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Covariates in extremes Lancaster STORi extremes workshop July 2016 2



Motivation

m Rational and consistent design and assessment of marine
structures

m Reduce bias and uncertainty in estimation of structural
integrity
m Quantify uncertainty as well as possible
m Non-stationary marginal, conditional and spatial extremes

m Multiple locations, multiple variables, time-series
m Multidimensional covariates

m Improved understanding and communication of risk

m Incorporation within established engineering design practices
m Knock-on effects of improved inference

m Other current applications in Shell

m Earthquake hazards
m Corrosion and fouling
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m Environmental extremes vary smoothly with multidimensional
covariates

m Model parameters are functions of covariates
m Uncertainty quantification for whole inference

m Data acquisition (simulator or measurement)

Data pre-processing (storm peak identification)
Extreme value threshold

Model form (marginal measurement scale effect, spatial
extremal dependence)

m Statistical and computational efficiency

m Slick algorithms
m Parallel computation
m Bayesian inference
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Motivation: storm model

Hgs ~ 4x standard deviation of ocean surface time-series at specific location corresponding to a specified period
(typically three hours)
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Covariate effects in:
m Marginal models

m Simple introductory example (directional model)
m Storm peak Hs with 2D, 3D and 4D covariates

m Conditional extremes models

m Associated values of other wave field parameters given extreme
stork peak Hs

m Spatial extremes models
m Directional dependence in max-stable process parameters for

storm peak Hs
North Sea example used as “connecting theme”; other examples to

embellish
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Outline: North Sea application

Storm peak Hg from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in
storm severity; “strips” of locations with different orientations; central location for directional model
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Marginal: simple gamma-GP model

m Sample of peaks over threshold y, with covariates 6

m 0 is 1D in motivating example : directional
m O is nD later : e.g. 4D spatio-directional-seasonal

m Below threshold v

m y follows truncated gamma with shape «, scale 1/
m Hessian for gamma better behaved than Weibull

m Above ¢

m y follows generalised Pareto with shape &, scale o

m &, o, «, B, ¢ all functions of 6
m ) for pre-specified threshold probability 7
m Generalise later to estimation of 7

m Frigessi et al. [2002], Behrens et al. [2004], MacDonald et al.
[2011]

m Randell et al. [2016]
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| | Density is f(y|§,0',0£,ﬂ,’([),7')

_ 7 % fre(yloe, B, 1) for y <
(1 o T) X fGP(y|§707¢) for y > z'b

m Likelihood is £(€, 0, a, 8,9, T|{yi}"_;)

H fre(vile, B, ) H fep(yil&, o,)

iyi<t iyi>i
x  7M8(1 —7)17"8) where ng = Z 1.
iyi<th

Estimate all parameters as functions of 6
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m Whole-sample rate of occurrence p modelled as Poisson
process given counts ¢ of numbers of occurrences per
covariate bin

m Chavez-Demoulin and Davison [2005]
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m Physical considerations suggest «, 3, p, &, 0,9 and 7 vary
smoothly with covariates 6
m Values of n € {a, 8, p,&, 0,1, 7} on some index set of
covariates take the form n = B(3,
m For nD covariates, B takes the form of tensor product
By, ®..® By, ®...% By, ® By,
m Spline roughness with respect to each covariate dimension
given by quadratic form )\n,@ﬁ;],iPn,ﬁ,['L,,€
m P, is a function of stochastic roughness penalties d;,
m Brezger and Lang [2006]
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Priors

1
density of 3,, o< exp (_EAUH'B;]KPWK/’BUK')

Age  ~  gamma

(and 7 ~ beta, when 7 estimated )
Conditional structure

f(rly,Q\7) o f(y|m,Q2\ 1) x f(7)
F(Bnly, Q\ By) o< f(yIBy 2\ By) x f(Byldy, Ay)
F(Anly, Q\Ay) o< £(Byldn, Ay) x f(Ay)

Q= {%Baf%fagﬂpﬂ'}
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Marginal: inference

m Elements of 3, highly interdependent, correlated proposals
essential for good mixing

m “Stochastic analogues” of IRLS and back-fitting algorithms
for maximum likelihood optimisation used previously

m Estimation of different penalty coefficients for each covariate
dimension

m Gibbs sampling when full conditionals available

m Otherwise Metropolis-Hastings (MH) within Gibbs, using
suitable proposal mechanisms

m mMALA where possible

m Roberts and Stramer [2002], Girolami and Calderhead [2011],
Xifara et al. [2014]
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Marginal: posterior parameter
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Different scales so must be careful : rate is roughest, GP shape is smoothest

