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Motivation
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Katrina in the Gulf of Mexico.
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Katrina damage.
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Cormorant Alpha in a North Sea storm.
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”L9” platform in the Southern North Sea.
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A wave seen from a ship.
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Black Sea coast.
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Praha 1872.
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Praha 2002.
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Motivation

• Rational design an assessment of marine structures:

• Reducing bias and uncertainty in estimation of structural
reliability.

• Improved understanding and communication of risk.
• Climate change.

• Other applied fields for extremes in industry:

• Corrosion and fouling.
• Finance.
• Network traffic.
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Modelling challenges
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• Covariate effects:
• Location, direction, season, ...
• Multiple covariates in practice.

• Cluster dependence:
• e.g. storms independent, observed (many times) at many

locations.
• e.g. dependent occurrences in time.
• estimated using e.g. extremal index (Ledford and Tawn 2003)

• Scale effects:
• Modelling X 2 gives different estimates c.f. modelling X .

• Threshold estimation.

• Parameter estimation.

• Measurement issues:
• Field measurement uncertainty greatest for extreme values.
• Hindcast data are simulations based on pragmatic physics,

calibrated to historical observation.
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• Multivariate extremes:
• Waves, winds, currents, forces, moments, displacements, ...
• Componentwise maxima ⇔ max-stability ⇔ multivariate

regular variation:
• Assumes all components extreme.
• ⇒ Perfect independence or asymptotic dependence only.

• Extremal dependence:
• Assumes regular variation of joint survivor function.
• Gives rise to more general forms of extremal dependence.
• ⇒ Asymptotic dependence, asymptotic independence (with

+ve, -ve association).

• Conditional extremes:
• Assumes, given one variable being extreme, convergence of

distribution of remaining variables.
• Not equivalent to extremal dependence.
• Allows some variables not to be extreme.

• Inference:
• ... a huge gap in the theory and practice of multivariate

extremes ... (Beirlant et al. 2004)
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Covariates: outline
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• Sample {xi , ti}ni=1 of variate x and covariate t.

• Non-homogeneous Poisson process model for threshold
exceedences

• Davison and Smith [1990], Davison [2003], Chavez-Demoulin
and Davison [2005]

• Rate of occurrence of threshold exceedence and size of
threshold exceedence are functionally independent.

• Other equivalent interpretations.

• Time, season, space, direction, GCM parameters ...
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Quantile regression models threshold

• Data {θi , xi}ni=1, τ th conditional quantile ψ(τ, θ).

Fourier basis:

ψ(τ, θ) =

p∑
k=0

αcτk cos(kθ) + αsτk sin(kθ) and αsτ0 , 0

Spline basis:
ψ(τ, θ) =

p∑
k=0

Φθkβτk

• Estimated by minimising penalised criterion Q∗τ with respect
to basis parameters (α or β):

Q∗τ = {τ
n∑

ri≥0
|ri |+ (1− τ)

n∑
ri<0

|ri |}+ λRψτ

for ri = xi − ψ(τ, θi ) for i = 1, 2, ..., n, and roughness Rψτ .
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GP models size of threshold exceedances

• Generalised Pareto density (and negative conditional
log-likelihood) for sizes of threshold excesses:

f (xi ; ξi , σi , u) =
1

σi
(1 +

ξi
σi

(x − ui ))−
1
ξ
−1 for each i

lE (ξ, σ) = −
n∑

i=1

log(f (xi ; ξi , σi , ui ))

• Parameters: shape ξ, scale σ.

• Threshold u set prior to estimation.
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Poisson models rate of threshold exceedances

• (Negative) Poisson process log-likelihood (and approximation)
for rate of occurrence of threshold excesses:

lN(µ) =

∫ n

i=1
µdt −

n∑
i=1

logµi

l̂N(µ) = δ

m∑
j=1

µ(jδ)−
m∑
j=1

cj logµ(jδ)

• {cj}mj=1 counts the number of threshold exceedences in each
of m bins partitioning the covariate domain into intervals of
length δ

• Parameter: rate µ
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• Overall:

l(ξ, σ, µ) = lE (ξ, σ) + lN(µ)

with all of ξ, σ and µ smooth with respect to t.

• We can estimate µ independently of ξ and σ.
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• We can impose smoothness on parameters in various ways.

