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Motivation

Rational and consistent design and assessment of marine
structures

Reduce bias and uncertainty in estimation of structural
integrity
Quantify uncertainty as well as possible

Non-stationary marginal, conditional and spatial extremes

Multiple locations, multiple variables, time-series
Multidimensional covariates

Improved understanding and communication of risk

Incorporation within established engineering design practices
Knock-on effects of improved inference

Other current applications in Shell

Earthquake hazards
Corrosion and fouling
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Motivation

Environmental extremes vary smoothly with multidimensional
covariates

Model parameters are functions of covariates

Uncertainty quantification for whole inference

Data acquisition (simulator or measurement)
Data pre-processing (storm peak identification)
Extreme value threshold
Model form (marginal measurement scale effect, spatial
extremal dependence)

Statistical and computational efficiency

Slick algorithms
Parallel computation
Bayesian inference
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Motivation: storm model
HS ≈ 4× standard deviation of ocean surface time-series at specific location corresponding to a specified period
(typically three hours)
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Outline

Covariate effects in:

Marginal models

Simple introductory example (directional model)
Storm peak HS with 2D, 3D and 4D covariates

Conditional extremes models

Associated values of other wave field parameters given extreme
stork peak HS

Spatial extremes models

Directional dependence in max-stable process parameters for
storm peak HS

North Sea example used as “connecting theme”; other examples to
embellish
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Outline: North Sea application

Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in
storm severity; “strips” of locations with different orientations; central location for directional model
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Marginal: simple gamma-GP model

Sample of peaks over threshold y , with covariates θ
θ is 1D in motivating example : directional
θ is nD later : e.g. 4D spatio-directional-seasonal

Below threshold ψ
y follows truncated gamma with shape α, scale 1/β
Hessian for gamma better behaved than Weibull

Above ψ
y follows generalised Pareto with shape ξ, scale σ

ξ, σ, α, β, ψ all functions of θ

ψ for pre-specified threshold probability τ
Generalise later to estimation of τ

Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al.
[2011]

Randell et al. [2016]
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Marginal: simple gamma-GP model

Density is f (y |ξ, σ, α, β, ψ, τ)

=

{
τ × fTG (y |α, β, ψ) for y ≤ ψ
(1− τ)× fGP(y |ξ, σ, ψ) for y > ψ

Likelihood is L(ξ, σ, α, β, ψ, τ |{yi}ni=1)

=
∏

i :yi≤ψ
fTG (yi |α, β, ψ)

∏
i :yi>ψ

fGP(yi |ξ, σ, ψ)

× τnB (1− τ)(1−nB) where nB =
∑

i :yi≤ψ
1.

Estimate all parameters as functions of θ
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Marginal: count rate c

Whole-sample rate of occurrence ρ modelled as Poisson
process given counts c of numbers of occurrences per
covariate bin

Chavez-Demoulin and Davison [2005]
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Marginal: P-splines

Physical considerations suggest α, β, ρ, ξ, σ, ψ and τ vary
smoothly with covariates θ

Values of η ∈ {α, β, ρ, ξ, σ, ψ, τ} on some index set of
covariates take the form η = Bβη

For nD covariates, B takes the form of tensor product
Bθn ⊗ ...⊗ Bθκ ⊗ ...⊗ Bθ2 ⊗ Bθ1

Spline roughness with respect to each covariate dimension κ
given by quadratic form ληκβ

′
ηκPηκβηκ

Pηκ is a function of stochastic roughness penalties δηκ

Brezger and Lang [2006]
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Marginal: priors and conditional structure

Priors

density of βηκ ∝ exp

(
−1

2
ληκβ

′
ηκPηκβηκ

)
ληκ ∼ gamma

( and τ ∼ beta, when τ estimated )

Conditional structure

f (τ |y ,Ω \ τ) ∝ f (y |τ,Ω \ τ)× f (τ)

f (βη|y ,Ω \ βη) ∝ f (y |βη,Ω \ βη)× f (βη|δη,λη)

f (λη|y ,Ω \ λη) ∝ f (βη|δη,λη)× f (λη)

Ω = {α, β, ρ, ξ, σ, ψ, τ}
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Marginal: inference

Elements of βη highly interdependent, correlated proposals
essential for good mixing

