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We propose a simple piecewise model for a sample of peaks-over-threshold, non-stationary with respect to
multidimensional covariates, estimated using a carefully-designed computationally-efficient Bayesian inference.
Model parameters are themselves parameterised as functions of covariates using penalised B-spline represen-
tations. This allows detailed characterisation of non-stationarity extreme environments. The approach gives
similar inferences to a comparable frequentist penalised maximum likelihood method, but is computationally
considerably more efficient and allows a more complete characterisation of uncertainty in a single modelling
step. We use the model to quantify the joint directional and seasonal variation of storm peak significant wave
height at a northern North Sea location, and estimate predictive directional-seasonal return value distributions
necessary for the design and reliability assessment of marine and coastal structures.

1 Introduction

Bayesian inference provides an intuitive framework for environmental applications of extreme value analysis,
allowing e.g. incorporation of prior knowledge and thorough uncertainty quantification within a single inference
step, predictive inference, and when carefully designed a computationally efficient inference. Coles and Powell
(1996) and Stephenson (2016) provide useful reviews. There are many applications of Bayesian inference for
extreme value models in the literature. For example, Coles and Tawn (1996) reports a Bayesian analysis of
extreme rainfall data. Coles and Tawn (2005) estimates extreme surges on the UK east coast for improved flood
risk assessment, Cooley et al. (2006) explores Bayesian extremes in lichenometry as a means of understanding
climate change, Scotto and Guedes-Soares (2007) estimates the distributions of significant wave height and
Mendes et al. (2010) considers extremes of wild-fires. Beirlant et al. (2004) and Northrop et al. (2015) consider
the specification of objective priors for extreme value model parameters, and Smith and Walshaw (2003) of
informative priors. Davison et al. (2012) consider Bayesian hierarchical models for spatial extremes.

Extreme value models describe the tails of distributions; using a sample of peaks over threshold, only the
largest values are generally used in extreme value estimation. Choice of extreme value threshold is therefore
generally critical (e.g. Scarrott and MacDonald 2012). For descriptions of whole samples, mixture models and
piecewise distributions are attractive. For example, Frigessi et al. (2002) uses a dynamic mixture model for fire
loss data comprising a generalised Pareto (GP) tail and a Weibull body, and Behrens et al. (2004) considers a
piecewise distribution comprised of a parametric form for the body of data and a GP tail. MacDonald et al.
(2011) proposes a piecewise distribution in which a kernel density estimate for the body is used in conjunction
with a GP tail. In oceanographic applications, many distributional forms have been proposed for wave height
and significant wave height, motivated by observation and physical considerations. Forristall (1978), Haver
(1985), Smith and Naylor (1987), Battjes and Groenendijk (2000), Ferreira and Guedes Soares (2000), Prevosto
et al. (2000), Scotto and Guedes-Soares (2000) and Guedes-Soares and Scotto (2001) provide useful examples.
The Weibull distribution is often used to model ocean current speed and wind speed. Monahan (2006) shows
the Weibull distribution to be a fair approximation for surface wind speeds, and Chu (2008) uses the Weibull
to model upper tropical Pacific current speeds. Ashkenazy and Gildor (2011) finds the Weibull distribution to
be a good approximation of ocean current speeds and highlights the effect of covariates. Morgan et al. (2011)
explores the performance of different distributions for wind speeds.
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Incorporating non-stationarity, or the effect of covariates, in extreme value analysis is also important (e.g.
Davison and Smith 1990, Jonathan et al. 2008). Anderson et al. (2001) describes a seasonal model for return
values of significant wave height. Covariate effects are considered in Coles and Walshaw (1994) for directional
wind speeds, and in Mendez et al. (2008) for seasonal significant wave height. Exploration of temporal non-
stationarity in extremes can also be found in Renard et al. (2006), Cheng et al. (2014) and Ortego Martinez et al.
(2014). There are many ways to parameterise non-stationary effects in statistical models, including penalised
B-splines. Ugarte et al. (2012) and Oumow et al. (2012) use this formulism to estimate smooth parameter
variation, the latter within a mixture model. Bayesian penalised B-splines as described by Brezger and Lang
(2006) are particularly useful for the current work.

A plethora of different MCMC algorithms (e.g. Gamerman and Lopes 2006) is available to sample from pos-
terior distributions. Here, we adopt a combination of different sampling schemes to achieve good computational
efficiency and chain mixing, including direct Gibbs sampling of full conditional distributions and Metropolis-
Hastings (MH) within Gibbs. We find it advantageous in MH sampling from some full conditionals to exploit
gradient and curvature information to improve the quality of proposals. Where possible, we employ the Riemann
manifold Metropolis-adjusted Langevin algorithm (mMALA) as described by Girolami and Calderhead (2011)
and Xifara et al. (2014). Estimation schemes which exploit gradient and curvature information for problematic
functions such as the GP likelihood are recommended (e.g. Jones et al. 2016).