• In a frequentist setting, we can use penalised likelihood:

`(θ) = l(θ) + λR(θ)

• R(θ) is parameter roughness (usually quadratic form in
parameter vector)

• λ is roughness tuning parameter

• In a Bayesian setting, we can impose a random field prior
structure (and corresponding posterior) on parameters:

f (θ|α) = exp{−α
n∑

i=1

∑
tj near ti

(θi − θj)2}

log f (ξ, σ|x , α) = l(ξ, σ, µ|x)

−
n∑

i=1

∑
tj near ti

{αξ(ξi − ξj)2 + ασ(σi − σj)2}
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Covariates: applications
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Fourier directional model for GP shape and scale at Northern
North Sea location, with 95% bootstrap confidence band.
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Spatial model for 100-year storm peak significant wave height in
the Gulf of Mexico (not to scale), estimated using a thin-plate
spline with directional pre-whitening.
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Seasonal-temporal model of 90%ile of air temperature at
Greenland location using spline quantile regression.
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Seasonal-temporal model of 90%ile of air temperature at
Greenland location using spline quantile regression.
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Multivariate: outline
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Component-wise maxima

• Beirlant et al. [2004] is a nice introduction.

• No obvious way to order multivariate observations.

• Theory based on component-wise maximum, M.
• For sample {xij}ni=1 in p dimensions:
• Mj = maxni=1{xij} for each j .
• M will probably not be a sample point!

• P(M 6 x) =
∏p

j=1 P(Xj 6 xj) = F n(x)

• We assume: F n(anx + bn)
D→ G (x)

• Therefore also: F n
j (an,jxj + bn,j)

D→ Gj(xj)
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Homogeneity

• Limiting distribution with Frechet marginals, GF

• GF (z) = G (G←1 (e−
1
z1 ),G←2 (e−

1
z2 ), ...,G←p (e

− 1
zp ))

• VF (z) = − logGF (z) is the exponent measure function

• VF (sz) = s−1VF (z)

Homogeneity order -1 of exponent measure implies asymptotic
dependence (or perfect independence)!
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Composite likelihood for spatial dependence

• Composite likelihood lC (θ) assuming Frechet marginals:

lC (θ) = −
n∑

i=1

n∑
j=1

log f (zi , zj ; θ)

f (zi , zj) = (
∂V (zi , zj)

∂zi

∂V (zi , zj)

∂zj
−
∂2V (zi , zj)

∂zi∂zj
)e−V (zi ,zj )

• Lots of possible exponent measures with simple bivariate
parametric forms with pre-specified functions (e.g. of
distance) whose parameters must be estimated:
• Smith model (Spatial Gaussian extreme value process)
• Schlather model (Extremal Gaussian process)
• Brown-Resnick model
• Davison and Gholamrezaee model
• Wadsworth & Tawn (Gaussian-Gaussian process)

• See Davison et al. [2012].
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Smith model

V (zi , zj) =
1

zi
Φ(
α(h)

2
+

1

α(h)
log(

zj
zi

))

+
1

zj
Φ(
α(h)

2
+

1

α(h)
log(

zi
zj

))

with pre-specified α(h) = (h′Σ−1h)1/2 of distance h, where:

Σ =

(
σ21 σ12
σ12 σ22

)
and σ21, σ12 and σ22 must be estimated.
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Realisation from Smith model

For case σ2
1 = 20, σ12 = 15 and σ2

2 = 30. Standard Frechet marginals.
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Simulation from Smith model
Simulated samples of size N = 10, 50, 100 and 500 corresponding to
K = 10, 50 and 100 spatial locations, for σ2

1 = 200, σ12 = 150 and
σ2
2 = 300 with standard Frechet marginals. Locations at random on

40× 40 grid.

Sample size N = 500, K = 10 locations.
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Maximum composite likelihood estimates

25%, 50% and 75% percentiles of MCLE estimates for N = 10 (Red), 50
(Green), 100 (Turquoise) and 500 (Purple) observations over K = 10

(Top), 50 (Centre), and 100 (Bottom) sites.



Outline Motivation Challenges Covariates Applications Multivariate Applications Current References

• Component-wise maxima has some pros:
• Most widely-studied branch of multivariate extremes.
• Composite likelihood offers some promise; Bayesian inference

feasible.

• And many cons:
• Hotch-potch of methods.
• Does not accommodate asymptotic independence.
• Threshold selection!
• Covariates!

• Parametric forms.
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Extremal dependence

• Bivariate random variable (X ,Y ):

• asymptotically independent if limx→∞ Pr(X > x |Y > x) = 0.

• asymptotically dependent if limx→∞ Pr(X > x |Y > x) > 0.

• Extremal dependence models:
• Admit asymptotic independence.

• But have issues with:
• Threshold selection.
• Covariates!

