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Abstract

Estimation of ocean environmental return values is critical to the safety and reliability of marine and coastal
structures. For ocean waves and storm severity, return values are typically estimated by extreme value analysis
of time series of measured or hindcast sea state significant wave height HS . For a single location, this analysis is
complicated by the serial dependence of HS in time and its non-stationarity with respect to multiple covariates,
particularly direction and season.

Here, we report a non-stationary extreme value analysis of storm peak significant wave height Hsp
S , assumed tem-

porally independent given covariates, incorporating directional and seasonal effects using a spline-based methodology
incorporating an ensemble of models for different extreme value thresholds. Quantile regression is used to estimate
suitable thresholds. For each threshold, a Poisson process is used to estimate the rate of occurrence of threshold
exceedances, and a generalised Pareto model characterises the magnitude of threshold exceedances. Covariate effects
are incorporated at each stage using penalised tensor products of B-splines to give smooth model parameter vari-
ation as a function of covariates. Optimal smoothing penalties are selected using cross-validation, and uncertainty
quantified using BCa bootstrap re-sampling.

We use the model to estimate environmental return values for a location in the Makassar Strait, in the South China
Sea. Return values distributions for Hsp

S are estimated by simulation under the threshold ensemble model. Return
values for HS are then estimated by simulating intra-storm trajectories of HS consistent with the characteristics of
the simulated storm peak events using a matching procedure. Return values for maximum individual crest elevation
C are estimated by marginalisation using pre-specified conditional distribution for C given HS and other sea state
parameters. Model validation is performed by comparing confidence intervals for cumulative distribution functions
of Hsp

S and HS for the period of the data with empirical sample-based estimates.

1 Introduction

Safe design and operation of marine and coastal structures requires reliable estimation of extreme storm environments
corresponding to return periods of hundreds or thousands of years, yet data for extreme environments is only available
for historical periods typically of tens of years. Extreme value analysis is therefore essential to characterise the tails of
distributions of environmental variables, and estimate their extreme quantiles. However, the characteristics of extreme
ocean storm events are also known to vary systematically with covariates such as direction (e.g. Mackay et al. 2010)
and season (e.g. Mendez et al. 2008). It is therefore critical to employ non-stationary extreme value models to estimate
extreme quantiles accurately (e.g. Jonathan et al. 2008). These models enable consistent estimation of return value
distributions for storm variables corresponding to arbitrary combinations of storm directions and seasons, also required
in design. Moreover, design specifications (e.g. ISO19901-1 (2005)) require that return values be estimated not only
for overall storm severity, but also for specific storm characteristics such as the maximum wave height (from trough to
following crest) and the maximum crest elevation (from mean sea level to crest). This inference is severely complicated
by the serial dependence of oceanographic variables in time, and their dependence on covariates.

The variability of the ocean’s surface in a particular interval of time (typically 0.5, 1 or 3 hours, referred to as a sea
state) is quantified using significant wave heightHS , which can be defined as 4 times the standard deviation of the ocean
surface elevation (in metres) for the sea state. Within a sea state, wave characteristics are assumed to be stationary.
However, HS for consecutive sea states (referred to as sea state HS , or simply HS) exhibits serial dependence. Ocean
storm events, composed of multiple consecutive sea states, are assumed to be statistically independent, since they are
produced by independent occurrences of atmospheric pressure systems. Hence extreme value analysis of storm peak
significant wave height Hsp

S is typically performed, where Hsp
S is the maximum value of sea state HS over constituent

sea states. Storm peak events at a location are assumed to be independent given covariates such as direction θ and
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season φ. Chavez-Demoulin and Davison (2005) suggest how extreme value analysis of Hsp
S might be achieved using

extreme value models whose parameters are functions of covariates. To impose smooth variation of extreme value
characteristics of Hsp

S with direction and season, we use penalised B-spline representations for all model parameters
following the work of Eilers and Marx (2010). Efficient inference is achieved using ideas from generalised linear array
models (Currie et al. 2006).

