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Abstract

Modelling of inspection data for large scale physical systems is critical to assessment of their integrity.
We present a general method for inference about system state and associated model variance structure
from spatially distributed time series which are typically short, irregular, incomplete and not directly ob-
servable. Bayes linear analysis simplifies parameter estimation and avoids often-unrealistic distributional
assumptions. Second-order exchangeability judgements facilitate variance learning for sparse inspection
time-series. The model is applied to inspection data for minimum wall thickness from corroding pipe-work
networks on a full-scale offshore platform, and shown to give materially different forecasts of remnant
life compared to an equivalent model neglecting variance learning.
Keywords: Bayes linear, exchangeability, variance learning, corrosion, dynamic linear model, Maha-

lanobis distance

1 Introduction

Inspection and maintenance assures the integrity of physical systems subject to degradation (e.g. to cor-
rosion and fouling in time). Inspection and maintenance is typically costly, requiring careful allocation of
limited resources. Statistical modelling provides one approach to ensuring the effectiveness of inspection and
maintenance activities.

Inference for complete systems consisting of thousands of components is a largely overlooked aspect of
real world inspection planning and inference, due to methodological and computational complexity. Most
attempts to model a degrading system empirically consider individual system components. Yet characteristics
of degradation are often common across components, due to component design, age, location, manner of
operation, etc. A multi-component (or system-wide) model could make use of common between-component
behaviour to improve the quality of inspection information and hence achieve more efficient inspection
planning. Inspections at a given time are rarely performed system-wide. A realistic empirical model for a
large scale system will therefore assume partial inspection data as input.

Here we develop a model for degradation of a system consisting of multiple dependent components, appli-
cable to the analysis of irregularly spaced spatially distributed short time series. We make inferences about
system state per component and model variances, given indirect observations. A Bayes linear approach sim-
plifies parameter estimation in comparison with a full Bayesian analysis and avoids unrealistic distributional
assumptions, using model-based simulation. Diagnostic tests assess model fit, and simulation studies based
on a hypothetical known system are used to evaluate performance. We illustrate the method by modelling
wall thickness and corrosion rates for corroding pipe-work networks on a full-scale offshore platform, given
sparse inspection data for component minimum wall thickness.

Specification of realistic priors and initial values (e.g. [1]), for model variances in particular (e.g. [2]), is
problematic in general yet can be highly influential, particularly when data are sparse. To avoid over-reliance
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on poorly-specified priors and initial values, we develop and implement methods of inference for the model
variance structure. We facilitate variance estimation by making exchangeability judgements appropriate for
analysis for sparse time-series of irregular partial inspections.

Bayes linear methods ([3]) applied to dynamic linear models (DLM, [4]) offer system-wide modelling of
corroding systems using partial inspection data. [5] uses a multivariate DLM to characterise the corrosion of
large industrial storage tanks, using observations of component minima, and suggests approaches to optimal
inspection planning. [6] describes the application of a spatio-temporal DLM to model the corrosion of an
industrial furnace using Bayes linear updating. Empirical distance-based estimates for covariances of DLM
observation and system variances are used, and optimal inspection planning based on heuristic criteria is
considered. [7] discusses Bayes linear methods for grouped multivariate repeated measurement studies with
application to cross-over trials. [8] discusses variance learning for a univariate linear growth DLM, and [9]
describes Bayes linear covariance matrix adjustment for a multivariate constant DLM. [10] discusses Bayes
linear experimental design for grouped multivariate exchangeable systems. [11] develops a utility-based
criterion to assess inspection design quality, based on a linear growth DLM with variance learning. Industry
guidelines (e.g. [12] and [13]) treat the modelling of corrosion very generally, yet there is a vast body of
engineering literature on this subject. [14] outlines mathematical expressions for initiation and evolution of
different corrosion mechanisms, including pitting and cracking. [15] discusses inspection and maintenance
decisions based on imperfect inspection within a Bayesian framework, using gamma processes. [16] considers
corrosion of steel structures, and [17] presents a Bayesian approach using partial inspections only. A number
of authors discuss the inclusion of inspection data and expert judgement within a risk-based inspection
framework. For example, [18] presents an approach to estimating system condition for inspection planning
purposes using a combination of inspection observations and expert judgement, and [19] describes generic
approaches to risk-based inspection of steel structures. [20] presents a method for compliance sampling.
Many approaches to corrosion modelling make use of methods associated with extreme value analysis (e.g.
[21]); [22] provides a review. [23] applies the generalised extreme value distribution (e.g. [24]), and [25] the
non-homogeneous Poisson process (e.g. [26]).

A number of aspects of the current work are novel, including Bayes linear variance learning using partial
observations and Mahalanobis learning for local corrosion variances. The statistical model adopted admits
a non-linear observation equation. We also believe that the application of the methodology to a full-scale
industrial system rather than individual components is particularly interesting and informative.

The article is presented as follows. We start by outlining the motivating application, a full-scale offshore
platform, in section 2, and Bayes linear methods in section 3. Section 4 introduces the corrosion model and in
particular discusses the exchangeability judgements made to accommodate irregular partial inspection data.
Section 5 discusses Bayes linear inference, and the estimation of model variances, involving a Mahalanobis
distance fitting procedure for local corrosion variance. Estimation and performance of the variance learning,
in application to simulated data with the same inspection design and covariance structure as the historical
inspection data, is also discussed. To facilitate future application of the method, section 6 presents a stepwise
modelling procedure. The model is applied to historical data from the offshore platform in section 7, and
diagnostic tools for quality of model fit illustrated. Section 8 discusses findings and proposes possible future
generalisations. A outlines calculations used in computing the adjusted expectations of model variances. B
provides prior values used in the analysis of both historical and simulated inspection data.

2 Motivating application

We consider inspection of a full-scale offshore platform as a motivating application. For inspection and
maintenance purposes, the installation is considered as a set of corrosion circuits, each consisting of multi-
ple components, for inspection. For the current application, we model a system of four corrosion circuits
consisting of a total of 64 pipe-work weld components. A corrosion circuit typically exhibits long sequences
of connected components, often with side branches of components. The corrosion behaviour of components
is influenced in part by their connectivity within a corrosion circuit (see section 4.2). A corroding system
may exhibit multiple corrosion circuits with similar corrosion behaviour. This application was discussed
previously by [11].
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When components are inspected, inspectors are most concerned with most vulnerable components since
these are critical to assessing risk of system failure. Measurements are made using non-destructive (e.g.
ultrasonic) inspection. The use of non-destructive testing means that operations can continue with little or
no system interruption. The measurement device reports an estimate for the minimum wall thickness over
a region sometimes referred to as the footprint of the device. Historical data for component minimum wall
thickness, obtained during inspection campaigns for the period 1998 - 2005, are available. Based on the
frequency of observations and the requirements for inspection planning, we select a monthly time increment
for modelling. The sample period therefore consists of 83 time points.

