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Abstract

Modelling of complex corroding industrial systems is critical to effec-
tive inspection and maintenance for assurance of system integrity. Wall
thickness and corrosion rate are modelled for multiple dependent cor-
roding components, given observations of minimum wall thickness per
component. At each inspection, partial observations of the system are
considered. A Bayes Linear approach is adopted simplifying parameter
estimation and avoiding often unrealistic distributional assumptions. Key
system variances are modelled, making exchangeability assumptions to fa-
cilitate analysis for sparse inspection time-series. A utility based criterion
is used to assess quality of inspection design and aid decision making. The
model is applied to inspection data from pipework networks on a full-scale
offshore platform.

1 Introduction and motivation

Large industrial systems are susceptible to corrosion, leading to economic and
environmental costs which can be mitigated by careful inspection and main-
tenance. Modelling these complex systems can improve the effectiveness of
inspection and maintenance activities, providing a rational decision framework
and preventing costly failures. Such systems can be thought of as collections
of separate units or components. Most attempts to model corrosion concen-
trate on modelling wall thickness and corrosion rate for individual components.
However, the corrosion behaviour of components is often interrelated, because,
for example, of common usage, location or age. This relation can be exploited
to improve the quality of inspection information. Moreover, inspections are
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difficult and expensive, and rarely carried out system-wide; historical data for
individual components is rather limited, but the number of components is often
large.

Consider a decision problem where an inspection design has to be specified.
A particular inspection design, d, states which components are to be inspected.
To quantify the value of a particular design, the benefit of reducing uncertainty
about the current state of the system and thus reducing any potential loss
incurred from component failures using that design is considered. The increased
knowledge of the system must be balanced against the cost of the inspection.
If the cost of gaining information about the system is greater than the benefit
then it is not worth carrying out the inspection. The question which then arises
is how to quantify the value of reducing the system integrity. Here the expected
utility of any particular design is evaluated for this purpose.

Industry guidelines (e.g. [1] and [2]) treat the modelling of corrosion very
generally, yet there is a vast body of engineering literature on this subject. [3]
outline mathematical expressions for initiation and evolution of different cor-
rosion mechanism, including pitting and cracking. [4] discuss inspection and
maintenance decisions based on imperfect inspection within a Bayesian frame-
work using gamma processes. [5] provide a corrosion model describing the cor-
rosion process on steel structures. [6] present a Bayesian approach using partial
inspections only. A number of authors discuss the inclusion of inspection data
and expert judgement within a risk-based inspection framework. For example,
[7] present an approach to estimating system condition for inspection planning
purposes using a combination of inspection observations and expert judgement,
and [8] describes generic approaches to risk-based inspection of steel structures.

Prior belief specification for large problems is usually very difficult. Even in
small problems, with few sources of uncertainty, it can be difficult to estimate
a satisfactory full joint prior probability specification over all of the possible
outcomes. In practical problems, there may be hundreds of relevant sources of
uncertainty about which prior judgements are made. In such problems, it is
arguably impossible for us to carry out a full Bayesian analysis. If such a full
prior specification were possible, it would often be the case that the specification
was too time consuming and too difficult to check. Further, the resulting Bayes
analysis would often be extremely computer intensive, particularly in areas such
as experimental design. The Bayes linear approach is particularly appropriate
whenever the full Bayes approach requires an unnecessarily exhaustive descrip-
tion and analysis of prior uncertainty. The Bayes linear approach can be viewed
as either (a) offering a simple approximation to a full Bayes analysis, for prob-
lems where the full analysis would be too difficult or time consuming, or (b)
complementary to the full Bayes analysis, offering a variety of new interpreta-
tive and diagnostic tools which may be of value whatever our viewpoint, or (c)
a generalisation of the full Bayes approach where the artificial constraint that
requires a full probabilistic prior specification is lifted.

In the current work modelling a relatively low-dimensional system is con-
sidered, with straight-forward forms for the observation and system evolution
equations 2, for purposes of illustration only. In this case a full Bayesian anal-
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ysis could have been conducted. In practice, however, systems are generally
large and model structure can be complex (for example with non-linear or non-
invertible functions in observation equations). In these cases, full prior specifi-
cation would be difficult, and full Bayesian analysis would be computationally
intractable. Bayes linear modelling however still provides a feasible approach.
[9] provides a detailed reference for Bayes linear methodology, and [10] simi-
larly gives comprehensive coverage of dynamic linear models (DLM). [11] uses
a multivariate DLM to characterise the corrosion of large industrial storage
tanks, using observations of component minima, and suggests approaches to
optimal inspection planning. [12] describes the application of a spatio-temporal
DLM to modelling the corrosion of an industrial furnace using Bayes linear
updating. Empirical distance-based estimates for covariances of DLM observa-
tion and system variances are used, and optimal inspection planning based on
heuristic criteria is considered. [13] discusses Bayes linear methods for grouped
multivariate repeated measurement studies with application to cross-over trials.
[14] discusses variance learning for a univariate linear growth DLM, and [15]
describes Bayes linear covariance matrix adjustment for a multivariate constant
DLM.