The distributional characteristics of sea state parameter set S (which includes HS) given storm peak characteristics
can be estimated from a historical sample of sea states corresponding typically to around 50 years. Given these,
and given realisations of storm peak characteristics corresponding a longer return period of interest, return value
distributions for parameter set S corresponding to the longer return period can also be estimated. Return value
distribution for other variables (such as maximum crest elevation, C) whose distributional characteristics given S have
been extensively studied can hence be estimated, as described in the online Supplementary Material (SM) accompanying
this article.

Choice of threshold for extreme value modelling is problematic (e.g. Scarrott and MacDonald 2012), and in the
authors’ experience a major source of uncertainty in practical application of extreme value analysis. The novelty of
the current work rests in avoiding a specific threshold selection. Instead we estimate an ensemble of non-stationary
extreme value models, corresponding to different threshold choices, specified in terms of a plausible interval of non-
exceedance probabilities for directional-seasonal quantile regression thresholds. We simulate under the ensemble to
produce realisations of storm peak characteristics corresponding to any return period of interest. This article defines the
threshold ensemble model (Section 3), evaluates it in application (Section 4) to estimation of return values for Hsp

S , HS

and C for a location in the South China Sea (Section 2), and presents careful uncertainty analysis of model parameters
and return value distributions using the bias-corrected and accelerated (BCa) bootstrap scheme of Efron (1987). Section
4 also presents return value distributions estimated using an extended ensemble over bootstrap resamples of the original
data. Section 5 provides a brief discussion, particularly of opportunities for further work.

2 Motivating application

The application sample includes hindcast time-series for sea state significant wave heightHS , (dominant) wave direction
θ, season φ (defined as day of the year, for a notional year consisting of 360 days), for three hour sea states over the
period August 1956 to July 2012.

The sample corresponds to a location in the Makassar Strait between the islands of Borneo and Sulawesi in Indonesia
at a water depth of approximately 500m. The main climatic features are monsoonal: the southwest monsoon occurs
between July and September and the northeast monsoon between December and March. At the location of interest,
due to atmospheric circulation and topographical effects, the southwest monsoon actually generates increased HS with
waves propagating in a northwesterly direction during the northern summer. The northeast monsoon generates more
severe sea states with waves propagating towards the east in the northern winter. Compared with other locations (for
example in the northern North Sea or Gulf of Mexico), the location of interest is relatively benign. The largest value
of HS in the sample is approximately 3.5m.

Storm characteristics are isolated from these time-series using the procedure described in Ewans and Jonathan
(2008). The resulting storm peak sample consists of 3095 values of Hsp

S . With direction to which a storm travels
expressed in degrees clockwise with respect to north, Figure 1 shows plots of Hsp

S and HS versus direction θ and season
φ. Figure S1 (in online Supplementary Material, SM) shows empirical quantiles of Hsp

S by θ and φ.
For each storm, the within-storm time-series of HS , θ, φ are referred to as the intra-storm trajectory for the storm.

Intra-storm trajectories are essential for estimation of design values for intra-storm characteristics such as HS and C.
Figure 2 shows intra-storm trajectories of significant wave height, HS , on wave direction θ for 30 randomly-chosen
storm events (in different colours). Variability in the joint evolution of HS and θ from storm to storm is clear.

3 Model

We estimate a non-stationary extreme value model for storm peak significant wave height Hsp
S , the parameters of which

vary smoothly with direction θ and season φ. For a sample {żi}
ṅ
i=1

of ṅ storm peak significant wave heights observed
with directions {θ̇i}

ṅ
i=1

and seasons {φ̇i}
ṅ
i=1

, we proceed as follows. We first estimate a set of threshold functions
ψ = ψ(θ, φ) above which observations ż are assumed to be extreme using quantile regression. For each threshold in
turn, we then estimate (a) the rate of occurrence ρ of threshold exceedance using a Poisson process model, and (b)
estimate the distribution of threshold exceedances using a generalised Pareto (GP) model with shape parameter ξ and



Figure 1: Storm peak significant wave height Hsp
S (black) on direction θ (upper panel) and season φ (lower panel). Also shown is sea state significant wave

height HS (grey) on direction θ (upper panel) and season φ (lower panel).
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Figure 2: Intra-storm trajectories of significant wave height HS on wave direction θ for 30 randomly-chosen storm events (in different colours). A circle marks
the start of each intra-storm trajectory.



scale σ. All of ψ, ρ, ξ and σ are assumed smooth functions of covariates. This approach to extreme value modelling
follows that of Chavez-Demoulin and Davison (2005).