The actual historical inspection design is given in figure 1. It is clear that inspections are typically incomplete
and irregularly spaced in time. A total of 174 observations of the system are available. The application is
used in two ways in what follows. Firstly, it is used to evaluate model performance by generating simulated
samples using the actual inspection scheme and realistic parameter values. Secondly, in section 7, estimates
for system parameters based on actual historical inspection data, and system forecasts, are produced. For
both simulation and historical data analyses, the actual inspection design matrix is used, and identical prior
specifications made, so that the analyses are comparable.

Estimates for prior values are obtained from two sources, namely auxiliary historical data from other corrosion
circuits for the same offshore installation, and judgements made by experienced inspection engineers. (A full
list of prior values is given in section B.)

[Figure 1 about here.]

3 Theoretical background

3.1 Bayes linear analysis

For a complex system, it can be difficult or impractical to make full prior belief specifications. Bayes linear
analysis allows us to specify and update partial aspects of our beliefs. Bayes linear analysis also provides
a computationally efficient method for updating beliefs for problems where a full Bayes approach would be
too difficult or time consuming. It can also be viewed as a generalisation of the full Bayes approach which
relaxes the requirement for full probabilistic prior specifications. In Bayes linear analysis, expectation rather
than probability is treated as a primitive quantity; prior beliefs are specified in terms of means, variances
and covariances. A detailed explanation is given in [3]. Discussion of the application of these methods for
the analysis of simulators for large systems is given in [27] and [28].

Given a vector of data D, the adjusted expectation ED(B) for a vector B is given by:

ED(B) = E(B) + Cov(B,D)(Var(D))†(d− E(D))

where the matrix Var(D)† is the inverse of Var(D), if invertible, or a generalised inverse otherwise. The
variance resolved by adjustment, RvarD(B), is given by:

RvarD(B) = Cov(B,D)(Var(D))†Cov(D,B) (1)

and the adjusted variance, VarD(B), by:

VarD(B) = Var(B)− RvarD(B)

3.2 Exchangeability and the representation theorem

The concept of exchangeable events is a crucial component of the subjective theory of probability. In essence,
exchangeability judgements in a subjective analysis can be used to underpin the types of independence
assumptions made in classical inference [29]. For Bayes linear analysis, where only partial beliefs need to be
specified, we can restrict our assumptions for the error structures to exchangeability of the first and second
order quantities.
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The means, variance and covariances of a second order exchangeable sequence, X = X1, X2, . . . , are invariant
under permutation. If we assume second-order exchangeability, we can use the the second order exchange-
ability representation theorem, [30] to express the quantities Xi in the sequence in terms of the sum of two
random quantities M(X) and Ri(X) which may be viewed as analogous to an underlying population mean
and discrepancies from the mean respectively, as follows. Given a collection of vectors, X = X1, X2, . . ., an
infinitely second order exchangeable sequence with:

E(Xi) = µX , Var(Xi) = ΣX and Cov(Xi, Xj) = ΓX i 6= j

we can express each Xi as:
Xi = M(X) +Ri(X)

where M(X) is a random vector known as the population mean with:

E(M(X)) = µX Var(M(X)) = ΓX (2)

and the discrepancies Ri(X), themselves second order exchangeable, with:

E(Ri(X)) = 0 and Var(Ri(X)) = ΣX − ΓX (3)

Each pair Ri and Rj is uncorrelated (i 6= j) and each Ri is uncorrelated with M(X).

3.3 Bayes linear inference and its analogy to “full” Bayes

Bayes linear inference can be understood by analogy to the usual “full” Bayes inference as follows. Suppose
we observe a quantityD and use it to make inferences about an unknown quantityB expressed as B = M+R,
where M and R are unknown random quantities with full prior distribution f(M,R). The prior is related
to the full posterior distribution f(M,R|D) by Bayes theorem:

f(M,R|D) ∝ f(D|M,R)f(M,R)

where f(D|M,R) is the likelihood for D. In the Bayes linear formalism, the second order and associated
representation theorem B = M+R provide a structure for B. Bayes linear adjustment is then analogous to
estimation of the full posterior distribution for M and R. The specific properties of M and R imposed allow
inferences to be made relatively straightforwardly. The non random quantities E(M) and E(R), primitives in
Bayes linear inference, are analogous to prior distributions. The non random adjusted expectations ED(M)
and ED(M) are analogous to posterior distributions. A fuller account is given by [3]

A full Bayesian approach to this problem would require full prior distributions in high dimensional space.
Computation of posterior predictions for the system state need calculation of difficult integrals or MCMC
schemes which would take a very long time to converge. To make any progress many simplifying assumptions
would need to be made in model and prior specification. Add to this the inspection design question where
hundreds/thousands of designs need to be evaluated and the full Bayes approach becomes intractable.

4 Model

4.1 General Model

The general framework for our analysis is as follows. We assume that the system to be inspected can be
partitioned into a set of C components, indexed by c, whose characteristics evolve over T time points, indexed
by t. We seek inferences about the true system state vector Zlct over L locations indexed by l within each
component. We separate global aspects which affect the whole component from local aspects. This allows
us to distinguish between different model characteristics.
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Global effects

The global effects model captures the most important features of, and relationships between components.
Global effects evolve in time as a dynamic linear model (DLM) with system evolution matrix G:

Θt = GΘt−1 + ǫθt (4)

where Θt and ǫθt are vectors over components with elements Θct and ǫθct respectively.

Local effects

The local effects model describes spatial variability in detail. Local effects rlct evolve in time for some
function g as:

rlct = g(rlc(t−1)) + ǫrlct (5)

True System State

We model Zlct as the sum of global and local effects:

Zlct = FcΘt + rlct (6)

where Fc is the cth row of the matrix F of linear combinations of global effects parameter vector θt.

Observations

For each component and time, we can choose at a cost to observe a function f of the true system state vector
over locations Zct =

(

. . . Zlct . . .
)T

with error:

Yct = f (Zct + ǫY ct) (7)

where ǫY ct is a vector of measurement errors across locations. We assume that the function f is non–linear
and separable in the following sense. For vectors a and 1 (a vectors ones) of the same length, and a scalar
b, f can be decomposed as:

f(a+ b1) = f(a) + b

Thus:

f (Zct + ǫY ct) = f (FΘt + rlct + ǫY ct)

= FΘt + f (rlct + ǫY ct)

We note that separability applies to many functions for summarising data, including the mean, the median,
maximum, minimum and other quantiles.

Complete Model

Observation Equation: Yct = f (Zct + ǫY ct)

True System State: Zlct = FcΘt + rlct

Global Effects Model: Θt = GΘt−1 + ǫθt

Local Effects Model: rlct = g(rlc(t−1)) + ǫrlct

We assume that errors ǫθt, ǫrlct and ǫY lct are mutually uncorrelated in time. The elements ǫθct of ǫθt
are correlated across components with prior variance Var(ǫθct) = Σθ, but the ǫrlct are independent across
components. We assume prior variances Var(ǫrlct) = Σr and Var(ǫY lct) = ΣY , both scalar constants.
Specification of error structure in terms of second order exchangeability is discussed in section 4.2.
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4.2 Exchangeability judgements

Non-linearity of the observation equation makes formal Bayesian inference difficult. Coupled with the large
system size and resulting difficulty of prior specification, full Bayesian calculations become intractable. This
is particularly important when considering inspection design requiring fast evaluation since many samples
are needed to assess each of a large number of design choices. Here, we proceed using Bayes linear methods
(section 3.1) in conjunction with plausible exchangeability judgements. The latter provide a means to define
model variances from squared linear combinations of observations since they provide access to model evolution
errors (section 5.2). In order to invoke second order exchangeability we view the observations in time and
space as part an infinite exchangeable sequence. We make the following exchangeability judgements:

Judgement: Second order exchangeability of squared errors ǫ2θct over time for each component.

