largely unimportant in the current context of independent

tasks not requiring inter-processor communication for data transfer. We might exploit relatively quick shared memory

by scheduling certain tasks within the same computing node. To minimise wait cycles, we might also communicate

task completion at a node and allocate pending tasks adaptively. A-priori analysis of task complexity might enable

even greater efficiencies; particularly problematic individual GP optimisations might themselves then be partitioned into

multiple tasks.

4.4. Uncertainty Analysis using Massive Parallelism

It is critical to quantify the uncertainty with which extreme value models are estimated. Re–sampling techniques such

as bootstrapping can be used to estimate the uncertainty of model parameters and estimates of return values and other

structure variables. [CDD05] describe the application of a block bootstrap approach to estimate parameter uncertainty

and the precision of extreme quantile estimates, applicable when dependent data from neighbouring locations are used.

[JE07] use block bootstrapping to evaluate uncertainties associated with extremes in storm peak significant wave heights

in the Gulf of Mexico.

In the current context, bootstrapping involves resampling the original sample with replacement to create a “bootstrap

resample”. The whole modelling procedure - including parameter and return value estimation - is then executed for the

resampled data. By repeating this scheme for a large number of bootstrap resamples, we can estimate the size of

sampling uncertainty on parameter and return value estimates. Model fitting for each bootstrap resample is independent

of fitting for all others. Computationally, this problem is seen to be embarrassingly parallel ([Fos95]). In theory, given

sufficient resources, all bootstrapping threads might be run simultaneously in parallel, potentially with each task utilising

multiple cores using the parallel techniques described in §4. However in practice, there is a limitation on the number of

computing resources available at a given time. Hence the task scheduler may impose restrictions on the number of cores

that can be allocated to a given task. In such a scenario, a “job array” approach may be invoked to schedule only one

or few bootstrapping iterations at a given time. The job array can be configured in such a manner as to automatically

schedule the next set of bootstrapping iterations once the current tasks are done.

In §5.3, we discuss the estimation of parameter uncertainty for the Gulf of Mexico application in more detail.

5. Applications

This section illustrates the methodology in application to estimation of return values for storm severity, correspond-

ing to long return periods, in the Gulf of Mexico (GoM). We also summarise a further similar application to the North

West Shelf of Australia.

5.1. GoM: Background

The Gulf of Mexico is a major energy producing region accounting for 25% of oil and 14% of the natural gas

production of the U.S. [GOM14a]. The Gulf is vast with a total area of 1,587,000 km2. Tropical cyclones (or hurricanes)

are intense revolving depressions that can generate extreme storm conditions. They can impact almost any part of the

US Gulf coast, typically between June and November. In deep water, HS exceeding 16 m is possible, with peak seas

radiating outwards from the storm centre. Groups of large waves travelling in different directions close to the centre

of the storm may combine to give exceptionally high individual wave heights in excess of 30 m ([API07],[ISO05]).

Specification of realistic metocean criteria is critical for safe and efficient operation of offshore structures. Numerical
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hindcast studies of extreme and operational conditions include the Gulf of Mexico Oceanographic and Meteorological

Study (GOMOS) [GOM14b]. GOMOS08 includes a 29-year continuous wind and wave hindcast for the period 1980-

2008, 379 tropical events (hurricanes) for the period 1900-2008, and 68 extra-tropical events (winter storms) for the

period 1950-2008. A 3rd generation wave model with 1/16th degree fine grid (7km) was used to model extreme storms.

A total of 170 hurricane events at 9177 spatial locations were considered in this work.