3.1 Incorporating uncertainty in choice of extreme value threshold

Choice of threshold for extreme value analysis is generally problematic (e.g. Scarrott and MacDonald 2012). Here, we
admit for return value inference a number of models, each corresponding to a different threshold choice. Inspection
of diagnostic plots (see Section 4) might suggest that models corresponding to a certain interval Jτ of threshold non-
exceedance probabilities τ yield plausible models. We then proceed to estimate an ensemble Eτ of nτ models, each
model corresponding to a systematically- (or alternatively, randomly-) chosen threshold non-exceedance probability
τu, u = 1, 2, ..., nτ on Jτ . A threshold ensemble return value distribution of interest can then be estimated by repeated
simulation under systematically- (or randomly-) chosen models from ensemble Eτ (see Section 3), as opposed to repeated
simulation under a single model corresponding to a single extreme value threshold choice. In this work, we specify
nτ = 9 threshold non-exceedance probabilities equally spaced on Jτ = [0.5, 0.9], and estimate extreme value models
for each, obtaining sets of parameter estimates ψu, ρu, σu and ξu for u = 1, 2, ..., nτ . We confirmed that this choice
of threshold non-exceedance probabilities provided stable inference. In the following outline of parameter estimation,
threshold “u” subscripts are suppressed for conciseness unless necessary for clarity of explanation.

3.2 Parameter estimation

For quantile regression, for each threshold non-exceedance probability, we seek a smooth function ψ of covariates
corresponding to non-exceedance probability τ of storm peak HS for any combination of θ, φ. We estimate ψ by
minimising the quantile regression lack of fit criterion

ℓψ = {τ

n
∑

i,ri≥0

|ri|+ (1− τ)
n
∑

i,ri<0

|ri|}

for residuals ri = zi − ψ(θi, φi; τ). We regulate the smoothness of the quantile function by penalising lack of fit
for parameter roughness Rψ (with respect to all covariates), by minimising the penalised criterion ℓ∗ψ = ℓψ + λψRψ
where the value of roughness coefficient λψ is selected using leave-one-out cross-validation to provide good predictive
performance. Roughness R (for ψ, ρ, ξ and σ) is discussed further below.

For Poisson modelling, we use penalised likelihood estimation. The rate ρ of threshold exceedance is estimated by
minimising the roughness-penalised (negative log) likelihood ℓ∗ρ = ℓρ + λρRρ where Rρ is parameter roughness with
respect to all covariates, λρ is again evaluated using cross-validation, and Poisson (negative log) likelihood is given by

ℓρ = −
n
∑

i=1

log ρ(θi, φi) +

∫

ρ(θ, φ)dθdφ .

The generalised Pareto model of size of threshold exceedance is estimated in a similar manner by minimising the
roughness penalised (negative log) GP likelihood ℓ∗ξ,σ = ℓξ,σ+λξRξ+λσRσ where Rξ and Rσ are parameter roughnesses
with respect to all covariates, λξ and λσ are evaluated using cross-validation, and GP (negative log) likelihood is given
by

ℓξ,σ =

n
∑

i=1

log σ(θi, φi) + (
1

ξ(θi, φi)
+ 1) log(1 +

ξ(θi, φi)

σ(θi, φi)
(zi − ψ(θi, φi)))

for ξ(θi, φi) 6= 0, with a similar expression when ξ(θi, φi) = 0 (see Jonathan and Ewans 2013). In practice, we set
λξ = κλσ for pre-specified constant κ, so that only one cross-validation loop is necessary. The value of κ is estimated
by inspection of the relative smoothness of ξ and σ with respect to covariates.

Return value simulation entails generation of samples corresponding to (a typically long) time period P . This is
achieved by sampling under the estimated model for threshold exceedance, and by resampling the original data below
the extreme value threshold. To perform the latter reliably, we find it useful to estimate an additional non-stationary
Poisson model for rate of occurrence of threshold non-exceedances.