This leads to representation statements for the squared residuals of every component:

ǫ2θct = Vθct = M(Vθc) +Rt(Vθc)

which can then be further decomposed.

Judgement: Second order exchangeability of M(Vθc) across components such that:

M(Vθc) = Wθc = M(Wθ) +Rc(Wθ)

where:
E(Wθc) = µWθ

, Var(Wθc) = ΣWθ
and Cov(Wθc,Wθc′) = ΓWθ

for c 6= c′

so that:
E(ǫ2θct) = E(Vθct) = E(M(Vθc)) = E(Wθc) = µWθ

and Var(M(Vθc)) = ΣWθ

Then, from equations 2 and 3 respectively:

Var(M(Wθ)) = ΓWθ
and Var(Rc(Wθ)) = ΣWθ

− ΓWθ

and for each ǫ2θct we can write:

ǫ2θct = M(Vθc) +Rt(Vθc)

= M(Wθ) +Rc(Wθ) +Rt(Vθc) (8)

Judgement: Covariance between residuals

We might try to learn about the global effects covariance matrix Sθ in full generality. However in practice
this proves difficult. Instead we choose to express Sθ in terms of known correlation Πθ and unknown second
order exchangeable variances M(Wθ) and Rc(Wθ). The elements Sθcc′ of the global effects covariance matrix
Sθ are given by:

Sθcc′ = W
1
2

θcW
1
2

θc′Πθcc′

= (M(Wθ) +Rc(Wθ))
1
2 (M(Wθ) +Rc′(Wθ))

1
2Πθcc′ (9)

where

corr(ǫθct, ǫθc′t′) =

{

Πθcc′ for t = t′

0 for t 6= t′

The prior expectation E(Sθcc′ ) = Σθcc′ . To estimate Sθ using a sample, we must estimate M(Wθ) and
Rc(Wθ). In practice, where it is too difficult to learn about Rc(Wθ) we also treat it as known. To update
beliefs about Sθ, we therefore only need to learn about M(Wθ).

6



4.3 Example: Corrosion Model

For the motivating corrosion application (section 2), ultrasonic and radiographic inspection typically gen-
erates values for the minimum wall thickness (or maximum pit depth) corresponding to the area inspected
(the “inspection footprint”). We therefore adopt the specific model framework:

Observation Process: Yct = min
l

(Zct + ǫY ct) (10)

True System State: Zlct = Xct + rlct (11)

General Corrosion Model: Xt = Xt−1 + αt + ǫXt

αt = α(t−1) + ǫαt (12)

Local Corrosion Model: rlct = rlc(t−1) + ǫrlct (13)

where Zct = (Zlct) and ǫY ct are vectors over locations. With reference to section 4.1, f is the minimum
function over set L, g is the identity function, and functions F , G and parameter vector θt take the form:

F =
(

IC 0C
)

Θt =

(

Xt

αt

)

G =

(

IC IC
0C IC

)

where IC and 0C are C×C identity and zero matrices respectively, and Xt is a vector of wall thicknesses over
components. We seek inferences about true system state Zlct and corrosion rate vector αt over components.
The error terms ǫXct, ǫαct and ǫrlct control evolution of system level, slope and local level adjustment
respectively. This model is similar to that applied in corrosion modelling in [5] and [6].

We make the analogous exchangeability assumptions as in section 4.2 so that:

ǫ2Xct = M(WX) +Rc(WX) +Rt(VXc)

ǫ2rct = M(Wα) +Rc(Wα) +Rt(Vαc)

as given in equation 8. In principle it is possible to learn about ǫ2αct and ǫ2Xct separately. In practice, given
sparsity of data, this can be difficult. For simplicity we fix the ratio of mean variances:

M(Wα)) = λM(WX) (14)

The correlation structure of wall thickness evolution error ΠXcc′ is assumed to take the form of a linear
combination of three terms, reflecting an underlying universal correlation ρ0 between all pairs of components
(regardless of the circuit(s) to which they correspond), a circuit correlation ρC between all pairs of compo-
nents within the same circuit, and a correlation ρD which decays exponentially at rate ν > 0 with distance
s (measured in terms of the number of intervening components along the circuit between the components).
So the covariance between components c and c′ is:

ΠXcc′ = ρ0 + ρCδcc′ + ρDe−νscc′ (15)

where δcc′ = 1 if components c and c′ are in the same circuit, and scc′ is the distance between the components.
For simplicity we assume Πα = ΠX and then:

Πθ =

(

ΠX 0
0 Πα

)

such that SX and Sα are defined using equation 9. The correlation matrix ΠX for the offshore application
is illustrated in figure 2.

[Figure 2 about here.]

5 Inference

The objective of the analysis is to learn about the characteristics of model parameters in equations 9-12.
We achieve this using an iterative scheme explained in sections 5.1-5.4. We use Bayes linear mean updating
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in section 5.1 to learn about the true system state Zct and global effects parameter vector θt assuming that
all variance parameters in the model are known. In section 5.2 we show how Bayes linear variance learning
is use to adjust beliefs about global effects model variance parameter M(Wθ) assuming known local effects
variance parameters. In section 5.3 we use Mahalanobis variance learning to estimate local effects variance
parameters Σr given updated global effects model variance M(Wθ). Model fit and prior assumptions are
assessed using discrepancy diagnostics discussed in section 5.4.

5.1 Bayes linear mean updating

Given a collection of observations of one or more system components at one or more times expressed in
vector form as Y , we adjust beliefs about true system state Zmin

ct and global effects level θt by calculating
EY (Z

min
ct ) and EY (θct):

EY (Z
min
ct ) = E(Zmin

ct ) + Cov(Zmin
ct , Y )[Var(Y )]†(Y − E(Y )) (16)

EY (θct) = E(θct) + Cov(θct, Y )[Var(Y )]†(Y − E(Y )) (17)

where Zmin
ct = minl(Zct) over locations. In a similar fashion we can calculate adjusted variances:

VarY (Z
min
ct ) = Var(Zmin

ct )− Cov(Zmin
ct , Y )[Var(Y )]†Cov(Y, Zmin

ct )

VarY (θct) = Var(θct)− Cov(θct, Y )[Var(Y )]†Cov(Y, θct)

Estimates for (co-)variances Var(Y ), Var(Zlct), Var(θct), Cov(Zlct, Y ) and Cov(θct, Y ) for corresponding
components and times are obtained by simulation under the model using prior beliefs. Details of the sim-
ulation procedure are given in section 6. Briefly we simulate realisations for the complete system from the
model given in section 4 given prior specification. Realisations are then use to calculate empirical estimates
for expectations, variances and covariances used in Bayes linear adjustment. We can use simulation to run
the model forward in time beyond the period of the data or to predict characteristics of unseen components
in a straight forward manner.