The objective of the current work is to develop a simple whole-sample model for independent observations
given multidimensional covariates, incorporating the generalised Pareto form for exceedances of a non-stationary
threshold. The model is needed to estimate distributions of return values corresponding to long return periods,
for use in the design and reliability assessment of marine and coastal structures. A major consideration in
the development of the methodology is ease-of-use and computational efficiency for full-scale oceanographic
applications for sample sizes from 103 to 107 with at least a two-dimensional (e.g. directional-seasonal) covariate
domain.

The article is arranged as follows. Section 2 provides a motivating application to modelling of storm-peak
significant wave height events at a location in the northern North Sea, subject to directional and seasonal
variability in the rate and magnitude of occurrence of events. Section 3 introduces a piecewise truncated
Weibull - generalised Pareto model for the size of events (Section 3.1), and a Poisson process model for the
rate of occurrence of events (Section 3.2). Model parameters are non-stationary with respect to covariates,
parameterised in terms of the tensor product of B-spline bases for the directional-seasonal covariate domain
(Section 3.3). The specification of prior distributions for model parameters is discussed in Section 3.4, and
Bayesian inference in Section 3.5. Application to the northern North Sea data is outlined in Section 4. Discussion
and conclusions, including comments on a comparative study at this location and in the South China Sea, are
given in Section 5. The appendix describes key elements of the inference scheme in more detail.

2 Motivating application

Significant wave height measures the energy (or roughness) of the ocean surface, and can be defined as four times
the standard deviation of the ocean surface elevation at a spatial location for a specified period of observation.
The application sample is taken from the WAM hindcast of Reistad et al. 2011, which provides time-series of
significant wave height, (dominant) wave direction and season (defined as day of the year, for a standardised year
consisting of 360 days) for three hour sea-states for the period September 1957 to December 2012 at a northern
North Sea location. (A hindcast is a physical model of the ocean environment, incorporating pressure field, wind
field and wind-wave generation models in particular; the hindcast model is calibrated to observations of the
environment from instrumented offshore facilities, moored buoys and satellite altimeters in the neighbourhood of
the location for a period of time, typically decades.) Aarnes et al. (2012) and Breivik et al. (2013) study extreme
value characteristics of storm severities from the hindcast. Extreme sea states in the North Sea are dominated
by winter storms originating in the Atlantic Ocean and propagating eastwards across the northern part of the
North Sea. Due to their proximity to the storms, sea states at northern North Sea locations are usually more
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intense than in the southern North Sea. Occasionally, the storms travel south-eastward and intrude into the
southern North Sea producing large sea states. Directions of propagation of extreme seas vary considerably
with location, depending on land shadows of the British Isles, Scandinavia, and the coast of mainland Europe,
and fetches associated with the Atlantic Ocean, Norwegian Sea, and the North Sea itself. In the northern
North Sea the main fetches are the Norwegian Sea to the North, the Atlantic Ocean to the west, and the North
Sea to the south. Extreme sea states from the directions of Scandinavia to the east and the British Isles to
the south-west are not possible. The shielding by these land masses is more effective for southern North Sea
locations, resulting in a similar directional distribution but reduced wave heights by comparison with northern
North Sea locations.

Storm peak significant wave height characteristics are isolated from the hindcast time-series using the pro-
cedure described in Ewans and Jonathan (2008), for a location offshore Norway at a latitude exceeding 62◦.
Contiguous intervals of significant wave height above a low peak-picking threshold are identified, each interval
now assumed to correspond to a storm event. The peak-picking threshold corresponds to a directional-seasonal
quantile of significant wave height with specified non-exceedance probability, estimated using quantile regres-
sion. The maximum of significant wave height during the storm interval is taken as the storm peak significant
wave height (HS for brevity in this work). The values of directional and seasonal covariates at the time of storm
peak significant wave height are referred to as storm peak values of those variables. The resulting storm peak
sample consists of 2941 values of HS . With direction from which a storm travels expressed in degrees clockwise
with respect to north, Figure 1 shows a map of the region and plots of HS (in metres) versus direction and
season.

It can be seen that the land shadow of Norway (approximately the directional interval (45◦, 210◦)) has a
considerable effect on the rate and size of occurrences with direction. In particular, there is a dramatic increase
in both rate and size of occurrences with increasing direction at around 210◦, corresponding to Atlantic storm
events from the south-west able to pass the Norwegian headland. We therefore should expect considerable
directional variability in model parameter estimates for the sample. In contrast, the magnitude of the rate of
change of both rate and size of occurrences with respect to season is lower; this should also be reflected in model
parameters. Winter storms (approximately from October to March) are more intense and numerous.