Smoothness Parameters: A
T T

log 10 A
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Marginal: validation

Compare sample with simulated values on partitioned covariate domain

1680
T

sk

log(1-p)
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Marginal: extension to 2D

Directional-seasonal model for location in northern North Sea; 7 estimated; land-shadow effect of Norway obvious;

Randell et al. [2016]
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Marginal: extension to 2D

Summary statistics for return value distributions
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Marginal: extension to 4D

Spatio-directional-seasonal model for location in South China Sea; ML/CV/BS estimation; bootstrap median
estimate after integration over season; clear spatial and directional effects; Raghupathi et al. [2016]
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Bootstrap median estimate after integration over direction; clear spatial and seasonal effects
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Jul Aug

Relative Latitude

Marginal: extension to 4D
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Conditional: summary

m Heffernan and Tawn [2004] and derivatives

m Evidence for covariate effects in conditional extremes of
sea-state and storm peak variables
m Marginal non-stationary extreme value model
m Marginal transformation to standard scale removing marginal
covariate dependence
m Conditional dependence structure showing covariate effects

m Examples

m Wave peak period | Significant wave height

m Ocean current at one depth | Current at another depth
m Significant wave height | Wind speed

m Weather-vaning
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Conditional: Tp|Hs example
On Gumbel scale, extend with covariates 6

(Ya| Y1 =y,0) = agy + y™ (g + 09 Z) for y > ()
where

m y(7) is a high non-stationary quantile of Y; on Gumbel
scale, for non-exceedance probability 7, above which the
model fits well

By € [0, 1], By € (—OO, 1], oy € [0,00)

m Z is a random variable with unknown distribution G,
assumed Normal for estimation

Application
m Estimate spectral peak wave period Tp for storm sea states
with extreme severity (energy) Hs
m In Tp, Hs case, ¥ = 0; = 0,
m Jonathan et al. [2014]
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Conditional: Tp|Hs example

ML/CV/BS inference; uncertainty bands capture uncertainty from marginal and dependence estimation; in

conditional model, only a shows directional effect; reduction in conditional return value
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Spatial: outline

Why do spatial extremes?

m Improved inference at one location using data from spatial
neighbourhood

m Insurance risk of damage to multiple structures from single
“event”

Evidence for covariate effects in spatial extremes of storm peak
significant wave height

m Neighbourhood of spatial locations

m Storm peak events corresponding to storm events observed at
all spatial locations

m Marginal transformation per location to standard scale
removing marginal covariate dependence

m Extremal spatial dependence structure showing anisotropy and
location effect

Covariates in extremes Lancaster STORi extremes workshop July 2016

24



Spatial: North Sea application

Storm peak Hg from gridded NEXTRA winter storm hindcast for North Sea locations; directional variability in
storm severity; “strips” of locations with different orientations on bicycle wheel; multiple strips with same
orientation
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Spatial: storm on physical and Frechet scales

Storm peak Hg on physical and Frechet scales; marginal effects important
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Spatial: Diagnosing dependence - simulated samples

Estimates for (a) 7 and (b) x(x) against estimates for Spearman’s p for sample size n = 10°, from the Smith
(magenta), Schlather (red), Brown-Resnick (blue), extremal-t (green) and Gaussian (black) processes, and the
inverted logistic distribution (cyan). Estimation methods use model (19) for n with g = 0.99, and the empirical
estimate for x(x) with x = 100. Solid lines are median estimates from 1000 sample replications, dashed lines give
2.5% and 97.5% quantiles.
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m AD: Smith (magenta), Schlather (red), Brown-Resnick (blue)
m Al: extremal-t (green), Gaussian (black)

m Kereszturi et al. [2016]
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Spatial: Diagnosing dependence - all sea states

Estimates of 1 with (a) g = 0.90 and (c) g = 0.99, and x(x) with (b) x = 10 and (d) x = 100, plotted against
Spearman'’s p for sea-state Hg sample of size n = 58585. Coloured points identify estimates from corresponding
strip. Lines identify estimates using simulated samples of same size from Smith (black) and Gaussian (red)
processes, and from the inverted logistic distribution (green);Kereszturi et al. [2016]

(b)