3.3 Parameter smoothness

Physical considerations suggest that we should expect model parameters ψ, ρ, ξ and σ to vary smoothly with respect
to covariates θ, φ. This is achieved by expressing each parameter in terms of an appropriate basis for the domain D of
covariates, where D = Dθ ×Dφ. Dθ = Dφ = [0, 360) are the (marginal) domains of storm peak direction and season
respectively. We calculate a periodic marginal B-spline basis matrix Bθ for an index set of 32 directional knots, and
a periodic marginal B-spline basis matrix Bφ for an index set of 24 seasonal bins, yielding a total of m(= 32 × 24)
combinations of covariate values. Then we define a basis matrix for the two dimensional domain D using Kronecker
products of marginal basis matrices. Thus B = Bφ ⊗ Bθ provides an (m × p) basis matrix (where m = 32 × 24 and
p = pθpφ) for modelling each of ψ, ρ, ξ and σ, any of which can be expressed in the form Bβ for some (p× 1) vector of
basis coefficients. Model estimation reduces to estimating appropriate sets of basis coefficients for each of ψ, ρ, ξ and σ.
In this work, marginally for periodic directional and seasonal bases, we allocate one B-spline function to each covariate
bin and co-locate their centres, so that pθ = 32 and pφ = 24, although this is not necessary in general. The roughness
R of any function η can be evaluated on the index set (at which η = Bβ). Following the approach of Eilers and Marx
(see, for example, Eilers and Marx 2010), we define roughness using R = β′Pβ where P is a p × p penalty matrix.
P is constructed such that R penalises the difference between marginally neighbouring values of spline coefficients,
thereby penalising the overall lack of local spline smoothness (see Currie et al. 2006 for details). It is possible further
to penalise directional roughness differently to seasonal, and to optimise the relative marginal penalty coefficient using
cross-validation. In this work, we select and fix the relative marginal penalty coefficients for each of ψ, ρ, ξ and σ for
a model using the non-exceedance probability τ = 0.7.

3.4 Illustration of parameter estimates

We use median threshold ensemble estimates to illustrate model parameter variation with θ, φ. These estimates
are medians over the nτ estimates for different extreme value thresholds non-exceedance probabilities τu, adjusted
as necessary to correspond to a specific non-exceedance probability τũ, since estimates of ρu and σu are threshold-
dependent. Specifically

ρ̃ = med
u

{

ρu
τũ

1− τu

}

, σ̃ = med
u

{σu + ξu(ψũ − ψu)}, ξ̃ = med
u

{ξu} ,

where the reference non-exceedance probability is taken arbitrarily to be τũ = 0.5 .

3.5 Uncertainty quantification

Bootstrap resampling is used for uncertainty quantification of the median threshold ensemble parameter estimates ρ̃, σ̃
and ξ̃. 95% bootstrap confidence intervals are estimated using the BCa approach of Efron (1987), by repeating the full
extreme value analysis for 2000 resamples of the original storm peak sample, and estimating leave-one-out jack-knife
parameters. In particular, estimation of optimal roughness penalties is performed independently for each bootstrap
and jack-knife sample, so that uncertainty bands also reflect variability in these choices. It was also confirmed that
2000 resamples was sufficient to ensure stability of bootstrap confidence intervals. BCa confidence intervals are also
provided in Section 4 for estimates of quantiles q̃ of return value distributions from the threshold ensemble model.

3.6 Return values

For a specified threshold non-exceedance probability τ , return values for variables of interest are estimated by sim-
ulation. Estimation of return value distributions in closed form is not possible since model parameter estimates are
non-stationary with respect to covariates. First, we simulate sets of storm peak events (Hsp

S , and associated θ and φ
per event) corresponding to any return period of P years of interest. By accumulating maximum values from multiple
P -year realisations, potentially restricted to some directional-seasonal interval A of covariates, we estimate a return
value distribution Q|τ for Hsp

S . For each storm peak event simulated, we can also simulate an intra-storm trajectory
consisting of a time-series of sea state variables S per storm peak event using a matching procedure described in Feld
et al. (2014). A return value distribution for sea state HS , potentially restricted to covariate interval A, can therefore
be accumulated. Hence we can further simulate a value of maximum crest elevation C as described in SM.

