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Motivation: extremes in met-ocean

Rational and consistent design an assessment of marine
structures:

Reduce bias and uncertainty in estimation of return values

Non-stationary marginal and conditional extremes:

Multiple locations, multiple variables, time-series
Multidimensional covariates

Improved understanding and communication of risk:

Incorporation within well-established engineering design
practices
“Knock-on” effects of “improved” inference
New and existing structures

Other current applications in Shell:

Geophysics: seismic hazard assessment
Asset integrity: corrosion & fouling
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Extremes in met-ocean: univariate challenges

Covariates and non-stationarity:

Location, direction, season, time, water depth, ...
Multiple / multidimensional covariates in practice

Cluster dependence:

Same events observed at many locations (pooling)
Dependence in time (Chavez-Demoulin and Davison 2012)

Scale effects:

Modelling X or f (X )? (Harris 2004)

Threshold estimation:

Scarrott and MacDonald 2012

Parameter estimation

Measurement issues:

Field measurement uncertainty greatest for extreme values
Hindcast data are simulations based on pragmatic physics,
calibrated to historical observation
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Extremes in met-ocean: multivariate challenges

Componentwise maxima:
⇔ max-stability ⇔ multivariate regular variation
Assumes all components extreme
⇒ Perfect independence or asymptotic dependence only

Composite likelihood for spatial extremes (Davison et al. 2012)
Point process / multivariate GP process

Extremal dependence: (Ledford and Tawn 1997)
Assumes regular variation of joint survivor function
Yields more general forms of extremal dependence
⇒ Asymptotic dependence, asymptotic independence (with
+ve, -ve association), “hidden regular variation”
“Ray” extensions
Hybrid spatial dependence model (Wadsworth and Tawn 2012)

Conditional extremes: (Heffernan and Tawn 2004)
Assumes, given one variable being extreme, convergence of
distribution of remaining variables
Allows some variables not to be extreme
Extensions
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Marginal directional-seasonal extremes

googlemaps
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Marginal directional-seasonal extremes

Marginal model: single location

Response: storm peak significant

wave height, H
sp
S

Wave climate: monsoonal

Southwest monsoon (∼ August, to
northwest for us)

Northeast monsoon (∼ January, to
east for us)

Long fetches to Makassar Strait,
Java Sea

Land shadows of Borneo
(northwest), Sulawesi (northeast),
Java (south)

www.westernpacificweather.com
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Marginal directional-seasonal extremes

Within-storm evolution of significant wave height, HS in
time given H

sp
S

Distributions for extreme wave height, crest elevation and
surge given HS

Sample of hindcast storms for period of 1956− 2012

Variables: HS , direction (from, clockwise from north), season
and wave period information

South China Sea platform (Storm Jangmi, HS = 3.6m,
H ≈ 6m): Link
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Directional and seasonal variability

Figure: Storm peak significant wave height H
sp
S

(black) on direction θ (upper panel) and season φ (lower panel).

Also shown is sea-state significant wave height HS (grey) on direction θ (upper panel) and season φ (lower panel).
Southwest monsoon: August from northwest (315). Northeast monsoon: January from east (90).
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Storm model

Figure: HS ≈ 4× standard deviation of ocean surface profile at a location corresponding to a specified period
(typically three hours)
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Quantiles of H sp
S

Figure: Empirical quantiles of storm peak significant wave height H
sp
S

by direction θ and season φ, for threshold
non-exceedance probabilities τ as listed. Empty bins are coloured white.
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Storm trajectories of significant wave height, HS
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Figure: Storm trajectories of significant wave height HS on wave direction θ for 30 randomly-chosen storm events
(in different colours). A circle marks the start of each intra-storm trajectory.
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Model components

Sample {żi}
ṅ
i=1 of ṅ storm peak significant wave heights

observed with storm peak directions {θ̇i}
ṅ
i=1 and storm peak

seasons {φ̇i}
ṅ
i=1

Model components (all non-stationary w.r.t θ, φ):

1. Threshold function ψu above which observations ż are
assumed to be extreme estimated using quantile regression

2. Rate of occurrence of threshold exceedances modelled using
Poisson model with rate ρu

3. Size of occurrence of threshold exceedance using generalised
Pareto (GP) model with shape and scale parameters ξu and σu

Model estimated for multiple thresholds with non-exceedance
probabilities τu, u = 1, 2, 3, ...