A simple dynamic linear model for corrosion is considered in section 2. In
sections 3 and 4 it is shown how to update system levels and carry out vari-
ance learning using Bayes linear methods. A utility based criterion for efficient
inspection schemes is discussed in section 5. Providing an efficient method for
evaluating the quality of inspection designs. Designs incorporating both expec-
tation and variance learning are considered in section 5.5. An example based
on corrosion assessment for an offshore platform is considered in section 6.

2 Model

Consider inspection of a collection of components over time. A linear growth
DLM, is used for the system level, Xct, and system slope αct, for component, c,
at time t. Observations of the system state, Yct, are made subject to measure-
ment error of the form, σY εY ct. The model equations are,

Observation: Yct = Xct + σY εY ct

System level: Xct = Xc(t−1) + αct + σXcεXct

System slope: αct = αc(t−1) + σαcεαct,

where σY is the measurement error standard deviation and σXc and σαc are the
standard deviations for component-wise system evolution. Further,

E[εY ct] = 0 E[εXct] = 0 E[εαct] = 0

Var[εY ct] = 1 Var[εXct] = 1 Var[εαct] = 1,
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Cov[εY ct, εY c′t] = γY cc′ c 6= c′ Cov[εY ct, εY c′t′ ] = 0 t 6= t′ ∀c, c′

Cov[εXct, εXc′t] = γXcc′ c 6= c′ Cov[εXct, εXc′t′ ] = 0 t 6= t′ ∀c, c′

Cov[εαct, εαc′t] = γαcc′ c 6= c′ Cov[εαct, εαc′t′ ] = 0 t 6= t′ ∀c, c′,

where εY ct, εXct and εαct are mutually uncorrelated random variables. System
evolution is controlled by the system evolution residuals σXcεXct and σαcεαct.
Other than this specification, no distributional assumptions are required for
the model within the Bayes Linear framework; partial specification of (prior)
beliefs is sufficient. Nevertheless, even this specification is a challenge in gen-
eral. Incorporated in the current work are (a) estimates from analysis of similar
corrosion circuits, and (b) expert judgements from corrosion engineers familiar
with models of this form, as a basis for prior specification. This model form is
considered to be adequate to illustrate the general methodology for the current
application, but note that it can be enhanced in various ways. For example,
the system slope terms may be restricted to be non-positive, corresponding to
non-increasing wall thickness. However, in practice there are situations (e.g. un-
documented component replacement or repair) in which allowing unconstrained
variation of system slope terms is advantageous. Transformations of variables
may also be considered in cases where our prior beliefs consistent with these, or
if preliminary modelling work suggested this.

3 Bayes linear analysis

Full prior belief specification for modelling complex systems can be difficult or
impractical. Bayes linear analysis provides a framework for modelling based
around partial belief specification, similar in spirit to a full Bayes approach.
Bayes linear analysis also provides a computationally efficient method for up-
dating beliefs in applications where a full Bayes approach would be intractable.
Bayes linear analysis can be viewed as a generalisation of the full Bayes approach
which relaxes the requirement for full probabilistic prior specifications.

In Bayes linear analysis, expectation rather than probability is treated as a
primitive quantity [16]; prior beliefs are specified in terms of means, variances
and covariances. Beliefs about a vector B, given observations on a vector D are
updated via the adjusted expectation, ED(B);

ED(B) = E(B) + Cov(B,D)(Var(D))−1(D − E(D)),

and the adjusted variance matrix is given by VarD(B),

VarD(B) = Var(B)− Cov(B,D)(Var(D))−1Cov(D,B).

For the model, in section 2, given inspection data, Yd, from an inspection design
d, updated beliefs about current system level and system slope, EYd

(Xct) and
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EYd
(αct) are computed;

EYd
(Xct) = E(Xct) + Cov(Xct, Yd)[Var(Yd)]−1(Yd − E(Yd))

EYd
(αct) = E(αct) + Cov(αct, Yd)[Var(Yd)]−1(Yd − E(Yd)).

4 Bayes linear variance learning

4.1 Squared linear combinations of observations

The Bayes linear approach can be used to learn about variance structures.
Squared linear combinations of observations, involving only observation and sys-
tem evolution residual terms can be specified, which facilitate variance learning.

Assuming observations equally spaced in time, consider, for component, c,
the one step time difference, given by:

Y
(1)
ct = Yct − Yc(t−1) = Xct −Xc(t−1) + σY εY ct − σY εY c(t−1)

= αct + σXcεXct + σY
(
εY ct − εY c(t−1)

)
= αc(t−1) + σαcεXct + σXcεXct + σY

(
εY ct − εY c(t−1)

)
,

and two step difference, given by:

Y
(2)
ct = Yct − Yc(t−2) =Xct −Xc(t−2) + σY εY ct − σY εY c(t−2)

=αct +Xc(t−1) −Xc(t−2) + σXcεXct

+ σY
(
εY ct − εY c(t−2)

)
=αct + αc(t−1) + σXc

(
εXct + εXc(t−1)

)
+ σY

(
εY ct − εY c(t−2)

)
=2αc(t−1) + σαcεXct + σXc

(
εXct + εXc(t−1)

)
+ σY

(
εY ct − εY c(t−2)

)
,

and so the linear combination of differences:

Y
(2)
ct − 2Y

(1)
ct =− σαcεXct + σXc

(
εXct − εXc(t−1)

)
+ σY

(
2εY c(t−1) − εY ct − εY c(t−2)

)
,

gives an expression involving only the residuals and standard deviations, the
square of which is informative for variance learning. Let

Dct = (Y
(2)
ct − 2Y

(1)
ct )2.