The distribution of threshold ensemble return value Q̃ for any variable of interest (Hsp
S , HS and C here) can now be

defined in terms of the distribution of the return value Q|τ corresponding to threshold with non-exceedance probability



τ as follows

Pr(Q̃ ≤ x) =

∫

τ∈Jτ

Pr(Q ≤ x|τ)dF (τ) =
1

nτ

nτ
∑

u=1

Pr(Q ≤ x|τu)

where we assume that the distribution F (τ) consists of point masses of 1

nτ
at each of the nτ non-exceedance probabilities

in the threshold ensemble. The quantiles q̃(p), p ∈ [0, 1] of this distribution are solutions to the equation Pr(Q̃ ≤ x) = p.
In particular, q̃(0.5) refers to the median threshold ensemble return value. BCa confidence intervals can be estimated
for q̃(p) in the usual way.

4 Application

4.1 Selection of suitable interval Jτ of threshold non-exceedance probability

A preliminary modelling study is undertaken to specify an appropriate interval Jτ of threshold non-exceedance proba-
bilities τ for use in the threshold ensemble. For each of a suitable number of values for τ , we estimate a non-stationary
extreme value model (as outlined in Section 3) corresponding to each of a large number of bootstrap resamples B of
the original sample D. We simulate under the estimated model for each τ and B to estimate the 100-year storm peak
event Hsp

S . We then examine the stability of the estimated 100-year event as a function of τ and B. We seek an interval
of values for τ within which estimates of return value are relatively insensitive to change in τ . As can be seen in Figure
S6, the return value estimates are relatively stable in [0.5, 0.9], motivating this choice for Jτ .

4.2 Model parameters

To illustrate model parameter estimates, Figure 3(a) shows the extreme value threshold ψ corresponding to the reference
non-exceedance probability τũ = 0.5 of Hsp

S as a function of direction θ and season φ. The southwest monsoon (July
to September for directions around 300o) and northeast monsoon (in December and January for directions around
90o) are clear. Figure S2 shows plots of extreme value thresholds ψ corresponding to the set of nτ non-exceedance
probabilities of Hsp

S . Figure 3(b) shows directional-seasonal plots for the median threshold ensemble rate ρ̃ (×1000)
of threshold exceedance of Hsp

S . Rate is largest by far for the southwest monsoon. Figure S3 also shows 12 monthly
directional ρ̃ (×1000) estimates (solid) and 95% BCa confidence intervals (dashed). Figures 3(c) and 3(d) show median
threshold ensemble generalised Pareto scale σ̃ and shape ξ̃. σ̃ shows local maxima corresponding to the northeast
monsoon (in particular) and the southwest monsoon. ξ̃ exhibits predominantly seasonal variation, with lower values
during the northern summer. Values of ξ̃ > 0 suggest that the distribution of Hsp

S is unbounded above (e.g. Jonathan
and Ewans 2013). Figures S4 and S5 also show the corresponding 12 monthly directional estimates (solid) and 95%
BCa confidence intervals (dashed).

4.3 Model diagnostics

We use the return value simulation described Section 3 to assess model adequacy, by comparing the characteristics of
realisations under the model with those of the original sample, possibly restricted to some covariate interval A. Here,
for illustration, we compare the distribution of sea state HS from simulation (incorporating intra-storm evolution) and
original data. We simulate a set of sea state HS events corresponding exactly to the period of the original sample
under the threshold ensemble model. We estimate the quantiles q̃(p), p ∈ [0, 1] of the empirical cumulative distribution
function of HS from the set. Then we estimate the 2.5%, median and 97.5% percentiles of q̃(p) as a function of p; 95%
BCa confidence intervals for these percentiles are illustrated in black in Figure 4, as a logarithmic tail to emphasise
tail behaviour. We then estimate the quantiles q0(p) of sea state HS directly from the original sample. Using 1000
bootstrap resamples of the original sample, we also estimate an empirical 95% bootstrap uncertainty band for q0(p) as
a function of p. This is illustrated in red in the figure. Although there is some tendency for the model to overestimate
sea state HS for the very largest events, agreement is good for omni-directional omni-seasonal and monthly omni-
directional estimates shown. Comparison of omni-seasonal estimates per directional octant (not shown) also indicate
good agreement between the original sample and simulation. Analogous diagnostics plots for storm peak HS show
good agreement also.
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Figure 3: Directional-seasonal plots for extreme value model parameters on on θ and φ. (a) Extreme value threshold, ψ, for τ = 0.5, (b) median threshold
ensemble rate ρ̃(×1000) of threshold exceedance, (c) median threshold ensemble generalised Pareto scale, σ̃, and (d) median over threshold generalised Pareto
shape, ξ̃.
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Figure 4: Illustration of validation of return value estimation for sea state HS . The red curves represent an empirical 95% bootstrap uncertainty band for
the quantile function q0(p) of the original sample. The solid black curves represent a BCa 95% confidence band for the median (for each given probability
p = F (HS)) of the threshold ensemble quantile function q̃(p) estimated under the threshold ensemble model. The dashed black lines show the corresponding
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hand panels to monthly omni-directional estimates. Titles for plots, in brackets, are the numbers of actual and simulated events.