(Drop sp superscripts and u subscripts where convenient)

Copyright of Shell Shell Stats & Chemometrics Stats Seminar, Edinburgh January 2015 13 / 47



Model components

Rate of occurrence and size of threshold exceedance
functionally independent: (Chavez-Demoulin and Davison
2005)

Equivalent to non-homogeneous Poisson point process model

Smooth functions of covariates estimated using penalised
B-splines (Eilers and Marx 2010)

Large number of parameters to estimate:

Slick linear algebra (c.f. generalised linear array models, Currie
et al. 2006)
Efficient optimisation
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Penalised B-splines

Physical considerations suggest model parameters
ψ, ρ, ξ and σ vary smoothly with covariates θ, φ

Values of (η =)ψ, ρ, ξ and σ all take the form:

η = Bβη

for B-spline basis matrix B (defined on index set of covariate
values) and some βη to be estimated

Multidimensional basis matrix B formulated using Kronecker
products of marginal basis matrices:

B = Bθ ⊗ Bφ

(exact operations calculated without explicit evaluation)

Roughness Rη defined as:

Rη = β′ηPβη

where effect of P is to difference neighbouring values of βη
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Penalised B-splines

Wrapped bases for periodic
covariates (seasonal,
direction)

Multidimensional bases
easily constructed. Problem
size sometimes prohibitive

Parameter smoothness

controlled by roughness
coefficient λ: cross
validation or similar
chooses λ optimally

Alternatives: random fields,
Gaussian processes, ...
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Quantile regression for extreme value threshold

Estimate smooth quantile ψ(θ, φ; τ) for non-exceedance
probability τ of z (storm peak HS) using quantile regression
by minimising penalised criterion ℓ∗ψ with respect to basis
parameters:

ℓ∗ψ = ℓψ + λψRψ

ℓψ = {τ
n

∑

ri≥0

|ri |+ (1− τ)
n

∑

ri<0

|ri |}

for ri = zi − ψ(θi , φi ; τ) for i = 1, 2, ..., n, and roughness Rψ
controlled by roughness coefficient λψ

(Non-crossing) quantile regression formulated as linear
programme (Bollaerts et al. 2006)

λψ estimated using cross validation or similar
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Directional-seasonal extreme value threshold, ψ
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Figure: Directional-seasonal plots for extreme value thresholds, ψ, corresponding to equally spaced non-exceedance
probabilities of H

sp
S

on [0.5, 0.9] (left to right, then top to bottom).
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Accommodating multiple thresholds

Median threshold ensemble estimates

ρ̃ = med
u

{

ρu
τũ

1− τu

}

σ̃ = med
u

{σu + ξu(ψũ − ψu)}

ξ̃ = med
u

{ξu}

Parameter estimates can be fairly compared

τũ set to 0.5
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Poisson model for rate of threshold exceedance

Poisson model for rate of occurrence of threshold exceedance
estimated by minimising roughness penalised log likelihood:

ℓ∗ρ = ℓρ + λρRρ

(Negative) penalised Poisson log-likelihood (and
approximation):

ℓρ = −

n
∑

i=1

log ρ(θi , φi ) +

∫

ρ(θ, φ)dθdφ

ℓ̂ρ = −
m
∑

j=1

cj log ρ(j∆) +∆
m
∑

j=1

ρ(j∆)

{cj}
m
j=1 counts of threshold exceedances on index set of m

(>> 1) bins partitioning covariate domain into intervals of
volume ∆

λρ estimated using cross validation or similar
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Directional-seasonal exceedance rate, ρ̃
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Figure: Directional-seasonal plot for median threshold ensemble rate ρ̃(×1000) of threshold exceedance of H
sp
S
.

The left-hand panel shows ρ̃(×1000) on θsp and φsp . The right hand panel shows 12 monthly directional
estimates with 95% BCa bootstrap confidence intervals (dashed).
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GP model for size of threshold exceedance

Generalise Pareto model for size of threshold exceedance
estimated by minimising roughness penalised log-likelihood:

ℓ∗ξ,σ = ℓξ,σ + λξRξ + λσRσ

(Negative) conditional generalised Pareto log-likelihood:

ℓξ,σ =
n

∑

i=1

log σi +
1

ξi
log(1 +

ξi

σi
(zi − ψi ))