The expectation of which for all, t is,

E [Dct] = σ2
αc + 2σ2

Xc + 6σ2
Y .
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To apply Bayes linear adjustment to squared residuals, judgements about fourth
order moments are required. In general, specification of high order moments
is difficult. Nevertheless, over time, as the body of evidence from analyses of
corroding systems accumulates, improvements this specification. could be made.
For simplicity, moments are assumed to be equal to those of a standard normal
distribution; then E(ε4Xct) = 3, E(ε4αct) = 3, E(ε4Y ct) = 3; it can then be shown
that:

Var [Dct] = σ4
αc + 8σ2

αcσ
2
Xc + 24σ2

αcσ
2
Y + 48σ2

Xcσ
2
Y + 8σ4

Xc + 72σ4
Y , (1)

and the covariance between squared linear combinations at different times is
given by:

Cov
[
Dct, Dc(t−1)

]
= 32σ4

Y + 16σ2
Xcσ

2
Y + 2σ4

Xc (2)

Cov
[
Dct, Dc(t−2)

]
= 2σ4

Y (3)

Cov
[
Dct, Dc(t−k)

]
= 0 where k ≥ 3. (4)

For a vector of observations, Yc = (Yc1, Yc2, . . . , YcT )
T

the vector of squared
differences, Dc, is defined as Dc = (Dc1, Dc2, . . . , DcT−2)

T
.

More generally, for inspections that are incomplete and irregularly spaced in
time, with arbitrary 4th order moment specification, the analysis can be carried
out as above, as illustrate in the appendix A.

4.2 Exchangeable error structures

Exchangeability is a central concept in the subjective theory of probability.
In essence, exchangeability assumptions in a subjective analysis, (such as the
current) provide a version of the mathematical framework corresponding to
independence assumptions in classical inference [16]. For Bayes linear analysis,
where only partial beliefs need to be specified, assumptions for error structures
are restricted to exchangeability of first and second order quantities.

Means, variances and covariances of a second order exchangeable sequence,
X = X1, X2, . . . , are invariant under permutation. Under the assumption of
second-order exchangeability, the second order exchangeability representation
theorem, [17], can be used to express the quantities, Xi, in terms of the sum of
two uncorrelated random quantitiesM(X) and Ri(X) which may be viewed as
underlying population mean and discrepancies from the mean respectively.

Given a collection of quantities, X = X1, X2, . . ., an infinite second order
exchangeable sequence with

E(Xi) = µ Var(Xi) = Σ Cov(Xi, Xj) = Γ i 6= j,

each Xi can be expressed as:

Xi =M(X) +Ri(X),

where M(X) is a random vector known as the population mean with:

E(M(X)) = µ Var(M(X)) = Γ,
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and the collection Ri(X) is also second order exchangeable with:

E(Ri(X)) = 0 Var(Ri(X)) = Σ− Γ,

Each pair Ri and Rj are uncorrelated i 6= j and each Ri is uncorrelated with
M(X).

4.3 Bayes linear variance learning

To update beliefs about the variances within the system, in the case of short
time series, it is necessary to share information across components within the
system. To do this, beliefs need to expressed, about the relationship between
variances within the model, this is achieved by assuming exchangeability of the
variances. Second order exchangeability of system level evolution variance, σ2

Xc,
over components is assumed. This leads to representation statements for the
variance of every component, c = 1, 2, ...C:

σ2
Xc = VXc =M(VX) +Rc(VX),

where:

E(σ2
Xc) = µVX

Var(σ2
Xc) = ΣVX

Cov(σ2
Xc, σ

2
Xc′) = ΓVX

, c 6= c′.

The adjusted expectation ED(M(VX)) gives an updated estimate of the system
level evolution variance, σ2

Xc. For the case described in section 4.1:

ED(M(VX)) = E(M(VX)) + Cov(M(VX), D)(Var(D))−1(D − E(D))

= µVX
+ 2(ΓVX

. . .ΓVX
)(Var(D))−1(D − 1C(σ2

αc + 2σ2
Xc + 6σ2

Y )),

where:

D =


D1

D2

...
DC

 ,

and Var(D) can be found using equations 1, 2, 3 and 4. The adjusted variance
is then:

VarD(M(VX)) = Var(M(VX))− Cov(M(VX), D)(Var(D))−1Cov(D,M(VX))

= ΓVX
− 4(ΓVX

, . . . ,ΓVX
)(Var(D))−1(ΓVX

, . . . ,ΓVX
)′,

and the amount of variation resolved by D is given by

RVarD(M(VX)) = Cov(M(VX), D)(Var(D))−1Cov(D,M(VX))

= 4(ΓVX
, . . . ,ΓVX

)(Var(D))−1(ΓVX
, . . . ,ΓVX

)′.

In the general case, appendix A gives the corresponding expressions to use.