5.2 Bayes linear variance learning

As illustrated in section 4.2, the Bayes linear approach may also be used for variance learning. Here, develop-
ment of Bayes linear variance learning is considered for the corrosion modelling application for concreteness,
since the corrosion application illustrates all key modelling features. Other applications will require modi-
fication of calculation details in general, but the methodology remains applicable. We seek expressions for
squared residuals ǫ2Xct from sample data corresponding to partial system inspections with which to learn
about population mean variances M(WX), and thereby M(Wα) and Σr also. Since the general corrosion
DLM part of the model is invertible we can take linear combinations of observations to isolate expressions
for ǫ2Xct even when observations of the system are irregularly spaced in time. This is similar to approach that
taken in [8]. Using expressions for ǫ2Xct thus obtained, we adjust our beliefs about M(WX) using observed
data and assumed known values for Σr as explained below. In section 5.3 we present a fitting procedure
using a Mahalanobis distance criterion to select an optimal combination of error variances.

Motivation

We motivate the theorem below by considering the case of full regularly spaced inspections, with the obser-
vation equation expressed as:

Yct = Xct +Mct (18)

where:
Mct = min

l
(rlct + ǫY lct)
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consider taking differences of observations in time. Let Y
(i)
ct be the ith step difference for component c at

time t defined by:

Y
(i)
ct = Yct − Yc(t−i)

with the analogous definition for M
(i)
ct . Then using equations 9 and 18, one and two step differences are seen

to be:

Y
(1)
ct = Yct − Yc(t−1) = Xct −Xc(t−1) +Mct −Mc(t−1)

= Xc(t−1) + αct + ǫXct −Xc(t−1) +M
(1)
ct

= αct + ǫXct +M
(1)
ct

= αc(t−1) + ǫαct + ǫXct +M
(1)
ct

and:

Y
(2)
ct = Yct − Yc(t−2) = Xct −Xc(t−2) +M

(2)
ct

= 2αc(t−1) + ǫαct + ǫXc(t−1) + ǫXct +M
(2)
ct

The linear combination Y
(2)
ct − 2Y

(1)
ct isolates the residual error structure except for the term M

(2)
ct − 2M

(1)
ct :

Y
(2)
ct − 2Y

(1)
ct = −ǫαct + ǫXc(t−1) − ǫXct +M

(2)
ct − 2M

(1)
ct

The expectation of the square of the former linear combination is found using the facts that residuals are
mutually uncorrelated in time, together with the exchangeability assumptions from equation 8 and the
assumption of a fixed ratio of population variances in equation 14. Then:

E(Y
(2)
ct − 2Y

(1)
ct )2 =E

(

ǫαct + ǫXc(t−1) − ǫXct +M
(2)
ct − 2M

(1)
ct

)2

=E
(

ǫ2αct + ǫ2Xc(t−1) + ǫ2Xc(t) + (M
(2)
ct − 2M

(1)
ct )2

)

=E

(

λ
(

M(WX) +Rc(WX) +Rt(VXc)
)

+M(WX) +Rc(WX) +Rt−1(VXc)

+M(WX) +Rc(WX) +Rt(VXc) + (M
(2)
ct − 2M

(1)
ct )2

)

=E ((λ+ 2)M(WX)) + E
(

(M
(2)
ct − 2M

(1)
ct )2

)

=(λ+ 2)µWX
+ E

(

(M
(2)
ct − 2M

(1)
ct )2

)

(19)

Using the corresponding result for irregular inspection, outlined in appendix A.1, we arrive at the following
theorem.

Theorem 5.1. Consider incomplete inspection of a system yielding observations {Yctc1
, Yctc2

, . . . , Yctc
Tc
} at

times {tc1, t
c
2, . . . , t

c
Tc
} for components c = 1, 2, . . . , C. The adjusted expectation E∆̄(M(WX)) for M(WX)

given ∆̄ is:

E∆̄(M(WX)) = E(M(WX)) + Cov(M(WX), ∆̄)(Var(∆̄))†(∆̄− E(∆̄))

where ∆̄ is a C × 1 vector over components with elements ∆̄c:

∆̄c =

Tc
∑

i=3

(kciY
(2)
ctc

i
− lciY

(1)
ctc

i
)2

9



Further, E(M(WX)) = µWX
, Cov(M(WX), ∆̄) = 1T

C(Tc − 2)ΓWX
and:

E(∆̄ci) =
kci l

c
i (k

c
i − lci )(2λ(k

c
i )

2 − 2λlci − 6− λ)

6
µWX

+ (lci )
2E((M

(1)
ctc

i
)2) + (kci )

2E((M
(2)
ctc

i
)2)− 2kci l

c
iE(M

(2)
ctc

i
M

(1)
ctc

i
)

where kci = tci − tci−1, l
c
i = tci − tci−2 and Y

(j)
ctc

i
= Yctc

i
− Yctc

(i−j)
with a similar definition for M

(j)
ctc

i
.

Proof. E(M(WX)) = µWX
by definition in section 4.2. Derivations of expressions forE(∆̄) and Cov(M(WX), ∆̄)

are given in appendix A.1 and A.2

Corollary 5.2. In the case of full regular inspection yielding observations Yct at times t = 1, 2, . . . , T for

components c, the expression for ∆̄c is:

∆̄c =

T
∑

t=3

(

Y
(2)
ct − 2Y

(1)
ct

)2

Proof. Let kci = 1 and lci = 2 for each tci in theorem 5.1 and E(∆̄) is found as in equation 19

With observations of a non-linear but separable function f of the true system state vector, Zlct (equation 7),
and for any particular choice of DLM model (specified by F , G), linear combinations are straightforward to
find using simple differences of observations. However this is not possible to express these linear combinations
for general F and G. Any model form for which the residual variance parameters cannot be isolated can be
analysed using Mahalanobis variance learning discussed in section 5.3.

5.2.1 Corrosion Example

For known local corrosion variance, Σr, we use simulation with prior beliefs to estimate E[(M
(1)
ctc

i
)2], E[(M

(2)
ctc

i
)2],

and E[M
(2)
ctc

i
M

(1)
ctc

i
] and Var(∆̄))†. Details of simulation procedure are given in section 6. As illustration, con-

sider estimating M(WX) using E∆̄(M(WX)) for a simulated case using the actual inspection design from
section 2, with M(WX) set to 0.12. For each of 50 independent realisations of the systems over all compo-
nents and times, we calculate ∆̄ at the inspection times, which is then used to calculate E∆̄(M(WX)). The
mean value of E∆̄(M(WX)) is 0.09942, with empirical 5% and 95% values (from simulation) of respectively
0.08722 and 0.11282, consistent with the known value.

This procedure allows variance learning for the general corrosion DLM when local corrosion variances are
known. In practice this is not the case. Selection of optimal combination of local and general variance
estimates consistent with data is discussed next.