5.2. GoM: Computational burden

Conventionally, metocean criteria are estimated using a site-specific approach due to lack of statistical and compu-

tational resources. Storm peak values from a small neighbourhood of locations centred around a particular reference

location of interest are aggregated to create a sample for extreme value analysis, typically ignoring non-stationarity

and spatial dependence. With the computational advances described in §3 and 4, we now have the capability to es-

timate marginal design conditions for the whole Gulf simultaneously. Physical considerations suggest that setting

p = px py pθ = 18 × 18 × 32 provides good spatial and directional resolution. Using the GOMOS hindcast described

above, we develop a marginal model for storm peak significant wave height for all spatial locations (at 1/16 degree res-

olution) and 32 directional sectors. This requires estimation on the index set of m = mxmymθ = 200×60×32 = 384, 000

covariate combinations for p = 10, 368 spline coefficients for each of GP shape and scale (and similar numbers for

quantile threshold and Poisson rate). We might compare this with a typical problem for the neighbourhood of a single

location of size m = 10 × 10 × 32 = 3200 covariate combinations.

Figure 5 shows comparative run-times for baseline estimation (GLAM version using 8 cores) and parallel approach

(HPC version using 130 cores). Extreme value estimation for the whole of GOMOS can be completed (without uncer-

tainty analysis) within a few hours.

5.3. GoM: Parameter estimation

Following a sensitivity study into the stability of GP shape parameter and median 100-year return value with

threshold non-exceedance probability, a threshold non-exceedance probability of 0.5 was deemed appropriate. Fig-

ure 6 shows parameter estimates as functions of spatio-directional covariates, spatially for directional octants and for all

directions (or “omni-directionally”). The threshold estimate is relatively stable with respect to both space and direction

at around 2.5m. The rate of occurrence of threshold exceedances is highest for hurricanes from the East and South-East

as expected from physical considerations. Omni-directionally, locations in the eastern Gulf exhibit both larger GP shape

and scale, suggesting that extreme values in this region will be larger than elsewhere - again, consistent with historical

evidence. We note that values of GP shape range from -0.1 to 0.06 and GP scale from 1.05 to 4.12. Note that the units

for parameters are as follows: threshold (metres), rate of threshold exceedance (occurrences per degree per location per

annum), GP shape (dimensionless) and GP scale (metres). Note that maximum likelihood estimators for GP shape and

scale are asymptotically negatively dependent. It is common in applications to observe negative dependence between

estimates of these parameters (see, e.g., [SM12]).

Figure 7 illustrates uncertainties in quantile regression, Poisson rate of threshold exceedance, GP shape and scale

parameter estimates for the Gulf of Mexico estimated from 250 bootstrap resamples in terms of 2.5, 50 and 97.5 per-

centiles of bootstrap distributions on direction, longitude and latitude. Non-overlap of uncertainty estimates indicates

(e.g. for Poisson rate) material difference between extreme value models for different combination of covariates. The re-

latively wide uncertainty bands for GP shape indicate difficulty in estimating the GP parameters for some combinations

of covariates.
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Figure 6: Spatio-directional plot of parameter estimates for the Gulf of Mexico: (a) threshold (metres), (b) rate of threshold exceedance (occurrences

per degree per spatial location per annum), (c) GP shape (dimensionless) and (d) scale (metres). For each parameter, the lower plot shows median

omnidirectional parameter estimates for each of 9177 locations. The 8 upper plots show median directional sector parameter estimates per location

for 8 directional octants centred (from left to right, top to bottom) on storms from NW, N, and NE; W and E; SW, S and SE respectively.

10



Direction

0 90 180 270 360

2.5

3

Spatio-directional QR threshold

Relative Longitude

-5 -4 -3 -2 -1 0 1 2 3 4 5

2.5

3

Relative Latitude

-1.5 -1 -0.5 0 0.5 1 1.5

2.5

3

Direction

0 90 180 270 360

1

3

5

Spatio-directional Poisson rate of exceedance

Relative Longitude

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

3

5

Relative Latitude

-1.5 -1 -0.5 0 0.5 1 1.5

1

3

5

(a) (b)

Direction

0 90 180 270 360

-0.1

0

Spatio-directional GP shape

Relative Longitude

-5 -4 -3 -2 -1 0 1 2 3 4 5

-0.1

0

Relative Latitude

-1.5 -1 -0.5 0 0.5 1 1.5

-0.1

0

Direction

0 90 180 270 360

1

3

Spatio-directional GP scale

Relative Longitude

-5 -4 -3 -2 -1 0 1 2 3 4 5

1

3

Relative Latitude

-1.5 -1 -0.5 0 0.5 1 1.5

1

3

(c) (d)