7



5 Efficient inspection

5.1 The decision problem

Consider the problem of designing an efficient inspection scheme. Its value is
assessed in terms of reducing uncertainty about system state, thus minimising
potential losses from component failure. In this section, mean updating for a
single component using adjusted variance in considered. For collections of com-
ponents, summation over components allows evaluation of complete designs. In
section 5.5, a design approach also incorporating variance learning is presented.

To simplify the inspection problem, suppose that there are two possible
outcomes, o ∈ O, namely failure, F , or survival, F̄ per system component.
System maintenance involves replacing a component, decision R, or leaving it
alone, R̄. Replacing a component incurs cost, LR, whereas component failure
costs LF . Furthermore when a component fails it also needs replacing, i.e.
LR ≤ LF . This cost structure can be summarised as:

F F̄
R LR LR
R̄ LF 0

That is, the four possible decisions are:

1. Replace component when it would have failed; cost LR

2. Replace component when it wouldn’t have failed; cost LR

3. Don’t replace component and it fails; cost LF

4. Don’t replace component and it doesn’t fail; cost 0

5.2 Utility and expected loss

Utility quantifies preferences concerning different uncertain rewards. Loss is
negative utility. In a space of possible decisions ∆ = {R, R̄}, the best decision
procedure, δ∗, has maximum utility or minimum loss. For design d, yielding
inspection data, Yd, the expected loss of decision δ(Yd) is:

E[L(O, δ(Yd))] = E{E[L(O, δ(Yd))]|Yd}
= E{L(F, δ(Yd))P (F |Yd) + L(F̄ , δ(Yd))P (F̄ |Yd)}. (5)

The component is replaced, decision R, if E[L(O,R)|Yd] < E[L(O, R̄)|Yd].

E[L(O,R)|Yd] = E{L(F,R)P (F |Yd) + L(F̄ , R)P (F̄ |Yd)} = LR

E[L(O, R̄)|Yd] = E{L(F, R̄)P (F |Yd) + L(F̄ , R̄)P (F̄ |Yd)} = LFP (F |Yd).

Hence, the component is replaced if LR < LFP (F |Yd), i.e.:

δ∗(Yd) =

{
R if p(F |Yd) ≥ ρ
R̄ if p(F |Yd) < ρ

where ρ =
LR
LF

.
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Let q(Yd) = P (F |Yd), the probability of failure given current system ob-
servations. From equation 5 the expected loss of the optimal decision, δ∗(Yd),
is:

E[L(O, δ∗(Yd))] =E{L(F, δ∗(Yd))P (F |Yd) + L(F̄ , δ∗(Yd))P (F̄ |Yd)}
=E{L(F, δ∗(Yd))q(Yd) + L(F̄ , δ∗(Yd))(1− q(Yd))}

=E

[
L(F, δ∗(Yd))q(Yd)+

L(F̄ , δ∗(Yd))(1− q(Yd))
∣∣∣∣q(Yd) ≥ ρ]P (q(Yd) ≥ ρ)+

+ E

[
L(F, δ∗(Yd))q(Yd)+

L(F̄ , δ∗(Yd))(1− q(Yd))
∣∣∣∣q(Yd) < ρ

]
P (q(Yd) < ρ)

=LRP (q(Yd) ≥ ρ) + LFE[q(Yd)|q(Yd) < ρ]P (q(Yd) < ρ)

=LR

∫ 1

ρ

p(q(Yd))dq(Yd) + LF

∫ ρ

0

q(Yd)p(q(Yd))dq(Yd)

=LRI1 + LF I2. (6)

Therefore calculation of the expected loss of decision δ∗, requires evaluation of
integrals I1 and I2 as explained in section 5.3, appendix B.

5.3 Evaluating expected loss

A component is deemed to have failed if the system level falls below some critical
value WC . The probability of component failure before some future time t+ k
is:

q(Yd) = P (F |Yd) = P (Xt+k < WC |Yd),

where Xt+k is the unknown future system level at time t + k. To evaluate
integrals I1 and I2 from equation 6 expressions for q(Yd) and its probability
distribution, p(q(Yd)) are required, which can be evaluated for any proposed
design. This is achieved using a combination of Bayes Linear analysis and
appropriate distributional assumptions.

For inspection data Yd, the adjusted mean and variance are:

EYd
(Xt+k) = E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)

−1(Yd − E(Yd))

VarYd
(Xt+k) = Var(Xt+k)− Cov(Xt+k, Yd)Var(Yd)

−1Cov(Yd, Xt+k).

Note that the adjusted variance, VarYd
(Xt+k) depends only on prior beliefs and

the specific design, d. It does not depend on the observed inspection data,
Yd. However, the adjusted expectation, EYd

(Xt+k), depends directly on Yd.
Bayes Linear analysis is therefore also used to update beliefs about its mean,

9



E(EYd
(Xt+k)), and variance, Var(EYd

(Xt+k)). For the adjusted mean:

E(EYd
(Xt+k)) =E(E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)

−1(Yd − E(Yd)))

=E(Xt+k) + Cov(Xt+k, Yd)Var(Yd)
−1(E(Yd)− E(Yd))

=E(Xt+k).