5.3 Mahalanobis variance learning

As for general corrosion in section 5.2, we would ideally use a Bayes linear scheme to update local corrosion
variances also. However the non-linear nature of the observation equation (equation 9) renders direct esti-
mation impossible. Instead we adopt a fitting procedure based on Mahalanobis distance ([31]), exploiting
the estimated covariance structure, to estimate combinations of local and general corrosion error variances
consistent with observational data, given an estimate of measurement error variance.

For each of a set of p candidate values for local corrosion variance Σr, we calculate E∆̄(M(WX)) by Bayes
linear adjustment. Adopting E∆̄(M(WX)) as an updated estimate for M(WX), and λE∆̄(M(WX)) for
M(Wα), we re-simulate to estimate E(Y ), Var(Y ) and the ratio of Mahalanobis distance to its expected
values, termed the discrepancy ratio, H:

H =
(Y − E(Y ))TVar(Y )†(Y − E(Y ))

rank(Var(Y ))
(20)
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as outlined in section 6. We select the candidate Σr which yields a discrepancy ratio nearest to its expected
value of unity.

[Figure 3 about here.]

[Figure 4 about here.]

We illustrate joint Bayes linear and Mahalanobis variance learning for the simulated example from section
5.2.1 in figures 3 and 4. Figure 3 shows Bayes linear variance learning for wall thickness variance E∆̄(M(WX))
as a function of local corrosion variance Σr. The simulated example has true values of M(WX) and Σr both
0.12. Figure 4 shows the discrepancy ratio H as a function of local corrosion variance Σr for the same
example. Comparison with the expected value of H, shown as a horizontal line, suggests the estimate
Σr = 0.082. Figure 3 then provides the corresponding estimate E∆̄(M(WX)) = 0.112.

5.4 Diagnostics

Diagnostics are essential to confirm the adequacy of model fit. Using Mahalanobis distance, an adjustment
discrepancy DisY (X) for adjusted expectations can be calculated:

DisY (X) = (EY (X)− E(X))TRVarY X
−1(EY (X)− E(X))

where X is a vector of wall thicknesses for all components and times and RVarY X is defined in equation 1.
Analogously, DisY (Z) and DisY (α) can be calculated for vectors Z and α over all components and times.
We can also compute discrepancy directly on the data:

Dis(Y ) = (Y − E(Y ))TVar(Y )−1(Y − E(Y )) (21)

The expected value of both DisY (X) and Dis(Y ) is unity. Forms for both discrepancies can also be evaluated
for subsets of variables, useful, e.g., to spot individual outliers. Discrepancies are calculated on the prior
specification, adjusted expectations of global effects terms and, subsequent to learning about local effect
variance parameters, quantifying model adequacy at each stage. General thresholds for discrepancy measures
do not exist although as a heuristic the three sigma rule [32] states that for any uni–modal continuous random
quantity, X, P (|X − E(X)| ≤ 3

√

Var(X)) ≥ 0.95.

[Figure 5 about here.]

Figure 5 shows Dis(Y ) for a realisation of the simulated data discussed in sections 5.2 and 5.3. The expected
value of Dis(Y ) is unity, shown as a horizontal line. In this realisation, only one observation exceeds the
warning limit suggesting that prior specification and data are consistent. More general diagnostics for
variance learning and overall model fit can be specified similarly.

Given a set of model alternatives the discrepancy measure could be used to distinguish the best fit. The
pointwise discrepancy measure is similar to the studentised residuals in regression analysis and could be
interpreted in a similar way (i.e. looking for missing covariates, suitable transformations etc.).

6 Inference procedure

The procedure to apply the corrosion model (section 4.3) is explained below. Firstly we make prior specifi-
cation and carry out simple diagnostic checks to confirm consistency of the data and priors. We then update
model (co-)variances, before updating means. Finally we calculate diagnostics to assess model fit.

To simulate from the model, distributional assumptions are necessary below (indicated using notation iid(.).
It is advised that a variety of different distributional forms be examined to enable an informed choice
about (co-)variance specification. Plausible distribution will generally lead to robust estimates of low order
moments, even if full probability specification would not be appropriate using these distributions.
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1. Specify prior and starting values to be examined

• wall thickness variances prior, µWX
, ΣWX

and ΓWX
(see section 4.2), and ΠXcc′

(see equation 15)

• corrosion variance variance prior, λ, Παcc′
(see section 4.3)

• measurement error variance ΣY (see section 4.1)

• candidate values for p local corrosion variances Σr to consider (see section 4.1)

• starting values over components for Xt and αt at t = 0 (see section 4.3)

2. For each of p choices of local corrosion variance Σr (see section 4.1)

(a) Evaluate variance matrices using simulation under prior specification

• simulate SX from iid(µWX
,ΣWX

,ΓWX
,ΠXcc′

)

• simulate Sα from iid(λµWX
, λ2ΣWX

, λ2ΓWX
,Παcc′

)

(b) Run model specified in section 4.3 forward from t = 0

• ǫα.t ∼ iid(0,Sα)

• α.t = α.t−1 + ǫα.t

• ǫX.t ∼ iid(0,SX)

• X.t = X.t−1 + α.t + ǫX.t

• ǫr..t ∼ iid(0,Σr)

• r..t = r..t−1 + ǫr..t

• ǫY..t ∼ iid(0,ΣY )

• Y..t = minl (X.t + r..t− 1 + ǫY..t)

(c) From simulation calculate sample estimates E(Y ) and Var(Y ) over N realisations and check
consistency with prior by computing discrepancy Dis(Y ) (see equation 21)

(d) Calculate ∆̄ and Var(∆̄) over N realisations and calculate E∆̄(M(WX)) for each Σr (see theorem
5.1)

3. Select optimal Σr from the set of p candidates as that which yields the discrepancy ratio (see equation
20) nearest to unity

4. Simulate to update wall thicknesses Xt and corrosion rates αt for any t of interest

• repeat step 2a and 2b using optimal Σr and µWX
= E∆̄(M(WX)) for N realisations

• calculate sample estimates from simulation for E(Zmin
ct ), E(αct), Cov(Z

min
ct , Y ),Cov(αct, Y ), Var(Y )

and E(Y )

• calculate adjusted expectations from true wall thickness EY (Z
min
ct ) and corrosion EY (αct) (see

section 5.1), for components and times of interest. This could include forecasting forward in time
or prediction of components not observed

5. Calculate discrepancy ratio H (see equation 20) for estimated model variables to confirm consistency.

7 Application

Having illustrated model performance for simulated data, we now apply it to actual historical inspection
data for the offshore platform, using the procedure described in section 6. The first step of the analysis is
specification of prior values. Recalling that the inspection design (figure 1) and system prior specification
(section 2) corresponding to the historical data were also used for simulated data, results equivalent to those
in figures 3, 4 and 5 are shown in figures 6, 7 and 8 below.