4.4 Return values

Figure 5 shows directional and seasonal variability of the median threshold ensemble estimate q̃(0.5) for HS and a
return period of 100 years, estimated by return value simulation. Monsoonal effects are prominent. Figure S7 shows
the corresponding estimates for 100-year crest elevation C, which is qualitatively very similar to Figure 4.

4.5 Bootstrap threshold ensemble return value distributions

In the spirit of the work of Davison (1986), Hall et al. (1999) and Fushiki et al. (2005) we define the bootstrap

threshold ensemble return value Q̆ in a similar fashion to Q̃. First we estimate the return value distribution Q|B, τ
by simulation as outlined in Section 4 for each pair of threshold non-exceedance probability τ ∈ Jτ and bootstrap
resample B ∈ {Bb}

nB

b=1
= B of the original sample D. Then we define the cumulative distribution of Q̆ as

Pr(Q̆ ≤ x) =

∫

τ∈Jτ

∫

B∈B

Pr(Q ≤ x|B, τ)dF (B)dF (τ) =
1

nτ

1

nB

nτ
∑

u=1

nB
∑

b=1

Pr(Q ≤ x|Bb, τu)

where the distributions F (τ) and F (B) are discrete with point masses of size 1

nτ
and 1

nB
for each τ ∈ Jτ and B ∈ B

respectively. The quantiles q̆(p) of Q̆ for p ∈ [0, 1] are defined in the usual way.
The bootstrap threshold ensemble propagates both sample uncertainty and uncertainty in threshold specification

into return values Q̆. In contrast, the threshold ensemble encapsulates threshold uncertainty only; BCa confidence
intervals on Q̃ represent sample uncertainty. Figure 6 compares threshold ensemble estimates Q̃ (with 95% BCa
confidence intervals for its quantiles) and bootstrap threshold ensemble estimates Q̆ for the 100-year return value at
Makassar. Since Q̆ incorporates an extra source of uncertainty compared to Q̃, its estimated distribution is wider than
that of the sample estimate of Q̃ (shown with solid lines in the upper plots). However, the confidence band for Q̃
(which accounts for sampling uncertainty, shown with dashed lines in the upper plots) covers a wider interval of HS

than the corresponding Q̆ in general.

5 Discussion

We present a methodology for estimation of return value distributions for ocean wave characteristics in environments
which exhibit directional and seasonal non-stationarity. This allows estimation of return values for storm peak, sea
state and individual wave characteristics given arbitrary sets of directional and seasonal covariates in a straightforward
but rigorous manner without the need for specific extreme value threshold selection. Uncertainties are quantified by
bootstrap resampling over the whole inference procedure.

From an ocean engineering perspective, there are a number of refinements possible to the methodology presented
here, to improve its applicability: a) For some locations, rapid directional or seasonal changes in extreme ocean wave
characteristics might be expected on physical grounds; in such cases, it is desirable that the model allows greater
non-stationary for part of the covariate domain. This might be achieved by using a non-uniform spline roughness
penalisation. b) For some covariate intervals, the rate of occurrence of exceedances of extreme value threshold is low or
zero; in such cases, the extreme value model is not informative for return values, and other approaches to return value
inference must be adopted. In the current work, we simply resample non-exceedances of the extreme value threshold.
c) The effect of intra-storm variability in return value simulation is currently incorporated by an empirically matching
procedure. A statistical model for intra-storm variability would be a valuable contribution to the literature, but a
challenging task. d) The bootstrap scheme used here is computationally demanding, since it encompasses all analysis
steps. Bootstrapping lends itself naturally to parallel computation. In the current work we use a simple parallel scheme
across 50 processors, but we could do better (e.g. see Raghupathi et al. 2015).