To find the adjusted variance Var(EYd
(Xt+k)), use:

Var(Xt+k) = Var
(
EYd

(Xt+k) +Xt+k − EYd
(Xt+k)

)
= Var(EYd

(Xt+k)) + Var(Xt+k − EYd
(Xt+k))

= Var(EYd
(Xt+k)) + VarYd

(Xt+k),

so that:
Var(EYd

(Xt+k)) = Var(Xt+k)−VarYd
(Xt+k).

These expressions for the first and second moments of Xt+k, and it adjusted
expectation EYd

(Xt+k), given specific distributional assumptions for these vari-
ables, permit calculation of I1 and I2. The forms of I1 and I2, under normal
distribution assumptions, are given in section B of the appendix.

5.4 Design selection

Total inspection cost incorporates expected loss from above, along with other
costs associated with the process of carrying out inspections. For example,
any inspection will involve setup costs. Inspection of some components will be
more costly. Different designs might involve inspection of different numbers of
components. Optimal designs should be selected with respect to total inspection
cost, not only expected loss. To calculate the total loss for an inspection design,
expected loss for each component is summed component-wise and added to the
associated inspection cost. It is possible therefore to quantify the value of any
design, d prior to carrying it out, and to search for good designs.

A method of searching efficiently for good designs from the space of designs
is required. For example, even in the current simple case, with a binary decision
for each component, there are 2n potential designs to choose from. Stepwise
addition of components is one tractable search strategy; components are added
sequentially to an empty starting design, such that at each step, the component
added minimises the incremental total inspection cost. Alternatively a step-
wise deletion, or any of a large number of possible search algorithms may be
considered. In general, the authors have found that a combination of stepwise
addition and deletion works relatively well in practice.

5.5 Designing for variance learning

Good inspection designs can be found which simultaneous learn about system
expectation and variance. It is clear that designs for variance learning will have
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different characteristics to those discussed so far. When learning about system
levels, good inspection designs favour inspecting components with high risk of
failure or components with high system level uncertainty. When learning about
variances however, observing a component several times to improve a variance
estimates may be beneficial.

The following approach is used in the current work to select good designs
for simultaneous expectation and variance learning:

1. Observe the system until time t and update beliefs about system mean
and variance’s.

2. Choose a design d, update beliefs about system to time t+ k given design
d, using expectation and variance learning. Find the adjusted and resolved
variance for given design as in section 4.3.

3. Specify a distribution for system level standard deviation given design d,
pd(σX). Beliefs about the mean value of, σX , given the design have mean,
µσ, and variance, RVard(M(VX), the resolved variance given design, d. A
Gamma distribution is fitting with this mean and variance.

σX ∼ Γ

(
µ2
σ

RVard(M(VX)
,

RVard(M(VX)

µσ

)
.

4. Evaluate the expected loss of design d:

E[L(O, δ∗(Yd))] =

∫
E[L(O, δ∗(Yd), σX)]pd(σX)dσX ,

where E[L(O, δ∗(Yd), σX)] is the evaluation of E[L(O, δ∗(Yd)] from equa-
tion, 6 for a given σX . This is approximated by a discretised version of
the Γ distribution using a range of values for σX = {σX1 . . . σXn},:

E[L(O, δ∗(Yd))] =
n∑
i=1

E[L(O, δ∗(Yd), σX)]p(σXi),

with centre of mass located at each of choices of σXi, where:

pd(σX1) = P (Γ ≤ σX1 + σX2

2
)

pd(σX2) = P (Γ ≤ σX2 + σX3

2
)− P (Γ ≤ σX1 + σX2

2
)

pd(σXi) = P (Γ ≤
σXi + σX(i+1)

2
)− P (Γ ≤

σX(i−1) + σXi

2
)

pd(σXn) = 1− P (Γ ≤
σX(n−1) + σXn

2
).

For each choice of σXi the expected loss of the design is calculated using
the method in section 5.
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5. Search across the space of designs, d, to choose design which minimises
total expected loss.

6 Example

An application of the method to analysis of inspection data from a full-scale
offshore platform is now considered. For inspection and maintenance purposes,
the installation is considered as a set of corrosion circuits, {Ci}, each consisting
of multiple components for inspection. For the current application, a system of
four corrosion circuits is modelled, consisting of a total of 64 pipe-work weld
components.

Historical data for component minimum wall thickness, obtained during in-
spection campaigns using non-intrusive ultrasonic measurements for the period
1998 - 2005, are available. Based on the frequency of observations and the re-
quirements for inspection planning, a monthly time-increment is used for mod-
elling; the historical period therefore consists of 83 time points.

The actual historical inspection design is given in figure 1. From the figure
it is clear that inspections are typically incomplete and irregularly spaced in
time. A total of 174 observations of the system are available, corresponding to
short time-series per component. A full set of prior system beliefs is given in
appendix C. These represent a genuine attempt to put meaningful values on all
of the uncertainties.