We assess the prior discrepancy of observations as described in section 5.4. To achieve this, realisations under
the model are generated as described in steps 2a and 2b of section 6. Discrepancies are shown in figure 6, to
be compared with figure 5 for a single system realisation. With one exception, historical inspection data are
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consistent with prior expectations. At time point 11, corresponding to the first observations of components
35 − 51, all in a particular corrosion circuit, high values of discrepancy may reflect poor prior specification
for that circuit at that time.

[Figure 6 about here.]

Starting values for wall thickness X0 and corrosion α0 were specified using historical data. We evaluate
adjusted expectation for wall thickness variance E∆̄(M(WX)) as described in theorem 5.1 for different local
corrosion variance Σr using variance learning (section 5.2). Results are given in figures 7 and 8 (analogous
to figures 3 and 4 for the simulated data). The value of 0.12 for E∆̄(M(WX)), to be used as an estimate for
prior wall thickness variance M(WX) is the same as its prior value (B). However, the updated value of 0.42

for Σr is considerably larger than its prior (0.12). Wall thickness forecasts and inspection designs derived
using updated estimates for corrosion variances will be different in general to those based on constant (prior)
variances.

[Figure 7 about here.]

[Figure 8 about here.]

[Figure 9 about here.]

The forward model together with parameter estimates from historical inspection data allows forecasting of
future system state. Figure 9 illustrates the effect of incorporating variance learning for a single component of
the offshore platform. The critical wall thickness corresponding to component failure is shown as a horizontal
dotted line at 4mm. Actual inspections of the component are shown as black circles. The grey shaded area
corresponds to a 95% credible interval for underlying wall thickness based on simulation using prior beliefs
(with mean shown as a white line). Light grey broken lines correspond to the adjusted expectation EY (Z

min
ct )

and 95% credible interval for underlying wall thickness based on Bayes linear adjusted variance VarY (Z
min
ct ).

Solid black lines correspond to the same adjusted values following a variance learning step. Since variance
learning inflates local corrosion variance, credible intervals incorporating variance learning are wider. The
rate of wall thickness loss, and the expected time to crossing of critical wall thickness are also affected by
the incorporation of variance learning. Notwithstanding large uncertainties, in this application, variance
learning suggests that component life may be approximately 20 months shorter than otherwise anticipated.

Figure 10 illustrates the effect of incorporating variance learning for 3 components of the offshore platform,
one of which is not directly observed. The first component is the same component as shown in figure 9.
The grey shaded area corresponds to a 95% uncertainty interval for underlying wall thickness based on
simulation using prior beliefs (with mean shown as a white line); these are the same for each component.
Light grey broken lines correspond to the adjusted expectations EY (Z

min
ct ) with 95% uncertainty intervals

based on Bayes linear adjusted variance VarY (Z
min
ct ). Solid black lines correspond to the same adjusted

values following a variance learning step. The effect of the correlation between components can be seen
in changes exhibited by adjusted wall thickness for components at times with no inspections. The third
component shows the effect on a component which is not directly observed. In the case of mean updating
(without variance learning), the corrosion rate is reduced, increasing predicted remnant life. In the case of
variance updating and mean updating, the local corrosion rate is increased and the corrosion rate is reduced.
The net effect is to decrease predicted remnant life.

[Figure 10 about here.]

8 Discussion

In this paper we have presented a methodology for tractable modelling of large systems of short correlated
time series using incomplete and irregularly spaced observation and extending Bayes linear methodology
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to include learning about variances. Sample data consist of short time series of irregularly-timed partial
inspections across components.

Realistic modelling requires good specification of priors and initial values, particularly if data are sparse.
Simulation and Bayes linear analysis provide knowledge of the full system given partial prior specification,
considerably more simply than full Bayesian inference. Sensitivity to the choice of the prior wall thickness
variance is explored in figures 11 and 12. Figure 11 shows variance learning for the general and local
corrosion variances, given three prior choices for prior mean for M(WX); µWx

= [0.05, 0.1, 0.2]. The
adjusted expectation of the general corrosion variance in all cases has moved from the prior towards the true
value. However we do not have enough data to disregard the prior and use the data mean. Choice of local
corrosion variance in these situations seems to match the total variation in the model. This is typical in DLM
models where there is some confounding between model variances. By carrying out variance learning we are
not relying on prior second order variance specification shifts the fixed hyper parameters to the fourth order
specification. The sensitively of the fourth order specification to the estimation of corrosion rates, remaining
component life is minimal.

[Figure 11 about here.]

[Figure 12 about here.]

Given second order exchangeability judgements, variance structure learning for short time series is achieved
using linear combinations of observations to access squared residuals where possible. When the observation
equation involves a non-linear function a Mahalanobis fitting procedure can be used estimate local effects
variance.

For the model form given in section 4, once distributional assumptions are made, it is straightforward to
simulate realisations to estimate means, variances and covariances. Bayes linear updating is straightforward
to implement in software packages such as MATLAB or R since it only requires simple matrix algebra.
Simulation of the model requires only simple random number generation again widely available. For larger
problem efficient memory utilisation is necessary.

Second order exchangeability judgements used are weaker than independence assumptions typically made in
classical inference. Exchangeability across components allows us to exploit large numbers of components for
variance structure learning, particularly advantageous when data are sparse. Diagnostic tests assess model
fit and validity of exchangeability judgements. Specific knowledge of system characteristics allow a more
detailed prior specification, e.g. partitioning the system into sets of exchangeable components, or specifying
a parametric form for certain variances in time. With sufficient data, between-component exchangeability
judgements may not be necessary. Separate inferences about variances of individual components could be
made. We illustrate the method in application to corrosion modelling of a full scale offshore facility. Forecasts
of remnant life and its uncertainty incorporating variance learning are shown to be materially different to
those obtained without variance learning.

We plan to apply this approach to more real systems and larger problems (from a corrosion engineer’s point
of view the example presented in this paper is small). Currently covariance structures are fixed. The method
could be extended beyond just variances to learn about full covariance matrices. However useful inference
for full covariance matrices would require longer time series than is typical in the application considered in
this paper.

Various possibilities for generalisations of the model exist. For example, the corrosion model ignores cor-
rosion initiation, which could be incorporated using an appropriate (e.g point process) representation. For
applications other than to corrosion, alternatives to the (separable) minimum function in the observation
equation and DLM structure will require tailored linear combinations to access squared residuals required
for variance structure learning. Nevertheless, the strategy of Bayes linear variance learning, where possible,
supplemented by Mahalanobis learning, will be applicable.
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A Calculations for ED(M(WX))

A.1 E[∆̄]

The general corrosion DLM (equation 4) can be rewritten:
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=
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+
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Now to eliminate the effects of the wall thickness term we do kciY
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So:
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A.2 Cov[M(WX), ∆̄]
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(1)
ctc

i

]2

which means:
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Cov
[

M(WX), (kciY
(2)
ctc

i
− lciY

(1)
ctc

i
)2
]

= Cov

[

M(WX),
(

(

(kci − lci ) 0
)

ξc(tc
i
,tc

i
−kc

i
)

)2
]

+Cov

[

M(WX),
(

(

kci kci (k
c
i − lci )

)