3 Model

3.1 Size of exceedance

The magnitude y of HS peaks-over-threshold events is assumed to follow a non-stationary piecewise (or two part)
distribution, the form of which is motivated by both physical and statistical considerations. Wave models derived
from theory or estimated historically from measurements (Section 1) suggest that a suitably-parameterised
Weibull distribution provides an adequate representation for the body of the distribution of individual wave
heights, crest elevations and storm severities (such as HS). Moreover, asymptotic theory suggest that an extreme
value model is required to describe the largest threshold exceedances. We therefore specify the piecewise model
as follows.

For response y, non-exceedances of some threshold ψ are assumed to be distributed according to a non-
stationary three-parameter truncated Weibull (TW) distribution with scale α (> 0), shape γ (> 0), pre-specified
location ζ (< ψ), and support [ζ, ψ]. Threshold exceedances of ψ are assumed to be distributed according to
a non-stationary generalised Pareto (GP) distribution with scale σ (> 0), shape ξ (∈ R) and support (ψ, y+)
(where y+ = ψ − σ

ξ for ξ < 0 and = ∞ otherwise). Note that all of α, γ, σ, ξ and ζ will be assumed to be
smoothly-varying functions of direction and season in due course.

The corresponding probability density function

f(y|τ, α, γ, σ, ξ) =

{
τ × fTW (y|τ, α, γ) for y ∈ [ζ, ψ]

(1− τ)× fGP (y|τ, α, γ, σ, ξ) for y ∈ (ψ, y+)
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is similar to the (stationary) model of Behrens et al. (2004). The pre-specified location parameter ζ is omitted
from this description since it is not inferred; in the current work, ζ corresponds to a non-stationary “peak-
picking” threshold used for storm peak identification prior to model estimation (Section 2). The factors τ and
(1− τ) in the piecewise density serve to weight the relative contributions of the TW and GP parts; parameter
τ corresponds to the extreme value threshold non-exceedance probability assumed stationary with respect to
covariates, providing a scalar transition to describe the transition from TW to GP. τ is estimated as part of the
inference.

Below extreme value threshold ψ, y follows a truncated Weibull distribution with density

fTW (y|τ, α, γ) =
fW (y|α, γ)

FW (ψ|α, γ, τ)
for y ∈ [ζ, ψ]

where

fW (y|α, γ) =
γ

α

(
y − ζ
α

)γ−1
exp

(
−
(
y − ζ
α

)γ)
.

Note the threshold ψ is specified as ζ + α (− log (1− τ))−1/γ such that

FW (ψ|α, γ, τ) = 1− exp

(
−
(
ψ − ζ
α

)γ)
= τ always.

Above extreme value threshold ψ, y follows a generalised Pareto distribution with density

fGP (y|τ, α, γ, σ, ξ) =
1

σ

(
1 +

ξ

σ
(y − ψ)

)−1/ξ−1
for y ∈ (ψ, y+).

In practice, we choose to carry out computations with ν = σ(1 + ξ) in place of σ. This choice is motivated by
fact that, with ξ > −0.5, maximum likelihood estimates for ν and ξ are asymptotically independent, simplifying
their joint estimation compared with joint estimation of σ and ξ. Nevertheless, (derived) estimates for σ will
in general be reported and visualised below where possible for ease of interpretation.

3.2 Rate of occurrence

The rate of occurrence of all events (both exceedances and non-exceedances of threshold ψ) are assumed to follow
a non-stationary Poisson process with rate ρ varying with direction and season. For events on covariate domainD
(Section 3.3) at locations r = {ri}ni=1, the Poisson process likelihood is f(r|ρ) = exp

(
−
∫
D ρ(r)dr

)∏n
i=1 ρ(rj).

Following Chavez-Demoulin and Davison (2005), we approximate this integral by evaluating it on the index
set of m directional-seasonal sub-intervals of area d, assuming d small enough so that ρ is constant on each
sub-interval. Then, for a vector of counts c = {ck}mk=1 of occurrences on the index set

f(c|ρ) = exp

(
−d

m∑
k=1

ρk

)
m∏
k=1

ρckk ,

where ρ = {ρk}mk=1 is the corresponding Poisson count rate.