Figure 2 illustrates Bayes linear updating for a single component of the
system, ignoring the influence of other components. The critical wall thickness
Wc, corresponding to component failure, is shown as a horizontal dotted line at
4mm. Actual inspections of the component are shown as black circles. Light
grey lines show prior beliefs for the mean (solid) and uncertainties (dashed) of
system state, Xct. Comparing prior beliefs with observation, it can be seen that
corrosion rate is over-estimated initially. Dark grey lines show beliefs for the
mean (solid) and uncertainties (dashed) of Xct after updating our beliefs using
the inspection data. Updating reduces the corrosion rate and our uncertainty
about Xct. As a result, the expected time of ”failure” for this component is
further into the future than initially estimated.

In this example the cost of 3 different inspection designs are compared;

1. no inspection

2. full inspection

3. inspection of half the system i.e. every other component

In practice a large number of designs would be compared to try to find the
optimal inspection scheme and this example is merely for illustration.

Figure 3 shows the discretised gamma used to generate probabilities to
weight expected loss estimates.

12



Let

LR = 1 LF = 100;

so the cost of component failure is 100 times the cost of replacement, repre-
senting vital system components. The cost of setting up an inspection is 0.01
per component inspected, so for design 2 (full inspection) to be worthwhile the
increased information about the system has to outweigh the increased cost.

In this case

Design Total Expected Loss
no inspection 1.8774
full inspection 1.8633

every other comp 1.9176

so in this case a full system inspection is the best since the risk component
failure is more costly.

Consider another case

LR = 1 LF = 5;

so the cost of component failure is only 5 times the cost of replacement, repre-
senting less important system components. The cost of setting up an inspection
is also more expensive at 0.1 per component inspected.

In this case

Design Total Expected Loss
no inspection 1.0415
full inspection 7.2471

every other comp 4.1348

Here, due to the less costly nature of the components, a design without any
inspection, is best.

7 Discussion

A method has been presented for learning about the mean and variances within
a linear growth DLM using historical data. Using updated system estimates, a
method was proposed to give a quick way of estimating the value of inspection
designs, designing for both mean and variance learning using discretised gamma
probabilities.

It is noted that variance learning can be achieved using different squared
linear combinations of observations. In this work a single linear combination
is used. In future it would be interesting to consider variance learning using
multiple linear combinations from the same data. To do so reliably would require
evaluation of variances and covariances between those linear combinations.

To estimate expected loss (section 5.3), integrals I1 and I2 are calculated
(equation 6 and Appendix B) by making normality assumptions. In future, a
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direct Bayes Linear updating the probability and expectation corresponding to
I1 and I2 (equation 6) will be considered. The utility function used here is
also particularly simple, and would need to be generalised in practice to more
adequately represent the complexity of decisions in reality. For example, the
assumption that the only possible remedial action is component replacement
is rather simplistic. In reality, components can be repaired to various extents.
Further, individual components are not usually replaced; rather, continuous
sections (or spools) consisting of multiple components would be replaced. In
addition, the costs associated with decisions are themselves subject to uncer-
tainty. At present, expected loss in calculated per component, rather than across
components. Any enhancement to the utility function used would need to retain
the ability to estimate loss without recourse to full simulation, so that efficient
search of the design space is possible.
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A Generalised variance updating

More generally in the case of irregular and partial inspections we can find sim-
ilar types of linear combinations as discussion in section 4. The system state
equations of the DLM can be rewritten to tell us about time steps longer than
one step, thus;

Yct =
(

1 0
)( X

α

)
ct

+ σY εY ct(
X
α

)
ct

=

(
1 k
0 1

)(
X
α

)
c(t−k)

+
k−1∑
i=0

(
1 i
0 1

)(
σXεX + σαεα

σαεα

)
ct−i
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We have observations for component c,

{Yct1 , Yct2 , . . . , YctTc
}

at times
{t1, t2, . . . , tTc

}

then taking differences;

Y (ki)
c =Ycti − Yc(ti−ki)

=
(

1 0
)
Xcti −

(
1 0

)
Xc(ti−ki) + σY

(
εY cti − εY c(ti−ki)

)
=
(

1 ki
)
Xc(ti−ki) −

(
1 0

)
Xc(ti−ki)

+
(

1 0
)
ξc(ti,ti−ki) + σY

(
εY cti − εY c(ti−ki)

)
=
(

0 ki
)
Xc(ti−ki) +

(
1 0

)
ξc(ti,ti−ki) + σY

(
εY cti − εY c(ti−ki)

)
=
(

0 ki
)
Xc(ti−li) +

(
0 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) + σY

(
εY cti − εY c(ti−ki)

)
where

ξc(ti,ti−ki) =

ki−1∑
i=0

(
1 i
0 1

)(
σXεX + σαεα

σαεα

)
cti−i

and

Y (li)
c =Ycti − Yc(ti−li)

=
(

1 0
)
Xcti −

(
1 0

)
Xc(ti−li) + σY

(
εY cti − εY c(ti−li)

)
=
(

1 ki
)
Xc(ti−ki) −

(
1 0

)
Xc(ti−li)

(
1 0

)
ξc(ti,ti−ki)

+ σY
(
εY cti − εY c(ti−li)

)
=
(

0 li
)
Xc(ti−li) +

(
1 ki

)
ξc(ti−ki,ti−li) +

(
1 0

)
ξc(ti,ti−ki)