“Stochastic analogues” of IRLS and back-fitting algorithms
for maximum likelihood optimisation used previously

Estimation of different penalty coefficients for each covariate
dimension

Gibbs sampling when full conditionals available

Otherwise Metropolis-Hastings (MH) within Gibbs, using
suitable proposal mechanisms

mMALA where possible

Roberts and Stramer [2002], Girolami and Calderhead [2011],
Xifara et al. [2014]
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Marginal: posterior parameter
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Marginal: posterior roughness penalty
Different scales so must be careful : rate is roughest, GP shape is smoothest
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Marginal: validation
Compare sample with simulated values on partitioned covariate domain
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Marginal: extension to 2D
Directional-seasonal model for location in northern North Sea; τ estimated; land-shadow effect of Norway obvious;
Randell et al. [2016]
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Marginal: extension to 2D
Summary statistics for return value distributions
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Marginal: extension to 4D

Spatio-directional-seasonal model for location in South China Sea; ML/CV/BS estimation; bootstrap median
estimate after integration over season; clear spatial and directional effects; Raghupathi et al. [2016]
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Marginal: extension to 4D

Bootstrap median estimate after integration over direction; clear spatial and seasonal effects
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Conditional: summary

Heffernan and Tawn [2004] and derivatives

Evidence for covariate effects in conditional extremes of
sea-state and storm peak variables

Marginal non-stationary extreme value model
Marginal transformation to standard scale removing marginal
covariate dependence
Conditional dependence structure showing covariate effects

Examples

Wave peak period | Significant wave height
Ocean current at one depth | Current at another depth
Significant wave height | Wind speed
Weather-vaning
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Conditional: TP |HS example

On Gumbel scale, extend with covariates θ

(Y2|Y1 = y , θ) = αθy + yβθ(µθ + σθZ ) for y > ψθ(τ)

where

ψθ(τ) is a high non-stationary quantile of Y1 on Gumbel
scale, for non-exceedance probability τ , above which the
model fits well

αθ ∈ [0, 1], βθ ∈ (−∞, 1], σθ ∈ [0,∞)

Z is a random variable with unknown distribution G ,
assumed Normal for estimation

Application

Estimate spectral peak wave period TP for storm sea states
with extreme severity (energy) HS

In TP ,HS case, ψ = θj = θk
Jonathan et al. [2014]
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Conditional: TP |HS example

ML/CV/BS inference; uncertainty bands capture uncertainty from marginal and dependence estimation; in
conditional model, only α shows directional effect; reduction in conditional return value
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Spatial: outline

Why do spatial extremes?

Improved inference at one location using data from spatial
neighbourhood

Insurance risk of damage to multiple structures from single
“event”

Evidence for covariate effects in spatial extremes of storm peak
significant wave height

Neighbourhood of spatial locations

Storm peak events corresponding to storm events observed at
all spatial locations

Marginal transformation per location to standard scale
removing marginal covariate dependence

Extremal spatial dependence structure showing anisotropy and
location effect
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Spatial: North Sea application

Storm peak HS from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in
storm severity; “strips” of locations with different orientations on bicycle wheel; multiple strips with same
orientation
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Spatial: storm on physical and Frechet scales

Storm peak HS on physical and Frechet scales; marginal effects important
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Spatial: Diagnosing dependence - simulated samples
Estimates for (a) η and (b) χ(x) against estimates for Spearman’s ρ for sample size n = 106, from the Smith
(magenta), Schlather (red), Brown-Resnick (blue), extremal-t (green) and Gaussian (black) processes, and the
inverted logistic distribution (cyan). Estimation methods use model (19) for η with q = 0.99, and the empirical
estimate for χ(x) with x = 100. Solid lines are median estimates from 1000 sample replications, dashed lines give
2.5% and 97.5% quantiles.
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Kereszturi et al. [2016]
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Spatial: Diagnosing dependence - all sea states
Estimates of η with (a) q = 0.90 and (c) q = 0.99, and χ(x) with (b) x = 10 and (d) x = 100, plotted against
Spearman’s ρ for sea-state HS sample of size n = 58585. Coloured points identify estimates from corresponding
strip. Lines identify estimates using simulated samples of same size from Smith (black) and Gaussian (red)
processes, and from the inverted logistic distribution (green);Kereszturi et al. [2016]