Parameters: shape ξ, scale σ

Threshold ψ set prior to estimation

λξ and λσ estimated using cross validation or similar. In
practice set λξ = κλσ for fixed κ
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Directional-seasonal parameter plot for GP scale, σ̃
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Figure: Directional-seasonal plot for median threshold ensemble generalised Pareto scale, σ̃. The left-hand panel
shows σ̃ on θ and φ. The right hand panel shows 12 monthly directional estimates with 95% BCa bootstrap
confidence intervals (dashed).
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Directional-seasonal parameter plot for GP shape, ξ̃
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Figure: Directional-seasonal plot for median over threshold generalised Pareto shape, ξ̃. The left-hand panel shows
ξ̃ on θ and φ. The right hand panel shows 12 monthly directional estimates with 95% BCa bootstrap confidence
intervals (dashed).
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Return values

Estimation of return values by simulation under the model
Threshold level selected at random
Number of events in period
Directions and seasons of each event
Size (or magnitude) of each event
HS100 is the maximum value of Hsp

S in a simulation period of
100–years

Alternative: closed form function of parameters
Return value zT of storm peak significant wave height
corresponding to return period T (years) evaluated from
estimates for ψ, ρ, ξ and σ:

zT = ψ −
σ

ξ
(1 +

1

ρ
(log(1−

1

T
))−ξ)

Implementation and interpretation problematic
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Accommodating multiple thresholds

Threshold ensemble estimates of return value distributions

Pr(Q̃ ≤ x) =

∫

τ∈Jτ

Pr(Q ≤ x |τ)dF (τ)

≈
1

nτ

nτ
∑

u=1

Pr(Q ≤ x |τu)

The quantiles q̃(p) are solutions to Pr(Q̃ ≤ x) = p.

Incorporates threshold variability in return value estimate
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Return value plot for HS100, q̃(0.5)
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Figure: Directional-seasonal return value plot for 100-year significant wave height (in metres). The left-hand panel
shows directional and seasonal variability of the median threshold ensemble estimate q̃(0.5) for HS . The right hand
panel shows 12 monthly directional octant return values (in black) in terms of BCa 95% confidence limits for
q̃(0.5) (solid), q̃(0.025) (dashed) and q̃(0.975) (dashed). Also shown are the corresponding omni-directional
estimates (in red).
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Within-storm variability

Figure: Wave has removed boat landing gear
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Within-storm variability

Critical environmental variables:

Storm peak significant wave height:

(Sea state) significant wave height
Maximum wave height
Maximum crest elevation, C
Peak total water level (≈ crest + surge + tide)

“Associated” values of wind speed and direction
corresponding to peak significant wave height:

Maximum conditional structural loads and responses
Conditional extremes
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Estimating within-storm variability

Extreme value model allows simulation of Hsp
S , θsp and φsp

Matching procedure used to estimate storm evolution
(HS(t), θ(t), φ(t))|(H

sp
S , θ

sp, φsp) for sea state t

Essential in estimating return values for covariate bins other
than that containing the storm peak
Opportunity for empirical modelling

Empirical (physics-motivated) literature models for C |HS(t)

The cumulative distribution function for the maximum crest elevation C in a sea-state parameterised by S of nS
waves with significant wave height HS = hS is taken (see, e.g. Forristall 1978, 2000) to be given by:

Pr(C ≤ η|S) = (1 − exp(−
η

αShS
)
βS )

nS

where all of αS , βS and nS are functions of the sea-state parameters S estimated from observation.
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Directional-seasonal return value plot for C100
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Figure: Directional-seasonal return value plot for 100-year crest elevation (in metres). The left-hand panel shows
directional and seasonal variability of the median quantile over threshold q̃(0.5) for C . The right hand panel shows
12 monthly directional octant return values (in black) in terms of BCa 95% confidence limits for q̃(0.5) (solid),
q̃(0.025) (dashed) and q̃(0.975) (dashed). Also shown are the corresponding omni-directional estimates (in red).
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Validation of model for sea-state HS
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Figure: Illustration of validation of return value estimation for significant wave height by comparison of cumulative
distribution functions (cdfs) for 1000 bootstrap resamples of the original sample with those from 1000 sample
realisations under the model (incorporating intra-storm evolution of HS ) corresponding to the same time period as
the original sample. The 12 right hand panels show empirical 95% bootstrap uncertainty bands for monthly
omni-directional cdfs for the original sample (red), and BCa 95% confidence intervals for the 2.5%ile and 97.5%ile
median over threshold estimates q̃(0.025) and q̃(0.975) (both dashed). Titles for plots, in brackets following the
month name, are the numbers of actual and simulated events in each month. The left hand panel makes the
equivalent omni-directional, omni-seasonal comparison.
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Interval of threshold non-exceedance probability
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Figure: Estimates for 100-year maximum for H
sp
S

from simulation under models corresponding to 100 bootstrap
resamples for each of 15 choices of threshold non-exceedance probability, τ . Median estimates are connected by a
solid red line. 2.5% and 97.5% iles are connected by dashed red lines. The left hand panel shows the
omni-directional, omni-seasonal estimate. The right hand panels show 12 monthly omni-directional estimates.
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Bootstrap threshold ensemble, Q̆