Figure 7: Model parameter uncertainty analysis for Gulf of Mexico, from 250 bootstrap iterations illustrated using the 2.5 (lower dashed), 50 (centre

solid) and 97.5 percentile (top dashed) of the bootstrap distribution of parameter estimates. The panels show estimates for (a) quantile regression

threshold (metres), (b) Poisson rate (occurrenes per degree per location per annum), (c) GP shape (dimensionless) and (d) GP scale (metres). In each

panel, the upper plot gives parameter estimates as a function of direction for typical SW (red), centre (green) and NE (blue) locations respectively; the

middle plot as a function of longitude for storms from 0o and minimum latitude (red), from 120o and central latitude (green) and 240o and maximum

latitude (blue); the bottom plot as a function of latitude for storms from 0o and minimum longitude (red), from 120o and central longitude (green) and

from 270o and maximum longitude (blue).
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5.4. GoM: Return Value Estimation

Return value distributions can be estimated by the simulation procedure described in [JRWE14]. Briefly, for each

location in turn, the distribution of the 100-year return period is estimated omni-directionally and for 8 directional

sectors of equal size centred on cardinal and semi-cardinal directions, using all of the estimated extreme value models

(for the actual sample and its bootstrap resamples). Figure 8 (a) shows median 100-year marginal return values for the

entire Gulf, incorporating directional dissipation (as described in [JRWE14]). Omnidirectional estimates (lower panel)

of approximately 15m are consistent with expectation. Directionally, the most severe storms occur in the eastern and

south-eastern sectors, consistent with physical understanding. Figures (b) and (c) show estimates for the 2.5 and 97.5

percentiles of the return value distribution respectively. Largest return values, and largest return value uncertainties,

occur in the “hurricane alley” region. Using model output such as that in the figure, the metocean specialist can access

extreme value estimates for any spatial location and directional octant of choice, generated by a thorough consistent

approach for the whole ocean basin.

5.5. GoM: Model diagnostics

Model diagnostics are essential to demonstrate adequate model fit. Of primary concern is that the estimated ex-

treme value model generates spatio-directional distributions consistent with observed storm peak data (see [FRW+15],

[JRWE14]). Figure 9(a) provides a spatial comparison of cumulative distribution functions for return values for the

period of the original sample, estimated using the original sample (red) and using 1000 realisations under the model

(black) for a 3 × 3 grid of locations in the eastern Gulf, corresponding approximately to the so-called “hurricane al-

ley”, where interest in return value estimation is greatest. Figure 9(b) gives the corresponding directional comparison.

There is good agreement. Wider uncertainty bands in western directional sectors are due to lower rates of occurrence of

hurricanes.

5.6. North West Shelf application

We briefly describe a second application to estimation of return values of storm peak significant wave height for

storms on the North West Shelf (NWS) of Australia. The regional climate is monsoonal, displaying two distinct seasons,

“winter” from April to September and “summer” from October to March, with very rapid transitions between these,

generally in April and September to October. Tropical cyclones during summer months are most influential for extreme

metocean criteria, producing severe sea conditions from 4.0 m and often exceeding 8.0 m significant wave height.