η for q = 0.9, χ(x) for x = 10; n = 58585 individual sea states

AD: Smith (black)

AI: Gaussian (red), inverted logistic (green)
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Spatial: Diagnosing dependence - all sea states
Estimates of η with (a) q = 0.90 and (c) q = 0.99, and χ(x) with (b) x = 10 and (d) x = 100, plotted against
Spearman’s ρ for sea-state HS sample of size n = 58585. Coloured points identify estimates from corresponding
strip. Lines identify estimates using simulated samples of same size from Smith (black) and Gaussian (red)
processes, and from the inverted logistic distribution (green);Kereszturi et al. [2016]

η for q = 0.99, χ(x) for x = 100; n = 58585 sea states

AD: Smith (black)

AI: Gaussian (red), inverted logistic (green)
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Spatial: Diagnosing dependence - storm peaks
Estimates of (a) η with q = 0.90 and (b) χ(x) with x = 10, plotted against Spearman’s ρ for storm-peak HS
sample of size n = 916. Points and lines as described in previous slide; Kereszturi et al. [2016]
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Spatial: models and estimation

Marginal model

Estimate non-stationary model
Propagate uncertainty; this will be large in general

Max-stable process

Smith, Schlather, Brown-Resnick, ...
All AD; conservative estimates
Wadsworth and Tawn [2012], Davison et al. [2012]

Composite likelihood

Full likelihood unavailable; approximated by pairwise
Padoan et al. [2010]

Censored likelihood

Dependence structure required for peaks over threshold
margins not block maxima
Threshold selection required; confirmed choice not affecting
main inferences; need to propagate uncertainty
Huser and Davison [2014]
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Spatial: Smith

Construction

Max-stable process Z (x)∼maxi≥1 ξi f (x ,Ui )

f (x ,Ui ) ∼ N(Ui ,Σ)
= storm profile

ξi = storm intensity
from point process

Ui = storm centre
uniform RV

Estimation

(Censored composite) likelihood available but messy

1D (“strip”) : Estimate Σ = σ2

2D (neighbourhood): Estimate Σ =

[
σ2

1 σ12

σ12 σ2
2

]
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Spatial: Smith dependence anisotropy
Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is
higher WE than NS, consistent with large spatial events sweeping down from north
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Spatial: Schlather & Brown-Resnick

Construction

Max-stable process Z (x) ∼ maxi≥1 ξiYi (x)

Schlather
Yi (x) = standard normal Gaussian field, correlation ρ(h)
ρ(h) = exp(−0.5h′Σ−1h) here

Brown-Resnick

Yi (x) =
exp(Wi (x)− γ(x − Ui ))

n−1
∑n

l=1 exp(Wi (xl)− γ(xl − Ui ))

Wi (x) = fractional Brownian motion, Hurst parameter
H ∈ [0, 1], variogram 2γ(h) = (h′Σ−1h)H

Dieker and Mikosch [2014]

Estimation

1D: Estimate Σ = σ2 (for range of H with BR)

2D: Estimate Σ =

[
σ2

1 σ12

σ12 σ2
2

]
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Spatial: Dependence anisotropy
Smith, Schlather and Brown-Resnick consistent; confirmed that censored likelihood threshold not affecting relative
size of dependence with direction
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Spatial: Dependence location effect?

Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is
higher WE than NS, consistent with large spatial events sweeping down from north
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Spatial: Dependence location effect?

Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is
higher WE than NS, consistent with large spatial events sweeping down from north
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Summary

Evidence for covariate effects in marginal, conditional and
spatial extremes of ocean storms

Modelling non-stationarity essential for understanding extreme
ocean storms, and estimating marine risk well
Non-parametric P-spline flexible basis for covariate description
Essential that non-stationary models are used for marginal,
conditional and spatial extremes inference of ocean
environment
Cradle-to-grave uncertainty quantification

Further investigation of covariate effects in spatial ocean
extremes needed

Anisotropy in North Sea hindcast, maybe absolute location (or
fetch) effect?
Currently examining satellite altimeter measurements
Asymptotic independence?

Goal : Bayesian inference for whole-basin spatial models with
4D covariates
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