3.3 Spline parameterisation

Physical considerations suggest we should expect model parameters ρ, α, γ, ν and ξ to vary smoothly with
respect to directional and seasonal covariates (whereas threshold non-exceedance probability τ is assumed
stationary). For estimation, this can be achieved by expressing each parameter in terms of an appropriate basis
for the domain D of covariates, where D = D2 × D1. D1 = D2 = [0, 360) are the (marginal) domains of storm
direction and season respectively under consideration. We calculate a m1 × p1 periodic marginal B-spline basis
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matrix B1 for an index set of m1 = 50 directional locations, and a m2 × p2 periodic marginal B-spline basis
matrix B2 for an index set of m2 = 50 seasonal locations, yielding a total of m (= m1m2) combinations of
covariate values in the index set on D. Following the work of Eilers and Marx and coauthors (e.g. Marx and
Eilers 1998, Eilers et al. 2006 and citations thereof), we define the m×p basis matrix B (where p = p1p2) for D
using the tensor product B = B2⊗B1. The value of any parameter vector η on the 2D index set can therefore
be expressed as Bβη for some p × 1 vector βη of spline parameters. Model estimation reduces to estimating
appropriate sets of spline parameters for each η ∈ {ρ, α, γ, σ, ξ}. Here, marginally for periodic directional and
seasonal bases, we set p1 = p2 = 10, although we also considered p1 = p2 = 20 (and m1 = m2 = 100) to confirm
lack of sensitivity of inferences to this choice.

In any single covariate dimension j (= 1, 2), the roughness R◦ηj of any pj×1 spline parameter vector β◦ηj can

be evaluated on the index set of mj locations as R◦ηj = β◦ηj
′P ◦ηjβ

◦
ηj where P ◦ηj is a pj × pj penalty matrix of the

form P ◦ηj = D◦ηj
′∆◦ηjD

◦
ηj . D

◦
ηj is a rj×pj difference matrix, taken in this work to be a first order difference, such

that D◦ηjβ
◦
ηj yields a rj × 1 vector of differences between values of consecutive elements of β◦ηj . ∆◦ηj is a rj × rj

diagonal matrix with the rj × 1 vector of roughness penalties δ◦ηj on its leading diagonal, ∆◦ηj = diag(δ◦ηj). In
this work, since both directional and seasonal domains are periodic, we have rj = pj , j = 1, 2.

Spline roughness Rη on D can be expressed in terms of marginal characteristics using tensor products.
We extend the marginal difference matrices using Dη1 = I2 ⊗D◦η1 and Dη2 = D◦η2 ⊗ I1, where I1 and I2
are respectively p1 × p1 and p2 × p2 identity matrices. The extended p × p penalty matrices become P ηj =
Dηj

′∆ηjDηj , j = 1, 2. ∆η1 is a p2r1 × p2r1 diagonal matrix, the leading diagonal of which is the vector
of spline penalties δη1. ∆η2 is defined analogously. The overall spline roughness penalty matrix on D is
P η = λη1P η1 + λη2P η2 for spline roughness penalty coefficient vector λη = (λη1, λη2). Pη is used as the prior
precision matrix for spline coefficients βη. Random roughness penalties, as opposed to fixed penalties of unit
size, promote better mixing of the MCMC chain (see Brezger and Lang 2006).

The computational burden of the matrix manipulations above can become restrictive as m and p increase.
Fortunately, using generalised linear array methods (GLAM, Currie et al. 2006) we avoid the need ever to
calculate the full m × p basis matrix B, since Bβη is equivalent (after rearrangement) to Bη1M(βη)B

′
η2,

where M(βη) is a p1 × p2 rearrangement of the p× 1 vector βη.

3.4 Prior specification

The following prior specification is made for τ , the components of vectors δη1, δη2 and the scalars λη1, λη2 for
η ∈ {ρ, α, γ, ν, ξ}. The extreme threshold non-exceedance probability τ follows beta distribution B(aτ , bτ ), with
fixed parameters. This distributional form is suitable for the description of a probability since it has range [0, 1].
The choice of parameters aτ , bτ was motivated by the requirement to have sufficient sample to estimate the
generalised Pareto parameters well (i.e. τ relatively small) but also ensure reasonable extreme value tail fit (i.e.
τ relatively large). The Supplementary Material accompanying this article provides further discussion of this
topic. The two components of positive-valued spline roughness penalty coefficient vector λη are assumed to be
gamma-distributed Γ(aλ, bλ) independently and identically. This choice of prior ensures that the corresponding
full conditional distributions are available in closed form, enabling Gibbs sampling. The distribution of the
spline roughness penalty vector δη is not inferred; its positive-valued components are taken to follow gamma
distribution Γ(aδ, bδ) identically and independently. This distributional form, and the parameter values for
aδ, bδ were recommended by Brezger and Lang 2006 and adopted here following some confirmatory exploratory
analysis. Further description of prior specification, including values for aτ , bτ , aδ, bδ, aλ and bλ is given in the
Appendix.