+ σY
(
εY cti − εY c(ti−li)

)
Now to eliminate the effects of the wall thickness term we consider the linear

combination;

kiY
(li)
c − liY (ki)

c =ki
[ (

0 li
)
Xc(ti−li) +

(
1 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) + σY

(
εY cti − εY c(ti−li)

) ]
− li

[(
0 ki

)
Xc(ti−li) +

(
0 ki

)
ξc(ti−ki,ti−li)

+
(

1 0
)
ξc(ti,ti−ki) + σY

(
εY cti − εY c(ti−li)

)]
=
(

(ki − li) 0
)
ξc(ti,ti−ki) +

(
ki ki(ki − li)

)
ξc(ti−ki,ti−l)

+ kiσY
(
εY cti − εY c(ti−li)

)
− liσY

(
εY cti − εY c(ti−ki)

)
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We can show that

Var[ξc(ti,ti−ki)] =

ki−1∑
i=0

Var

[(
1 i
0 1

)(
σXεX + σαεα

σαεα

)
cti−i

]

=

ki−1∑
i=0

(
1 i
0 1

)(
σ2
X + σ2

α σ2
α

σ2
α σ2

α

)(
1 0
i 1

)
=

(
kiσ

2
X + 1

6ki(ki + 1)(2ki + 1)σ2
α

1
2ki(ki + 1)σ2

α
1
2ki(ki + 1)σ2

α kiσ
2
α

)

Then

E[(kiY
(li)
c − liY (ki)

c )2] =(ki − 1)2[kiσ
2
X +

σ2
αki(ki + 1)(2ki + 1)

6
]

+k2
i

[
(li − ki)σ2

X

+
σ2
α(li − ki)(li − ki + 1)(2(li − ki) + 1)

6

]
+2k2

i

[
(ki − li)σ2

X +
σ2
α(li − ki)(li − ki + 1)

2

]
+k2

i (ki − li)2(li − ki)σ2
α

+
(
2l2i − 2kili + 2k2

i

)
σ2
Y

=
kili(ki − li)(2k2

i − 2li − 1)

6
σ2
α + kili(li − ki)σ2

X

+2
(
l2i − kili + k2

i

)
σ2
Y (7)

To update our beliefs about about the variance we compute ED(M(VX))
which is similar to the full inspections case, where

Dct = (kiY
(li)
c − liY (ki)

c )2

and

D =

 D11

...
DCT


ED(M(VX)) = E(M(VX)) + Cov(M(VX), D)(Var(D))−1(D − E(D))

where from equation 7

E(Dct) =
kili(ki − li)(2k2

i − 2li − 1)

6
σ2
α + kili(li − ki)σ2

X + 2
(
l2i − kili + k2

i

)
σ2
Y
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, also
E(M(VX)) = σ2

X

and

Cov[M(VX), D] = (Cov[M(VX), D11],Cov[M(VX), D12], . . . ,Cov[M(VX), DCT ])

Cov[M(VX), Dtc] =Cov
[
M(VX), (kiY

(li)
c − liY (ki)

c )2
]

=Cov

[
M(VX),

((
(ki − li) 0

)
ξc(ti,ti−ki)

+
(
ki ki(ki − li)

)
ξc(ti−ki,ti−li)+

+kiσY
(
εY cti − εY c(ti−li)

)
− liσY

(
εY cti − εY c(ti−ki)

))2
]

=kili(li − ki)ΓVX

and

VarD(M(VX)) = Var(M(VX)) + Cov(M(VX), D)(Var(D))−1Cov(D,M(VX))

where Var(D) is evaluated as in section 4.1, but with irregular time steps and
4th order moment specification and

Var(M(VX)) = ΣVX

B Evaluating Expected Loss under Normality

Expressions for the first and second moments of Xt+k, and its adjusted ex-
pectation EYd

(Xt+k) are given in section 5.3. Henceforth, these quantities are
assumed to be normally distributed:

Xt+k(Yd) ∼ N(µt+k(Yd), σ
2
t+k)

µt+k(Yd) ∼ N(E(Xt+k),Var(Xt+k)− σ2
t+k)

where

µt+k(Yd) = EYd
(Xt+k) σ2

t+k = VarYd
(Xt+k)

From equation 6 expected loss for a given design, d, is given by.

E[L(O, δ∗(Yd))] = LR

∫ 1

ρ

p(q(Yd))dq(Yd) + LF

∫ ρ

0

q(Yd)p(q(Yd))dq(Yd)

= LRI1 + LF I2
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B.1 Evaluating I1

The probability of component failure is given by

q(Yd) = P (F |Yd) = P (Xt+k < WC |Yd)

Therefore using the normality and standardising

P (Xt+k < WC |Yd) = P

(
Xt+k − (µt+k|Yd)

σt+k|Yd
<
WC − (µt+k|Yd)

σt+k|Yd

∣∣∣∣Yd)
q(Yd) = Φ

(
WC − (µt+k|Yd)

σt+k|Yd

)
(8)

Let z =
WC − (µt+k|Yd)

σt+k|Yd
(9)

Then

E(z) = E

(
WC − (µt+k|Yd)