ξc(tc
i
−kc

i
,tc

i
−lc

i
)

)2
]

we will consider:

A:
Cov

[

M(WX),
((

(kci − lci ) 0
)

ξc(tc
i
,tc

i
−kc

i
)

)2
]

B:
Cov

[

M(WX),
((

kci kci (k
c
i − lci )

)

ξc(tc
i
−kc

i
,tc

i
−lc

i
)

)2
]

A:

Cov

[

M(WX),
(

(

(kci − lci ) 0
)

ξc(tc
i
,tc

i
−kc

i
)

)2
]

= Cov






M(WX),





kc
i−1
∑

j=0

(

(kci − lci ) 0
)

(

1 j

0 1

)(

ǫX + ǫα
ǫα

)

ctc
i
−j





2






= Cov











M(WX),

kc
i−1
∑

j=0

kc
i−1
∑

j′=0

(kci − lci )
2ǫXctc

i
−jǫXctc

i
−j′

+(j′ + 1)(kci − lci )
2ǫXctc

i
−jǫαctc

i
−j′+

+(j′ + 1)(kci − lci )
2ǫXctc

i
−jǫαctc

i
−j′+

+(j′ + 1)(j + 1)(kci − lci )
2ǫαctc

i
−jǫαctc

i
−j′











= (kci − lci )
2

kc
i−1
∑

j=0

Cov
[

M(WX), ǫ2Xctc
i
−j

]

+ (kci − lci )
2

kc
i−1
∑

j=0

(j + 1)2Cov
[

M(WX), ǫ2αctc
i
−j

]

= (kci − lci )
2

kc
i−1
∑

j=0

Cov [M(WX),M(Wα) +Rc(Wα) +Rt(Vαc)]

+ (kci − lci )
2

kc
i−1
∑

j=0

(j + 1)2Cov [M(WX),M(Wα))]

= kci (k
c
i − lci )

2ΓWX
+

λ

6
kci (k

c
i + 1)(2kci + 1)(kci − lci )

2ΓWX

B:

Cov

[

M(WX),
(

(

kci kci (k
c
i − lci )

)

ξc(tc
i
−kc

i
,tc

i
−lc

i
)

)2
]

= Cov






M(WX),





lci−kc
i−1

∑

j=0

(

kci kci (k
c
i − lci )

)

(

1 j

0 1

)(

ǫX + ǫα
ǫα

)

ctc
i
−kc

i
−j





2






= Cov



M(WX),

lci−kc
i−1

∑

j=0

lci−kc
i−1

∑

j′=0

(

kci ǫXctc
i
−kc

i
−j + kci (j + 1 + kci − lci )ǫαctc

i
−kc

i
−j

)

×

(

kci ǫXctc
i
−kc

i
−j′ + kci (j

′ + 1 + kci − lci )ǫαctc
i
−kc

i
−j′

)





= (lci − kci )(k
c
i )

2ΓWX
+Cov






M(WX), (kci )

2

lci−kc
i−1

∑

j=0

j2ǫ2
αctc

i
−kc

i
−j

+2j(kci − lci )ǫ
2
αctc

i
−kc

i
−j

+(kci − lci )ǫ
2
αctc

i
−kc

i
−j







= (lci − kci )(k
c
i )

2ΓWX
+

λ(kci )
2(lci − kci )(l

c
i − kci + 1)(2(lci − kci ) + 1)ΓWX

6

+
2λ(kci )

2(lci − kci )(l
c
i − kci + 1)(kci − lci )ΓWX

2
+ λ(kci )

2(kci − lci )
2(lci − kci )ΓWX
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So:

Cov
[

M(WX), (kciY
(2)
ctc

i
− lciY

(1)
ctc

i
)2
]

= A. + B.

=
kci l

c
i (k

c
i − lci )(2λ(k

c
i )

2 − 2λlci − 6− λ)ΓWX

6
= KiΓWX

Therefore:

Cov[M(WX), ∆̄c] =

Tc
∑

i=3

Ki

Ki
ΓWX

= (Tc − 2)ΓWX

and:
Cov[M(WX), ∆̄] =

(

ΓWX
ΓWX

. . . ΓWX

)

B Prior values for offshore structure application

number of components N 64
number of time points T 83
total number of inspections 174
minimum level of correlation between components ρ0 0.2
distance effect scaling parameter ρD 0.3
circuit correlation scaling parameter ρC 0.5
ratio local to general corrosion λ 0.02
measurement error variance ΣY 0.162

prior mean for M(WX) µWX
0.12

prior variance for M(WX) ΣWX
1e-3

prior covariance for M(WX) ΓWX
5e-4

20



List of Figures

1 Inspection design for the offshore application, consisting of 64 components over 83 time points.
Black lines correspond to 174 observations of the system. . . . . . . . . . . . . . . . . . . . . 23

2 Correlation matrix ΠX for the offshore application. The 4 blocks present correspond to the
four corrosion circuits. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Bayes linear variance learning for wall thickness variance E∆̄(M(WX)) as a function of local
corrosion variance, Σr, for simulated data, shown on square-root scale. The true values of
M(WX) (for which E∆̄(M(WX)) is an estimate) and Σr are both 0.12, as shown by the
dashed horizontal and vertical lines. The mean estimate for E∆̄(M(WX))1/2 is shown as a
solid line, and the shaded region corresponds to a 90% uncertainty band for E∆̄(M(WX))1/2

bounded by the 5th and 95th percentiles derived from simulation. . . . . . . . . . . . . . . . . 25

4 Discrepancy ratio, H, as a function of local corrosion variance Σr for simulated data. The
mean estimate for H is shown as a solid line, and the shaded region corresponds to a 90%
uncertainty band for H bounded by the 5th and 95th percentiles derived from simulation. The
expected value of H shown as a horizontal line is 1, suggesting Σr = 0.082 and corresponding
E∆̄(M(WX)) = 0.112, (from figure 3). Vertical lines indicate the mean (solid) and 5th and
95th percentiles (dashed) for the particular choice of Σr in individual realisations. The true
values of M(WX) and Σr are both 0.12. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

5 Component-wise discrepancy Dis(Y ) for a typical realisation from the simulated data. The
expected value of Dis(Y ) is unity, shown as a horizontal line. Also shown is the horizontal
line corresponding to |1 − Dis(Y )| = 3, serving as a warning limit for unusually large values
of discrepancy. In this realisation, only one observation exceeds the warning limit. . . . . . . 27

6 Component-wise discrepancy Dis(Y ) for the historical inspection data. The expected value of
Dis(Y ) is unity, shown as a horizontal line. Also shown is the horizontal line corresponding to
|1−Dis(Y )| = 3, serving as a warning limit for unusually large values of discrepancy. At time
point 11, corresponding to the first observations of components 35 − 51, all in a particular
corrosion circuit, high values of discrepancy may reflect poor prior specification for that circuit
at that time point. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

7 Bayes linear variance learning. E∆̄(M(WX)) as a function of local variance Σr for the histor-
ical inspection data, shown on square-root scale. . . . . . . . . . . . . . . . . . . . . . . . . . 29