• Ideas from theory of regular variation (see Bingham et al.
1987)
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• (XF ,YF ) with Frechet marginals (Pr(XF < f ) = e−
1
f ).

• Assume Pr(XF > f ,YF > f ) is regularly varying at infinity:

limf→∞
Pr(XF > sf ,YF > sf )

Pr(XF > f ,YF > f )
= s−

1
η for some fixed s > 0

• This suggests:

Pr(XF > sf ,YF > sf ) ≈ s−
1
ηPr(XF > f ,YF > f )

Pr(XG > g + t,YG > g + t) = Pr(XF > eg+t ,YF > eg+t)

≈ e−
t
ηPr(XF > eg ,YF > eg )

= e−
t
ηPr(XG > g ,YG > g)

on Gumbel scale XG : Pr(XG < g) = exp(−e−g ).

η is known as the coefficient of tail dependence.
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• Ledford and Tawn [1997] motivated by Bingham et al. [1987]

• Assume model Pr(XF > f ,YF > f ) = `(f )f −
1
η

• `(f ) is a slowly-varying function, limf→∞
`(sf )
`(f ) = 1

• Then:

Pr(XF > f |YF > f ) =
Pr(XF > f ,YF > f )

Pr(YF > f )

= `(f )f −
1
η (1− e−

1
f )−1

∼ `(f )f 1−
1
η

∼ `(f )Pr(YF > f )
1
η
−1

• At η < 1 (or limf→∞`(f ) = 0), XF and YF are As.Ind.!

• η easily estimated from a sample by noting that LF , the
minimum of XF and YF is approximately GP-distributed:

Pr(LF > f + s|LF > f ) ∼ (1 +
s

f
)−

1
η for large f
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Conditional extremes

• Heffernan and Tawn [2004]

• Sample {xi1, xi2}ni=1 of variate X1 and X2.

• (X1,X2) need to be transformed to (Y1,Y2) on the same
standard Gumbel scale.

• Model the conditional distribution of Y2 given a large value
of Y1.

• Asymptotic argument relies on X1 (and Y1) being large.

• Applies to almost all known forms of multivariate extreme
value distribution, but not all.
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• (X1,X2)
PIT⇒ (Y1,Y2).

• (Y2|Y1 = y1) = ay1 + yb1 Z for large values y1 and +ve
dependence.

• Estimate a, b and Normal approximation to Z using
regression.

• (Y1,Y2)
PIT⇒ (X1,X2).

• Simulation to sample joint distribution of (Y1,Y2) (and
(X1,X2)).

• Pros:
• Extends naturally to high dimensions

• Cons:
• Threshold selection for (large number of) models.
• Covariates!
• Consistency of Y2|Y1 and Y1|Y2 not guaranteed.
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Conditional extremes with covariates
On Gumbel scale, by analogy with Heffernan & Tawn (2004) we
propose the following conditional extremes model:

(Yk |Yj = yj ,Φ = φ) = αφyj + y
βφ
j (µφ + σφZ ) for yj > ψG

j (θj , τ
G
j∗)

where:

• ψG
j (θj , τ

G
j∗) is a high directional quantile of Yj on Gumbel

scale, above which the model fits well
• αφ ∈ [0, 1], βφ ∈ (−∞, 1], σφ ∈ [0,∞)
• Z is a random variable with unknown distribution G
• Z will be assumed to be approximately Normally distributed

for the purposes of parameter estimation

Settings:

• In a (HS ,TP) case, φ , θj , θk , and dependence is assumed
a function of absolute covariate

• In a (HS ,WindSpeed) case, φ = θk − θj , and dependence is
assumed a function of relative covariate
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Multivariate: applications
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Environmental design contours derived from a conditional
extremes model for storm peak significant wave height, HS , and
corresponding peak spectral period, TP .
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Current profiles with depth (a 32-variate conditional extremes
analysis) for a North-western Australia location.
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Fourier directional model for conditional extremes at a Northern
North Sea location.
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Current developments



Outline Motivation Challenges Covariates Applications Multivariate Applications Current References

• p-spline and random field approaches to spatio-temporal and
spatio–directional extreme value models.

• Composite likelihood: model (asymptotically dependent)
componentwise–maxima.

• Censored likelihood: allows extension from block-maxima to
threshold exceedances.

• Hybrid spatial dependence model: incorporation of
asymptotic independence using inverted multivariate extreme
value distribution.
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Děkuji za pozornost!

philip.jonathan@shell.com
www.lancs.ac.uk/∼jonathan
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