In addition, the vector of spline parameters βη corresponding to η ∈ {ρ, α, γ, ν, ξ} is distributed with density

proportional to exp(−1
2β
′
ηPηβη) (Brezger and Lang 2006), where penalty matrix Pη is a function of δη and λη

(Section 3.3).
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Figure 2: Directed acyclic graph for truncated Weibull - generalised Pareto inference of event magnitude.

cβρ

λρ

δρ

Figure 3: Directed acyclic graph for Poisson inference of event rate of occurrence.

3.5 Inference

For a sample y of event sizes, we estimate the model described in Section 3 with spline representations of the
form η = Bβη on the index set of covariate locations, for parameters η ∈ {ρ, α, γ, ν, ξ}. The roughness of each η
with respect to directional and seasonal covariates respectively is regulated using the 2×1 roughness coefficient
vector λη (itself inferred) and spline penalties δη (drawn at random from an assumed known distribution). In
addition, the non-exceedance probability τ corresponding to the extreme value threshold is estimated. The
full parameter set is therefore Ω = {τ,βα, δα,λα,βγ , δγ ,λγ ,βν , δν ,λν ,βξ, δξ,λξ}. Inference can be expressed
conveniently in terms of a directed acyclic graph (DAG). The analogous representation for a sample c of event
rates is

The posterior distribution of model parameters is not available in closed form for either event size or rate
of occurrence. Posterior inference is therefore made using Monte Carlo Markov chain (MCMC) by sampling
from full conditionals as detailed in the Appendix and outlined below. When full conditionals are available
in closed form, we use Gibbs sampling; otherwise, we use Metropolis-Hastings (MH) in Gibbs. When the
function to be sampled is particularly problematic (e.g. posteriors for GP shape and adjusted scale), we exploit
function gradient and curvature information if possible to generate MH proposals efficiently. In particular, full
conditional distributions for the spline roughness penalty coefficients λη = (λη1, λη2) are available in closed
form, permitting Gibbs sampling. With gamma prior specification (Section 3.4), the posterior distribution is
Γ(aηj + 1

2rank(P η), bηj + 1
2β
′
ηPηβη).

At each iteration of the MCMC chain, we sample in turn from the full conditional distribution of extreme
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threshold non-exceedance probability τ , the spline parameters βρ, then spline roughness penalties δρ, then
spline roughness penalty coefficients λρ for Weibull scale α. Then we sample from the corresponding triplets of
parameters for TW shape α and shape γ, and GP shape ξ and adjusted scale ν. We experimented with different
orderings of parameters and found there to be little difference in performance. Further algorithmic details are
given in the Appendix.

4 Application

The model of Section 3 was applied to the northern North Sea application sample. The posterior distribution
of parameters was estimated using MCMC, incorporating 20000 burn-in iterations, with the same number of
subsequent iterations to estimate the posterior. Visual inspection of individual MCMC chains suggested good
mixing; informal comparisons of multiple chains confirmed satisfactory convergence. Figure 4 shows directional-
seasonal plots for posterior median TW, GP and Poisson rate parameter estimates, and prior (dashed red)
and posterior densities for extreme value threshold non-exceedance probability (τ). The strong directional
variability of rate of occurrence is most apparent, compared to more modest seasonal variation. TW and
GP scale parameter estimates both indicate large event magnitudes at around 270◦, corresponding to storms
from the Atlantic. The GP shape parameter estimate is approximately −0.14, typical for northern North Sea
locations. The posterior distribution of non-exceedance probability is relatively similar to its prior, implying
that the sample provides relatively little evidence for the value of this parameter.

Figure 5 shows estimated posterior densities for directional and seasonal (dashed red) spline roughness
penalty coefficients for TW, GP and Poisson rate parameters. Directional and seasonal densities for TW and
GP shape parameters are very similar, suggesting that the same degree of spline roughness with respect to
either covariate is appropriate. However, seasonal roughness penalties for TW and GP scale parameters are
higher than directional roughness penalties, indicating that scale parameters show more directional variability.

Using the estimated posterior distribution f(Ω|y, c) of parameters Ω given sample {y, c}, we can estimate
predictive distributions for HS and the maximum of HS corresponding to any return period of interest by simu-
lation under the estimated model. For response y∗ of interest, with known density f(y∗|Ω) potentially restricted
to a specified (joint) covariate interval, the posterior predictive density f(y∗|y, c) of y∗ is

∫
f(y∗|Ω)f(Ω|y, c)dΩ.