8 Discrepancy ratio, H, as a function of local corrosion variance Σr for the historical inspection
data. Figure suggests local corrosion variance Σr = 0.42 and corresponding adjusted general
corrosion variance E∆̄(M(WX)) = 0.12 (from figure 7). . . . . . . . . . . . . . . . . . . . . . 30

9 Effect of incorporating variance learning for a single component of the offshore platform.
Critical wall thickness is shown as a horizontal dotted line at 4mm. Actual inspections of the
component are shown as black circles. Grey shaded area corresponds to a 95% uncertainty
bands from simulation for underlying wall thickness based on prior beliefs (with mean shown
as a white line). Light grey broken lines correspond to adjusted expectation EY (Z

min
ct ) and

95% uncertainty bands for underlying wall thickness based on Bayes linear adjusted variance
VarY (Z

min
ct ) without variance learning. Solid black lines correspond to the same adjusted

values following a variance learning step. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

10 Effect of incorporating variance learning for 3 components of the offshore platform, one of
which is not directly observed. Critical wall thickness is shown as a horizontal dotted line
at 4mm. Actual inspections of components are shown as black stars. Grey shaded areas
corresponds to 95% uncertainty bands from simulation for underlying wall thickness based
on prior beliefs (with mean shown as a white line). Light grey broken lines correspond to
adjusted expectations EY (Z

min
ct ) with 95% uncertainty bands based on Bayes linear adjusted

variance VarY (Z
min
ct ) without variance learning. Solid black lines correspond to the same

adjusted values following a variance learning step. . . . . . . . . . . . . . . . . . . . . . . . . 32

21



11 Bayes linear variance learning for the general and local corrosion variances, given 3 prior
choices for prior mean for M(WX); µWx

= 0.05 (light grey), 0.1 (dark grey), 0.2 (black). The
adjusted expectation of the general corrosion variance in all cases has moved from the prior
towards the true value. However we do not have enough data to disregard the prior and use
the data mean. Vertical lines show the true parameter values . . . . . . . . . . . . . . . . . . 33

12 Mahalanobis variance learning for the local corrosion variances, given 3 prior choices for prior
mean for M(WX); µWx

= 0.05 (light grey), 0.1 (dark grey), 0.2 (black). The expected value
of L shown as a horizontal dot-dashed line is 1. The true local corrosion is show as a vertical
dot-dashed line. Vertical dashed lines show the value of the local corrosion chosen . . . . . . 34

22



Figure 1: Inspection design for the offshore application, consisting of 64 components over 83 time points.
Black lines correspond to 174 observations of the system.
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Figure 2: Correlation matrix ΠX for the offshore application. The 4 blocks present correspond to the four
corrosion circuits.
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Figure 3: Bayes linear variance learning for wall thickness variance E∆̄(M(WX)) as a function of local
corrosion variance, Σr, for simulated data, shown on square-root scale. The true values of M(WX) (for
which E∆̄(M(WX)) is an estimate) and Σr are both 0.12, as shown by the dashed horizontal and vertical
lines. The mean estimate for E∆̄(M(WX))1/2 is shown as a solid line, and the shaded region corresponds to a
90% uncertainty band for E∆̄(M(WX))1/2 bounded by the 5th and 95th percentiles derived from simulation.
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Figure 4: Discrepancy ratio, H, as a function of local corrosion variance Σr for simulated data. The mean
estimate for H is shown as a solid line, and the shaded region corresponds to a 90% uncertainty band for
H bounded by the 5th and 95th percentiles derived from simulation. The expected value of H shown as
a horizontal line is 1, suggesting Σr = 0.082 and corresponding E∆̄(M(WX)) = 0.112, (from figure 3).
Vertical lines indicate the mean (solid) and 5th and 95th percentiles (dashed) for the particular choice of Σr

in individual realisations. The true values of M(WX) and Σr are both 0.12.
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Figure 5: Component-wise discrepancy Dis(Y ) for a typical realisation from the simulated data. The expected
value of Dis(Y ) is unity, shown as a horizontal line. Also shown is the horizontal line corresponding to
|1 − Dis(Y )| = 3, serving as a warning limit for unusually large values of discrepancy. In this realisation,
only one observation exceeds the warning limit.
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Figure 6: Component-wise discrepancy Dis(Y ) for the historical inspection data. The expected value of
Dis(Y ) is unity, shown as a horizontal line. Also shown is the horizontal line corresponding to |1−Dis(Y )| = 3,
serving as a warning limit for unusually large values of discrepancy. At time point 11, corresponding to the
first observations of components 35− 51, all in a particular corrosion circuit, high values of discrepancy may
reflect poor prior specification for that circuit at that time point.
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Figure 7: Bayes linear variance learning. E∆̄(M(WX)) as a function of local variance Σr for the historical
inspection data, shown on square-root scale.
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Figure 8: Discrepancy ratio, H, as a function of local corrosion variance Σr for the historical inspection data.
Figure suggests local corrosion variance Σr = 0.42 and corresponding adjusted general corrosion variance
E∆̄(M(WX)) = 0.12 (from figure 7).
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Figure 9: Effect of incorporating variance learning for a single component of the offshore platform. Critical
wall thickness is shown as a horizontal dotted line at 4mm. Actual inspections of the component are shown
as black circles. Grey shaded area corresponds to a 95% uncertainty bands from simulation for underlying
wall thickness based on prior beliefs (with mean shown as a white line). Light grey broken lines correspond
to adjusted expectation EY (Z

min
ct ) and 95% uncertainty bands for underlying wall thickness based on Bayes

linear adjusted variance VarY (Z
min
ct ) without variance learning. Solid black lines correspond to the same

adjusted values following a variance learning step.

31



Figure 10: Effect of incorporating variance learning for 3 components of the offshore platform, one of which
is not directly observed. Critical wall thickness is shown as a horizontal dotted line at 4mm. Actual
inspections of components are shown as black stars. Grey shaded areas corresponds to 95% uncertainty
bands from simulation for underlying wall thickness based on prior beliefs (with mean shown as a white
line). Light grey broken lines correspond to adjusted expectations EY (Z

min
ct ) with 95% uncertainty bands

based on Bayes linear adjusted variance VarY (Z
min
ct ) without variance learning. Solid black lines correspond

to the same adjusted values following a variance learning step.
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Figure 11: Bayes linear variance learning for the general and local corrosion variances, given 3 prior choices
for prior mean for M(WX); µWx

= 0.05 (light grey), 0.1 (dark grey), 0.2 (black). The adjusted expectation
of the general corrosion variance in all cases has moved from the prior towards the true value. However we do
not have enough data to disregard the prior and use the data mean. Vertical lines show the true parameter
values
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Figure 12: Mahalanobis variance learning for the local corrosion variances, given 3 prior choices for prior
mean for M(WX); µWx

= 0.05 (light grey), 0.1 (dark grey), 0.2 (black). The expected value of L shown
as a horizontal dot-dashed line is 1. The true local corrosion is show as a vertical dot-dashed line. Vertical
dashed lines show the value of the local corrosion chosen
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