Typically, 5 named tropical storms per year occur in Western Australia [BOM14]. The North Australia Metocean Study

(NAMOS) provides hindcast data for tropical cyclones [NAM14]. The application sample considered here corresponds

to approximately 1.3× 109 values of storm peak HS and dominant wave direction (at storm peak HS ) for 76 hindcasts at

4095 locations on a 65 × 63 regular grid over the North West Shelf (NWS) of Western Australia for the period 1970-2007,

corresponding to a spatial domain of approximately 4◦ longitude by 4◦ latitude. Physical considerations again suggest

that setting the number of spline coefficients at p = px py pθ = 18 × 18 × 32 is reasonable. Based on stability analysis of

GP shape and 100-year return value with threshold non–exceedance probability, we chose a non-exceedance threshold

probability of 0.5 for extreme value analysis. The extreme value threshold is found to be approximately constant in

space and direction at around 3.5m. However, the rate of threshold exceedance shows obvious spatial and directional

variation, largest in the north-west for storms emanating from the west. Estimates for extreme value shape parameter are

lower for NWS compared with GoM, suggesting that the distribution of storm peak HS is more heavy-tailed in GoM.

Return value distributions for the 100-year event, estimated by simulation, indicate omnidirectional return values from

8m to 9m, with highest values in the east and north-east. The largest return values occur for cyclones from the west, and

lowest for storms from the south-west.

6. Discussion

Non-stationary marginal extreme value modelling for complete ocean basins is computationally complex, necessit-

ating the estimation of millions of parameters, and large simulations under fitted models for return value estimation and

uncertainty analysis. In this paper, we adopt two computational strategies to make this analysis feasible and orders of

magnitude more efficient than naive approaches. Using generalised linear array methods, we reduce the computational

burden of matrix manipulations of tensor products of spline bases. Using high-performance computing, we develop a

parallel implementation of maximum likelihood estimation for the generalised Pareto distribution. We apply the meth-

odology to marginal spatio-directional extreme value modelling of storm peak significant wave heights for the Gulf

of Mexico and North West Shelf of Australia. Using the methodology, metocean design conditions can be estimated

for large spatial grids of locations, incorporating the effects of non-stationarity, adjusting for spatial dependence and

uncertainty analysis in a sound and consistent fashion. In this sense, the methodology is a considerable improvement

on current practice. For preliminary design at least, the methodology offers the possibility that previously-computed

extreme value parameter and return value estimates might be browsed interactively via a suitable user interface through-

out an ocean basin, providing immediate design criteria and removing the need for the metocean engineer to perform

extreme value analysis at all.

12



Rel. Longitude

-5 0 5

R
e

l.
 L

a
ti
tu

d
e

-1

0

1

N
NE

E

SE
S

SW

W

NW

0

5

10

15

20

25

30

(a)

Rel. Longitude

-5 0 5

R
e
l.
 L

a
ti
tu

d
e

-1

0

1

N
NE

E

SE
S

SW

W

NW

Rel. Longitude

-5 0 5

R
e
l.
 L

a
ti
tu

d
e

-1

0

1

N
NE

E

SE
S

SW

W

NW

(b) (c)

Figure 8: Spatio-directional plots for quantiles of the 100-year return value distribution for the Gulf of Mexico: (a) median, (b) 2.5 and (c) 97.5

percentiles respectively. In each figure, the lower panel shows the omnidirectional estimate per location, and the 8 upper panels show estimates per

directional sector per location for 8 directional octants centred (from left to right, top to bottom) on storms from NW, N, and NE; W and E; SW, S and

SE respectively. The common colour scale (in metres) is shown in (a).
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Figure 9: Validation of spatio-directional model by (a) spatial and (b) directional comparison of cumulative distribution functions (cdfs) for return

value distributions of the original sample (red) with those from 1000 realisations under the model corresponding to the same time period as the original

sample, shown in terms of the median (solid grey) and 95% uncertainty band (dashed grey). Figure (a) corresponds to omni-directional comparisons

for a 3×3 grid of locations in the spatial domain, the relative longitudes and latitudes of which are given in the panel titles. The second pair of numbers

in the panel title gives the number of observed and (average) simulated observations. Figure (b) gives a comparison of distributions for directional

octants (for the same 3× 3 grid of locations) centred (from left to right, top to bottom) on NW, N, and NE; W and E; SW, S and SE respectively. Panel

titles give the number of observed and (average) simulated observations. Return values are measured in metres.
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It is important to consider the extent to which the capability to estimate large-scale non-stationary extreme value