Figure 6 illustrates model validation by comparison of estimates for the distribution of HS corresponding to the
period of the original sample. The empirical estimate, found simply from sorting the original sample and shown
as a solid red curve, is in good agreement with predictive simulations under the model, both omni-directionally
and for 8 directional octants. Agreement is also good between the actual numbers of events observed in each
directional sector examined and the corresponding median number of simulated events.

Figure 7 gives a directional-seasonal plot for the predictive distribution of the 100-year maximum. The
left-hand panel shows directional and seasonal variability of the median estimate from multiple realisations of
time-series of period 100 years under the directional-seasonal model. The right hand panel summarises seasonal
variation of the predictive distribution for each of 8 directional octants. Again, there is systematic directional
and seasonal variation present. For design purposes, extreme value inferences are usually reported in terms of
directional and seasonal return value distributions, for return periods such as 100 years (Figure 8). Return value
estimates such are these are critical for design and reliability assessments of marine and coastal structures. They
indicate the need to consider directional and seasonal variability of extreme ocean environments to maximise
safety and operability. They can also be used as a basis for decision making concerning the relative risk of
different short-term marine operations.

5 Discussion and conclusions

We report the development of a simple piecewise model for a sample of peaks-over-threshold, non-stationary
with respect to multidimensional covariates, estimated using Bayesian inference. We demonstrated the utility
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of the model in application to a directional-seasonal analysis of storm peak significant wave height at a northern
North Sea location, and estimation of predictive directional-seasonal return value distributions necessary for
the design and reliability assessment of marine and coastal structures.

These authors have performed a number of recent analyses similar to that reported here using maximum
likelihood inference, incorporating cross-validation to estimate optimal spline roughness penalty coefficients
and an all-encompassing bootstrap scheme to estimate uncertainties in model parameters and return values
(e.g. Jonathan et al. 2014, Feld et al. 2015). In particular, we have performed a direct comparison of maximum
likelihood and Bayesian inference for the South China Sea application (reported in Randell et al. 2015), obtaining
good agreement for model parameter and return value estimates. Moreover, maximum likelihood inferences for
the northern North Sea location considered here are provided in the Supplementary Material accompanying this
work, again showing good agreement between maximum likelihood and Bayesian inferences. In comparison with
these recent studies, the current Bayesian approach appears to offer a number of advantages. Firstly, inference is
computationally considerably less demanding than maximum likelihood inference incorporating cross-validation
and bootstrapping, particularly for estimation of spline roughness penalty coefficients. Model and return value
estimation for a single MCMC chain can be completed in 30 minutes using modest computational resources (e.g.
a single core PC with 2.7GHz processor and 4GB RAM, running MATLAB software in Microsoft Windows 7).
Secondly, it appears that inference schemes which sample a function in a random but directed fashion, rather
that seeking function minimum deterministically, provide more stable estimation for the models and samples
considered. Finally, for the Bayesian scheme, estimation of different spline roughness penalty coefficients for
each model parameter in each (marginal) covariate is straightforward; achieving the same within the maximum
likelihood setting would be computationally more demanding. Numerous improvements and enhancements
of the approach are currently under consideration. The choice of distributional form for the “body” part
of the piecewise density somewhat arbitrary, although there is physical reasoning supporting the choice of
Weibull distribution. In the current formulation, the piecewise density is discontinuous at the extreme value
threshold ψ, although the cumulative distribution function is continuous on (ζ, y+) for given values of covariates.
Estimation of spline roughness penalties (δη for η ∈ {ρ, α, γ, ν, ξ}) as in Brezger and Lang (2006) might be
considered, although sampling from the prior performs well. Estimating δη would come at some computational
cost however because of the large number of penalties involved. From an applications perspective, current work
is centred on evaluating the approach for higher-dimensional covariates (e.g. longitude, latitude, direction and
season), enabling coherent (marginal) spatial analysis over large spatial domains (e.g. Raghupathi et al. 2016).

Additional information and supplementary material for this article is available online at the journals website.
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Appendix

For the models described in Section 3 for event size and rate of occurrence, with parameter set Ω, full conditional
distributions to be sampled are

f(τ |y,Ω \ τ) ∝ f(y|τ,Ω \ τ)× f(τ)

f(βη|y,Ω \ βη) ∝ f(y|βη,Ω \ βη)× f(βη|δη,λη)
f(λη|y,Ω \ λη) ∝ f(βη|δη,λη)× f(λη)
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where η is each of ρ, α, γ, ν and ξ in turn, and the distribution of δη is assumed known (Section 3.4). We generate
a sample from the posterior distribution of Ω by sampling sequentially from the full conditional distributions
for τ , then the triplets of vectors {βη,λη, δη} for η ∈ {ρ, α, γ, ξ, ν} in order, a large number of times. By
construction, the full conditional for λη is available in closed form for all choices of η (Brezger and Lang 2006),
and hence Gibbs sampling is used. Sampling δη from its (prior) distribution is also straightforward. Sampling
from full conditionals for τ and βη for η ∈ {ρ, α, γ, ξ, ν} is achieved using MH in Gibbs. For any parameter (or
vector of parameters) ω, we accept transition from state ω to ω∗ with probability

min

(
1,
f(ω∗|Ω \ ω∗)g(ω∗ → ω)

f(ω|Ω \ ω)g(ω → ω∗)