1.0

(=
0.8]

m 7 for g = 0.9, x(x) for x = 10; n = 58585 individual sea states

m AD: Smith (black)
m Al: Gaussian (red), inverted logistic (green)
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Spatial: Diagnosing dependence - all sea states

Estimates of 1 with (a) g = 0.90 and (c) g = 0.99, and x(x) with (b) x = 10 and (d) x = 100, plotted against
Spearman'’s p for sea-state Hg sample of size n = 58585. Coloured points identify estimates from corresponding
strip. Lines identify estimates using simulated samples of same size from Smith (black) and Gaussian (red)
processes, and from the inverted logistic distribution (green);Kereszturi et al. [2016]
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m 1) for g = 0.99, x(x) for x = 100; n = 58585 sea states
m AD: Smith (black)
m Al: Gaussian (red), inverted logistic (green)
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Spatial: Diagnosing dependence - storm peaks

Estimates of (a) n with g = 0.90 and (b) x(x) with x = 10, plotted against Spearman’s p for storm-peak Hg
sample of size n = 916. Points and lines as described in previous slide; Kereszturi et al. [2016]
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m 1) for ¢ = 0.9, x(x) for x = 10; n = 916 storm peak events
m AD: Smith (black)
m Al: Gaussian (red), inverted logistic (green)
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Spatial: models and estimation

Marginal model
m Estimate non-stationary model
m Propagate uncertainty; this will be large in general
Max-stable process
m Smith, Schlather, Brown-Resnick, ...
m All AD; conservative estimates
m Wadsworth and Tawn [2012], Davison et al. [2012]
Composite likelihood
m Full likelihood unavailable; approximated by pairwise
m Padoan et al. [2010]
Censored likelihood
m Dependence structure required for peaks over threshold
margins not block maxima
m Threshold selection required; confirmed choice not affecting
main inferences; need to propagate uncertainty
m Huser and Davison [2014]
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Construction
m Max-stable process Z(x)~ max;>1 &f(x, U;)

| f(X, U,) ~ N(U,',Z)
= storm profile

260

m & = storm intensity
from point process

m U; = storm centre
uniform RV

Estimation
m (Censored composite) likelihood available but messy
m 1D (“strip") : Estimate ¥ = o2

2
01 012 :|

2D (neighbourhood): Estimate >~ =
L] (neighbou ) i [012 o2
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Spatial: Smith dependence anisotropy

Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is

higher WE than NS, consistent with large spatial events sweeping down from north

1D Smith parameter and 2D Smith half ellips width
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Spatial: Schlather & Brown-Resnick

Construction
m Max-stable process Z(x) ~ max;>1&; Yi(x)
m Schlather
m Y;(x) = standard normal Gaussian field, correlation p(h)
m p(h) = exp(—0.5h"Z~1h) here
m Brown-Resnick
|
exp(Wi(x) — v(x — Uj))
n=t 3l exp(Wix) — v(x — Up))
m Wj(x) = fractional Brownian motion, Hurst parameter
H € [0,1], variogram 2v(h) = (Z~th)"
m Dieker and Mikosch [2014]

Estimation
m 1D: Estimate ¥ = o2 (for range of H with BR)

Yi(x) =

2
m 2D: Estimate ¥ = | 71 712
Jg12 0-2
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Smith, Schlather and Brown-Resnick consistent; confirmed that censored likelihood threshold not affecting relative
size of dependence with direction
1D Smith parameter and 2D Smith haif elips width.
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Spatial: Dependence location effect?

Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is
higher WE than NS, consistent with large spatial events sweeping down from north
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Box plots: 1D parameter estimates; black lines: 2D parameter estimates; ML estimates with bootstrap 95%
uncertainty bands accounting for uncertainty from marginal and dependence estimation; spatial dependence is
higher WE than NS, consistent with large spatial events sweeping down from north
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Summary

m Evidence for covariate effects in marginal, conditional and
spatial extremes of ocean storms
m Modelling non-stationarity essential for understanding extreme
ocean storms, and estimating marine risk well
m Non-parametric P-spline flexible basis for covariate description
m Essential that non-stationary models are used for marginal,
conditional and spatial extremes inference of ocean
environment
m Cradle-to-grave uncertainty quantification
m Further investigation of covariate effects in spatial ocean
extremes needed
m Anisotropy in North Sea hindcast, maybe absolute location (or
fetch) effect?
m Currently examining satellite altimeter measurements
m Asymptotic independence?

m Goal : Bayesian inference for whole-basin spatial models with
4D covariates
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