models rapidly, demonstrated here, is practically useful. From an engineering perspective, the consistency offered by

application of a single basin-wide analysis is very attractive compared to ad-hoc analyses (often stationary) for single

locations. However, it is also clear that a high spatial and directional resolution exists beyond which further increases

in resolution are of little value. For example, directionally, the characteristics of storms are approximately stationary

within a 20◦ − 30◦ sector in general; this suggests that, for extreme value analysis of storm severities, a directional

resolution of approximately 10◦ is probably sufficient in general. Similarly, spatial characteristics of storm severity are

approximately stationary within a 100km neighbourhood in general, suggesting a limiting practical spatial resolution.

Moreover, the characteristics of the sample from which inferences are to be made also obviously suggests limits to

our ability to resolve non-stationary features. An important advantage of a non-parametric smoothing approach is the

avoidance of the need for model comparison as a means of model selection. Penalised likelihood estimation provides

optimally smooth parameter functions for a given sample. In this particular application, both the generalised Pareto

shape and scale parameters are indeed near constant, but the rate of occurrence of threshold exceedances is clearly non-

stationary. In other applications this may not be the case. The non-parametric penalised likelihood approach is equally

and generally applicable.

There are considerable opportunities for application and further development of this approach. The current work

addresses extreme value modelling of one variate (e.g. storm peak HS ) conditional on multidimensional covariates

(e.g. space-direction). Other recent work (e.g. [JER13]) has outlined how the method can be extended to the conditional

modelling of one variate (e.g. storm peak current speed) given extreme values of another (e.g. storm peak HS ) and one or

more covariates (e.g. current direction, storm direction and season). Further, spatial dependence models (e.g. [DPR12])

seek to characterise extremal spatial dependence across multiple locations as well as marginal non-stationarity. Such

models are central to good metocean design; they are computationally even more complex than the current model, and

would benefit considerably from the computational improvements developed here.
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A. Formulation of Spline Model

We represent model parameter η on the index set of m

covariate bins as a linear combination of smoothly varying

basis functions in matrix B for the covariate domain and

spline coefficient vector γ, such that

η = Bγ . (A.11)

A1. Quantile Regression

A smoothing spline through empirical quantiles per co-

variate bin is used as a starting solution for quantile regres-

sion whose penalised lack of fit criterion is

ℓ∗φ = ℓφ + λφRφ (A.12)

where Rφ is the roughness parameter and λφ a roughness

penalty. Lack of fit for a given quantile level τ ∈ [0, 1]

(τ = 0.5 implies 50% quantile or median level) is given by

ℓφ(τ) = τ
∑

ri≥0

|ri| + (1 − τ)
∑

ri<0

|ri| (A.13)

where ri is the residual expressed in basis function terms

as

ri = yi − (Bγ)i . (A.14)

To estimate the quantile function we solve

min
γ
{τ
∑

ri≥0

|y− B′γ|+ (1− τ)
∑

ri<0

|y− B′γ|+ λγ′Pγ} (A.15)

using unconstrained optimization for a range of λ, using

cross-validation to estimate the optimal λ∗ and the corres-

ponding γ∗. The quantile threshold on the index set is then

computed by

φ = Bγ∗ . (A.16)

A2. Poisson Process

The number of threshold exceedances on the index set

of covariate combinations is characterised by the approx-

imate Poisson (negative log) likelihood ([CDD05])

ℓζ =
∑

j

(

ρ j∆ − c j log ρ j

)

(A.17)

where c j is the number of occurrences in covariate bin j

and ρ j the corresponding rate of occurrence to be estim-

ated. ∆ is the volume element of the covariate bin. Putting

r = Bζ and r j =
√
ρ j to impose non-negativity of rate, the

penalised (negative log) likelihood is

ℓ∗ζ =
∑

j

(

r2
j∆ − c j log r2

j

)

+ λζζ
′Pζ . (A.18)