)
for proposal density g. For sampling of spline parameter vectors, correlated proposals are essential to reasonable
chain mixing especially for larger problems. Proposals are generated using in one of two ways. For η ∈ {α, γ},
random walk MH proposals β∗η given current state βη take the form β∗η = βη+(B′B+P )−1B′B(B′B+P )−1κηε,
where ε ∼ N(0, 1) and κη is adjusted to regulate proposal acceptance rate. This form of proposal is motivated
by consideration of smoothing splines or the ridge regression y = Bβ + ε where ε ∼ N(0, I). If β has normal
prior β ∼ N(0,P−1), its posterior variance is (B′B + P )−1B′B(B′B + P )−1. Proposals for τ are generated
using a simple Gaussian random walk, again with variance adjustment on the fly to achieve suitable acceptance
rate. Note that proposal densities for τ and βη (η ∈ {α, γ}) are symmetric such that g(ω∗ → ω) = g(ω → ω∗),
with resulting simplification of the expression for acceptance probability above. For η ∈ {ρ, ν, ξ}, we propose
β∗η using derivatives of the target distribution at the current sample. This promotes proposals in regions of
higher probability, at the additional computational cost of computing necessary derivatives and matrix inverses.
Asymmetric random walk proposals are made as β∗η = βη + 1

2κ
2
ηH
−1G + κηH

−1/2ε, where H is the second
derivative matrix of negative log full conditional for βη with respect to βη evaluated at the current state, and G
is the corresponding gradient. The value of κη is set to achieve suitable acceptance rate. We note the obvious
similarity between mMALA and the back-fitting algorithm (e.g. Green and Silverman 1994, Davison 2003)
for maximum likelihood estimation. As in the back-fitting algorithm, the constraint ξ > −0.5 is necessary to
apply the mMALA algorithm in the generalised Pareto case. Further computational details and expressions for
derivatives are given in Jones et al. (2016).

The table below gives prior distributional forms and parameter values used for τ and elements of δ and λ.

Parameter Distribution a b

τ B(a, b) 100 100
δ Γ(a, b) 1

2
1
2

λ Γ(a, b) 10−3 10−3

Prior distributions for τ and components of δ and λ.

We note that the prior for τ is relatively informative compared with those of other parameters, primarily
to retain a sufficient proportion of the sample below extreme value threshold ψ for reasonable confidence in
predictions of return values, as discussed in te Supplementary Material.
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Maximum likelihood inference

It is interesting to compare Bayesian inference under the truncated Weibull - generalised Pareto model of the main text
(henceforth here “the Bayesian model” for brevity) with maximum likelihood inference made using the approach described in
Randell et al. [2015] (henceforth “the maximum likelihood model”), for the northern North Sea location considered in the main
text. Here, we provide a brief discussion and illustration of a maximum likelihood inference, presenting figures equivalent to
Figures 6-8 of the main text to facilitate direct comparison.

Both the Bayesian and maximum likelihood models make use of a generalised Pareto distribution, the parameters of which
are non-stationary with respect to covariates, to describe the characteristics of extreme values. However, there are a number
of differences between the approaches which might influence inferences. For instance, in the maximum likelihood model, a
non-stationary extreme value threshold is estimated using quantile regression for a pre-specified non-exceedance threshold
probability, as opposed to being estimated alongside other model parameters in a single inference. Further, in the maximum
likelihood model, only one global roughness penalty coefficient λ∗η is estimated per model parameter η (in the notation of the
main text, despite the fact that directional and seasonal covariates may require different degrees of regularisation). To overcome
this limitation, the relative weighting wη1, wη2 of directional and seasonal roughness penalty coefficients λη1, λη2 with respect
to λ∗η, such that λη1 = wη1λ

∗
η, λη2 = wη2λ

∗
η is estimated prior to model estimation. We anticipate that the Bayesian model

might provide more consistent inferences therefore when prior estimation of weights is difficult, as in the current application
where seasonal variation of extreme value characteristics is more gradual than directional variation (see e.g. Figure 1 and
Figure 5 of main text). We also make use of different “peak-picking” algorithms for the Bayesian and maximum likelihood
models, so that the sets of storm peaks selected for analysis may show small differences in the number of storm peaks with
storm peak values near the peak-picking threshold. This is immaterial for characterisation of extreme values.