Adequate incorporation on non-stationarity in extreme value models requires realistic methods for modelling non-
stationarity of extreme value model parameters. We find that penalised B-splines provide good bases for covariate
modelling, since they are relatively low-dimensional in terms of the number of parameters to be estimated (compared,
for example, to Gaussian process models). However, other approaches including Gaussian processes and Markov
random fields have their merits.

We find that cross-validation in general provides the most reliable method for estimation of optimal roughness
penalisation. AIC is suitable in some situations, but difficult to apply well in others; for example, in spatial applications
where observations of storm severities at neighbouring locations are not independent - but the extent of dependence
is not known. Spatial block cross-validation provides a straightforward approach to roughness estimation. Methods
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Figure 5: Directional-seasonal return value plot for 100-year significant wave height (in metres). The left-hand panel shows directional and seasonal variability
of the median threshold ensemble estimate q̃(0.5) for HS . The right hand panel shows 12 monthly directional octant return values (in black) in terms of BCa
95% confidence limits for q̃(0.5) (solid), q̃(0.025) (dashed) and q̃(0.975) (dashed). Also shown are the corresponding omni-directional estimates (in red).
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intervals, and lower panels bootstrap threshold ensemble estimates Q̆.



employing adjusted likelihoods to accommodate spatial dependence provide an alternative (e.g. Chandler and Bate
2007). Applying cross-validation well is more problematic for likelihoods with bounded domains (such as the generalised
Pareto with negative shape parameter); Northrop et al. (2015) discuss possible modifications of the standard cross-
validation scheme.

The methodology outlined here is applicable to spatial extremes (e.g. Davison et al. (2012)) and multivariate
extremes (e.g. using the conditional extremes model of Heffernan and Tawn (2004) and developments thereof). It
seems inevitable and desirable that model estimation be eventually performed within a Bayesian framework (Lang and
Brezger 2004).

Additional information and supplementary material for this article is available online at the journal’s website.
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Distribution of maximum crest elevation in a sea state

The distributions of maximum wave height and maximum crest elevation for a stationary sea state with parameters S have been
extensively studied (e.g. Forristall 1978 and Forristall 2000). Given a simulation of realisations of sea states S corresponding
to a return period of interest, we can therefore also estimate directional-seasonal return value distributions for these and
other wave properties, required for structural design. In this work, we focus on estimation of maximum crest elevation C, the
cumulative distribution function of which, given sea state S, has been estimated to have the Weibull form

Pr(C ≤ η|S) = (1− exp(−
η

αSHS

)βS )nS

where all of the Weibull parameters αS , βS and nS are functions of the sea state parameters S, the forms of which are motivated
by second-order wave theory, the parameters of which were estimated from historical measurements (see Forristall 2000 for
details).

Figures

Figure S1 illustrates empirical quantiles of storm peak significant wave height Hsp
S by direction θ and season φ, for threshold

non-exceedance probabilities τ as listed. Figure S2 shows plots of extreme value thresholds ψ corresponding to the set of nτ
non-exceedance probabilities of Hsp

S . Each panel shows threshold ψ on direction θ and season φ. The southwest monsoon (in
June and July for directions around 300o) and northeast monsoon (in December and January for directions around 90o) are
clear, especially for larger thresholds.

Figure S3 shows directional-seasonal plots for the median threshold ensemble rate ρ̃ of threshold exceedance of Hsp
S . The

left-hand panel shows ρ̃ (×1000) on θ and φ. The right hand panel shows 12 monthly directional ρ̃ (×1000) estimates (solid)
and 95% BCa confidence intervals (dashed). The rate of occurrence is largest by far for the southwest monsoon.

Figure S4 shows plots of median threshold ensemble generalised Pareto scale σ̃. The left-hand panel shows σ̃ on θ and φ. The
right hand panel shows 12 monthly directional shapes in terms of bootstrap median (solid) and 95% bootstrap uncertainty
bands (dashed). The corresponding plots for generalised Pareto shape ξ̃ are given in Figure S5. σ̃ shows local maxima corre-
sponding to the northeast monsoon (in particular) and the southwest monsoon. ξ̃ exhibits predominantly seasonal variation,
with lower values during the northern summer.