Bootstrap threshold ensemble return value Q̆

Estimate return value distribution Q|B , τ by simulation for
threshold non-exceedance probability τ and bootstrap
resample B ∈ B

Pr(Q̆ ≤ x) =

∫

τ∈Jτ

∫

B∈B

Pr(Q ≤ x |B , τ)dF (B)dF (τ)

≈
1

nτ

1

nB

nτ
∑

u=1

nB
∑

b=1

Pr(Q ≤ x |Bb, τu)
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Bootstrap threshold ensemble Q̆ and median threshold ensemble Q̃
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Figure: Empirical cumulative distribution functions (cdfs) for 100-year significant wave height from simulation
under the directional-seasonal model. Left hand and right hand panels show directional and seasonal cdfs
respectively. Upper panels shows median threshold ensemble estimates Q̃ with 95% BCa confidence intervals, and
lower panels bootstrap threshold ensemble estimates Q̆.
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Non-stationary extremes: developments

Marginal models:
Other covariate representations
Extension to higher-dimensional covariates

Computational efficiency:
More sparse and slick matrix manipulations, optimisation
Parallel implementation

Bayesian formulation

Spatial model:
Composite likelihood: model componentwise maxima
Non-stationary dependence
Censored likelihood: block maxima → threshold exceedances
Hybrid model: mix AD and AI?

Non-stationary conditional extremes:
Multidimensional covariates
Multivariate response

Incorporation within structural design framework
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Marginal spatio-directional

Figure: Hurricane Katrina
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Marginal spatio-directional

Longitude, latitude and direction as covariates

Physics: direction and season correlated
Gulf of Mexico (GoM), North West Shelf of Australia (NWS)
applications here

Marginal per location

Estimation of spatial smoothness

Sample is spatially dependent
Vertical adjustment / sandwich estimator
(Spatial) block bootstrap
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GoM spatio-directional H sp
S

Figure: ≈ 17000 locations × 32 directional bins for Gulf of Mexico. Plot for
quantile (withheld) of 100-year maximum storm peak significant wave
height, Hsp

S
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NWS spatio-directional H sp
S

Figure: North West Shelf of Australia. See Jonathan et al. [2014]
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Non-stationary conditional extremes

Figure: Floating LNG tanker (500m long!)
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Non-stationary conditional extremes

Problem structure:

Bivariate sample {ẋij}
n,2
i=1,j=1 of random variables Ẋ1, Ẋ2

Covariate values {θij}
n,2
i=1,j=1 associated with each individual

For some choices of variables Ẋ , e.g. Ẋ1 = HS , Ẋ2 = TP ,
θi1 , θi2

For other choices, e.g. Ẋ1 = HS , Ẋ2 =WindSpeed, θi1 6= θi2
in general

We will assume θi1 = θi2 = θi

Objective:

Objective: model the joint distribution of extremes of Ẋ1 and
Ẋ2 as a function of θ

(Drop subscripts wherever possible for convenience)
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Non-stationary conditional extremes

On Gumbel scale, by analogy with Heffernan and Tawn [2004] we
propose the following conditional extremes model:

(Xk |Xj = xj , θ) = αθxj + x
βθ
j (µθ + σθZ ) for xj > φGjτ ′(θ)

where:

φGjτ ′(θ) is a high directional quantile of Xj on Gumbel scale,
above which the model fits well

αθ ∈ [0, 1], βθ ∈ (−∞, 1], σθ ∈ [0,∞)

Z is a random variable with unknown distribution G

Z will be assumed to be approximately Normally distributed
for the purposes of parameter estimation

αθ, βθ, µθ and σθ are functions of direction with B-spline
parameterisations
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North Sea marginal return values for TP (simulation)

Figure: Omni-directional and sector marginal distributions of 100-year T
sp
P
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North Sea conditional return values (simulation)

Figure: Omni-directional and sector conditional distributions of storm peak period, T
sp
P

given 100-year H
sp
S

using
extension of model of Heffernan & Tawn incorporating non-stationarity
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