Critical inferences from the extreme value models are return value distributions. We therefore focus the comparison on these.

Figure S1 (c.f. Figure 6 of the main text) illustrates model validation for the maximum likelihood model by comparison of
estimates for the distribution of HS corresponding to the period of the original sample. The empirical estimate, found simply
from sorting the original sample and shown as a solid red curve, is in good agreement with realisations under the model, both
omni-directionally and for 8 directional octants. Agreement is also good between the actual numbers of events observed in
each directional sector examined and the corresponding median number of simulated events. Moreover, Figure S1 and Figure 6
(main text) are in good agreement for the omni-directional omni-seasonal case, and the 8 directional octants.

Figure S2 (c.f. Figure 7 of the main text) gives a directional-seasonal plot for the distribution of the 100-year maximum for
the maximum likelihood model. The left-hand panel shows directional and seasonal variability of the median estimate from
multiple realisations of time-series of period 100 years under the directional-seasonal model. The right hand panel summarises
seasonal variation for each of 8 directional octants. Again, there is systematic directional and seasonal variation present.
Figure S2 is in good agreement with Figure 7 of the main text. In the eastern and southern octants, it appears that the
Bayesian model has better identified the seasonal variation of the 100-year maximum, although there is evidence for seasonal
variability in the estimated uncertainty band under the maximum likelihood model. We attribute this different to the ability
to estimate relative direction and seasonal smoothness directly in the Bayesian inference, as discussed above.

For design purposes, as discussed in the main text, extreme value inferences are usually reported in terms of directional and
seasonal return value distributions, for return periods such as 100 years, illustrated in Figure S3 for the model estimated using
maximum likelihood. Again there is good agreement between Figure S3 and Figure 8 of the main text. First we note that the
omni-directional omni-seasonal estimates are within 0.2m of each other for any probability level between 0.25 and 0.75. Next
we note that the magnitudes and ordering of return value distributions for directional octants (left hand side) and calendar
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months (right hand side) are almost identical also. In particular, the most severe directional sectors in both analyses are
western, south-western, followed by north-eastern, northern, southern in that order. The most severe monthly extremes are
January, February and December (the latter two very similar), followed by November, March, October in that order in both
analyses.

We conclude that inferences from the Bayesian model described in the main text, and the maximum likelihood model described
in Randell et al. [2015] are comparable.

Non-exceedance probability τ

For samples of reasonable size, generated under the truncated Weibull - generalised Pareto with pre-specified parameters, we are
able to estimate all model parameters reasonably and routinely including extreme value threshold non-exceedance probability
τ in general using the model described in the main text.

In our experience of maximum likelihood estimation of (potentially non-stationary) generalised Pareto models of storm peak
significant wave height, specification of extreme value threshold is generally problematic. Standard diagnostics (e.g. mean
excess plot, variation of estimated generalised Pareto shape parameter with τ) often indicate that any of a number of different
values of τ is plausible. For instance, Figure S6 in the Supplementary Material of Randell et al. [2015] explores the sensitivity
of the omni-directional omni-seasonal 100-year return value of storm peak significant wave height from a directional-seasonal
model to choices of τ ∈ [0.3, 0.95]. It is clear from the figure that return values are relatively insensitive to the choice of τ
made. Further, the precision with which generalised Pareto model parameters are estimated generally improves with increasing
sample size. The quality of inferences made (e.g. of return values) using the estimated generalised Pareto parameters also
improves in general with sample size. It is therefore natural to select a value or range of values for τ as low as possible given
acceptable extreme value model fit to the tail of the sample.

For the sample of northern North Sea storm peak significant wave height considered in the main text with the Bayesian
truncated Weibull - generalised Pareto model, estimation of τ is equally challenging. We find that the sample is relatively
uninformative about τ , as illustrated in Figure S4. The figure summarises the posterior distribution of sample negative log
likelihood, estimated using Bayesian inference for a sequence of different pre-specified values for τ . There is some evidence
that smaller values of τ provide somewhat better fit, and the suggestion of some preference for τ in the region of 0.85. We
have examined a number of different choices for the prior beta distribution of τ ; inferences in each case are consistent with the
evidence from Figure S4. In specifying the choice of a prior B(100,100) distribution used in the main text, we attempted to
balance the need for sufficient sample to be able to estimate the generalised Pareto tail parameters reasonably (i.e. τ relatively
small), with keeping τ sufficiently large that fitting an extreme value model to the tail of the data is also reasonable, in the
light of common practice of specifying a (fixed) conditional median threshold.

References
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