Applying the Newton-Raphson formulation as described

in §A3, we estimate the Poisson parameter as a rearrange-

ment of

2B′(Bζ̂0∆ −
c

r̂0

) + λPζ̂0 + (2B′(∆ +
c

r̂2
0

)B + λP)(ζ̂ − ζ̂0) = 0

(A.19)

yielding the iterative step for ζ̂ given current value r̂0 = Bζ̂0

ζ̂ = 2

[

B′diag
(

∆ +
c j

r̂2
0 j

)

+ λζP

]−1

B′vec
( c j

r̂0 j

)

. (A.20)

A3. Generalised Pareto Model

The generalised Pareto (GP) distribution of threshold

exceedance y of high threshold φ is

P(Y > y|Y > φ) =
(

1 +
ξ

σ
(y − φ)

)− 1
ξ

(A.21)

for real shape ξ and positive scaleσ, such that 1+
ξ

σ
(y−φ) >

0. The penalised GP likelihood function is

ℓ∗ξ,σ = ℓξ,σ + λξRξ + λσRσ (A.22)

with negative log GP likelihood

ℓξ,σ =
∑

i

logσi + (
1

ξi
+ 1) log(1 +

ξi

σi

(yi − φi)) . (A.23)

GP parameters are expressed as

ξ = Bα , and (A.24)

ν = Bβ

where ν = σ(1 + ξ) is such that ξ and ν provide a pair of

asymptotically uncorrelated (and independently-distributed)

parameter estimates, greatly simplifying the Newton-Raphson

computation (see, e.g., [JRWE14]). Equation (A.22) can

be written

ℓ∗α,β = ℓα,β + λαα
′Pα + λββ

′Pβ . (A.25)

The solution is obtained with a back-fitting algorithm by

applying Newton-Raphson to likelihood scores ∂ℓ
∂βa

for para-

meter βa (a = 1, 2, ..., p)

∂ℓ

∂βa

∣

∣

∣

∣

∣

β̂

=
∂ℓ

∂βa

∣

∣

∣

∣

∣

β0

+
∑

b

∂2ℓ

∂βaβb

∣

∣

∣

∣

∣

β0

(β̂b − β0,b) = 0 (A.26)

Computing components for the Newton-Raphson formula-

tion (A.26)

u∗j =
∂ℓ∗

∂α j

=
∂

∂α j

(

ℓα,β + λαα
′Pα + λββ

′Pβ
)

=
∂ℓ

∂α j

+ λαPα

=
∑

k

∂ℓ

∂ξk

∂ξk

∂α j

+ λαPα (A.27)

Using
∂ξk
∂α j
= B from (A.24) and ∂ℓ

∂ξk
= uξ,

u∗j = B
′
uξ + λαPα (A.28)

Further

∂u∗
j

∂αl

=
∂2ℓ∗

∂α j∂αl

=
∂

∂αl

(

B′uξ + λαPα
)

= B′
∂

∂αl

(

∂ℓ

∂ξk

)

+ λαP

= B′
∂

∂ξl

(

∂ℓ

∂ξk

)

.
∂ξk

∂α j

+ λαP . (A.29)
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With Hξ = − ∂2ℓ
∂ξ j∂ξl

and
∂ξk
∂α j
= B,

∂2ℓ∗

∂α j∂αl

= −B′HξB + λαP . (A.30)

Substituting the values from (A.28) and (A.30) into (A.26)

(

B′Hξ̂0 B − λαP
)

(α̂ − α̂ξ0 ) = B
′
uξ̂0 + λαPα̂0 . (A.31)

Rearranging and cancelling the λαPα0 term, yields the it-

erative algorithm for estimating α̂ from the current α̂0

α̂ =

(

B′Hξ̂0 B − λαP
)−1(

B
′
uξ̂0 + B′Hξ̂0 Bα̂0

)

. (A.32)

Similarly the iterative step for estimating β̂ from β̂0 is

β̂ =

(

B′Hν̂0 B − λβP
)−1(

B
′
uν̂0 + B′Hν̂0 Bβ̂0

)

. (A.33)
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