Figure S6 illustrates a preliminary modelling study undertaken to specify an appropriate interval Jτ of threshold non-exceedance
probabilities τ for use in the threshold ensemble. For each of a suitable number of values for τ , we estimate a non-stationary
extreme value model (as outlined in Section 3) corresponding to each of a large number of bootstrap resamples B of the original
sample D. We simulate under the estimated model for each τ and B to estimate the 100-year storm peak event Hsp

S . We
then examine the stability of the estimate of the 100-year event as a function of τ and B. We seek an interval of values for τ
within which estimates of return value are relatively insensitive to change in τ . As can be seen in the figure, the return value
estimates are relatively stable in [0.5, 0.9], motivating this choice for Jτ .

Figure S7 shows directional and seasonal variability of the median threshold ensemble estimate q̃(0.5) for maximum crest
elevation C and a return period of 100 years. Monsoonal effects are prominent. Figure S7 is qualitatively very similar to
Figure 4 of the main text.
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Figure S1. Empirical quantiles of storm peak significant wave height Hsp
S by direction θ and season φ, for threshold non-

exceedance probabilities τ as listed. Empty bins are coloured white.
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Figure S2. Directional-seasonal plots for extreme value thresholds, ψ, corresponding to equally spaced non-exceedance
probabilities of Hsp

S on [0.5, 0.9] (left to right, then top to bottom).
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Figure S3. Directional-seasonal plot for median threshold ensemble rate ρ̃(×1000) of threshold exceedance of Hsp
S . The

left-hand panel shows ρ̃(×1000) on θ and φ. The right hand panel shows 12 monthly directional estimates with 95% BCa
bootstrap confidence intervals (dashed).
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Figure S4. Directional-seasonal plot for median threshold ensemble generalised Pareto scale, σ̃. The left-hand panel shows
σ̃ on θ and φ. The right hand panel shows 12 monthly directional estimates with 95% BCa bootstrap confidence intervals
(dashed).
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Figure S5. Directional-seasonal plot for median over threshold generalised Pareto shape, ξ̃. The left-hand panel shows ξ̃ on θ
and φ. The right hand panel shows 12 monthly directional estimates with 95% BCa bootstrap confidence intervals (dashed).

0.3 0.5 0.7 0.9

2

3

4

5

Jan

0.3 0.5 0.7 0.9

2

3

4

5

Feb

0.3 0.5 0.7 0.9

2

3

4

5

Mar

0.3 0.5 0.7 0.9

2

3

4

5

Apr

0.3 0.5 0.7 0.9

2

3

4

5

May

0.3 0.5 0.7 0.9

2

3

4

5

Jun

0.3 0.5 0.7 0.9

2

3

4

5

Jul

0.3 0.5 0.7 0.9

2

3

4

5

Aug

0.3 0.5 0.7 0.9

2

3

4

5

Oct

0.3 0.5 0.7 0.9

2

3

4

5

Sep

0.3 0.5 0.7 0.9

2

3

4

5

Nov

0.3 0.5 0.7 0.9

2

3

4

5

Dec

0.3 0.5 0.7 0.9

2

2.5

3

3.5

4

4.5

5

Omni

τ

H
S

Figure S6. Estimates for 100-year maximum for Hsp
S from simulation under models corresponding to 100 bootstrap resamples

for each of 12 choices of threshold non-exceedance probability, τ . Median estimates are connected by a solid red line. 2.5%
and 97.5% iles are connected by dashed red lines. The left hand panel shows the omni-directional, omni-seasonal estimate.
The right hand panels show 12 monthly omni-directional estimates.
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Figure S7. Directional-seasonal return value plot for 100-year crest elevation (in metres). The left-hand panel shows directional
and seasonal variability of the median quantile over threshold q̃(0.5) for C. The right hand panel shows 12 monthly directional
octant return values (in black) in terms of BCa 95% confidence limits for q̃(0.5) (solid), q̃(0.025) (dashed) and q̃(0.975) (dashed).
Also shown are the corresponding omni-directional estimates (in red).
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