σt+k

)
=

WC − E(µt+k|Yd)
σt+k

=
WC − E(Xt+k)

σt+k
= µz

Var(z) = Var

(
WC − (µt+k|Yd)

σt+k

)
=

Var(µt+k|Yd)
σ2
t+k

=
Var(Xt+k)−VarYd

(Xt+k)

σ2
t+k

= σ2
t+k

So to calculate I1

I1 =

∫ 1

ρ

p(q(Yd))dq(Yd) = P (q(Yd) ≥ ρ)
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Then from equations 8 and 9

P (q(Yd) ≥ ρ) = P

[
Φ

(
WC − (µt+k|Yd)

σt+k|Yd

)
≥ ρ
]

= P (Φ(z) ≥ ρ)

= P (z ≥ Φ−1(ρ))

= P

(
z − µz
σz

≥ Φ−1(ρ)− µz
σz

)
= 1− Φ

(
Φ−1(ρ)− µz

σz

)
= Φ

(
µz − Φ−1(ρ)

σz

)

B.2 Evaluating I2

Continuing from equations 8 and 9, the expression for I2 becomes:

I2 =

∫ ρ

0

q(Yd)p(q(Yd))dq(Yd)

=

∫ Φ−1(ρ)

−∞
Φ(z)fq(Φ(z))φ(z)dz

where fq(Φ(z)) is given by the derivative of Fq = P (q(Yd) < x) and φ(z) is the
standard normal density:

P (q(Yd) < x) = P

[
Φ

(
WC − (µt+k|Yd)

σt+k|Yd

)
< x

]
= P (Φ(z) < x)

= P (z < Φ−1(x))

= P

(
z − µz
σz

<
Φ−1(x)− µz

σz

)
= Φ

(
Φ−1(x)− µz

σz

)

Therefore:

fq =
dFq
dx

=
d

dx

[
Φ

(
Φ−1(x)− µz

σz

)]
=

1

σz
φ

(
Φ−1(x)− µz

σz

)
× 1

φ(Φ−1(x))
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Then:

I2 =

∫ Φ−1(ρ)

−∞
Φ(z)fq(Φ(z))φ(z)dz

=

∫ Φ−1(ρ)

−∞
Φ(z)

1

σz
φ

(
Φ−1(Φ(z))− µz

σz

)
× 1

φ(Φ−1(Φ(z)))
φ(z)dz

=

∫ Φ−1(ρ)

−∞
Φ(z)

1

σz
φ

(
z − µz
σz

)
× 1

φ(z)
φ(z)dz

=

∫ Φ−1(ρ)

−∞
Φ(z)φ

(
z − µz
σz

)
dz

σz

C Prior Values for offshore structure applica-
tion

number of components N 64
number of time points T 83
total number of inspections 174
wall thickness variance µWX

0.12

measurement error variance σ2
Y 0.162

local corrosion variance σ2
r 0.12

D Table of Notation

Symbol Description
c component in the system
d observational inspection design
o outcome
q probability of failure
t time point
C total number of components in the system
Dc data vector for component c
Dct data vector for component c at time t
ED[B] adjusted expectation of beliefs B given data D
F failure of component
F̄ survival of component
I1 integral in expected loss calculation
I2 integral in expected loss calculation
L loss function (negative utility)

continued on next page
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continued from previous page

Symbol Description
LF loss incurred through component failure
LR loss incurred through component replacement
O outcome space
R decision to replace a component
R̄ decision no to replace a component
RVarD[B] variance resolved by updating of B given data D
T total time points
Xct system level for component c at time t
VX exchangeability of across variances
VarD[B] adjusted variance of beliefs B given data D
WC critical system state
Yc vector of observations for component c
Yct observation of system state for component c at time t
Yd observed inspection data given a design d
Y (i) i step difference of observations Yct − Yc(t−i)
αct system slope for component c at time t
γXcc′ system level covariance between component c and c′

γY cc′ observation covariance between component c and c′

γαcc′ system slope covariance between component c and c′

δ decision
δ∗ optimal decision
εXct system level evolution residual for component c and time t
εY ct measurement error residual for component c and time t
εαct system slope evolution residual for component c and time t
µVX

E(σ2
Xc) in second order exchangeability representation

ρ loss ratio LR

LF

σXc system level standard deviation for component c
σY measurement error standard deviation
σαc system slope standard deviation for component c
ΓVX

Cov(σ2
Xc, σ

2
Xc′) in second order exchangeability representa-

tion
∆ space of decisions
M “population mean” vector in representation theorem
R “population residual” vector in representation theorem
ΣVX

Var(σ2
Xc) in second order exchangeability representation
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Figure 1 

\caption{Inspection design for the offshore application, consisting of 64 components over 83 time 

points. Black lines correspond to 174 observations of the system.} 

 

Figure 2  

\caption{Bayes linear updating for a single component of the system. Light grey lines show prior 

beliefs for the mean (solid) and uncertainties (dashed) of system state, dark grey lines show beliefs 

for the mean (solid) and uncertainties (dashed) of $X_{ct}$ after updating our beliefs using the 

inspection data,  $Y_{d}$.} 

 

Figure 3 

\caption{Discretised gamma distribution for distribution of future variances.} 
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