The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

r.towe@lancaster.ac.uk
Return levels and Pooling

- Return levels are used in the design criteria of an offshore structure to ensure the structure withstands a particularly extreme event.
- Can calculate return levels for Hs for a given site in the North sea.
Return levels and Pooling

- Return levels are used in the design criteria of an offshore structure to ensure the structure withstands a particularly extreme event.
- Can calculate return levels for Hs for a given site in the North sea.
- A model is fitted to estimate the return levels of H_s, as there is not enough data to estimate the return levels empirically.
- To increase our confidence in the estimates of the return levels, we can pool data across sites.
Pooling

What happens if there is dependence between sites?

<table>
<thead>
<tr>
<th>Data set</th>
<th>SE(50yr)</th>
<th>SE(100yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One site</td>
<td>0.65</td>
<td>1.00</td>
</tr>
<tr>
<td>Pooled (perfectly dependent) sites</td>
<td>0.62</td>
<td>0.94</td>
</tr>
<tr>
<td>Pooled (independent) sites</td>
<td>0.22</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Standard errors (uncertainty) of the 50 and 100 year return levels
Pooling

What happens if there is dependence between sites?

<table>
<thead>
<tr>
<th>Data set</th>
<th>SE(50yr)</th>
<th>SE(100yr)</th>
</tr>
</thead>
<tbody>
<tr>
<td>One site</td>
<td>0.65</td>
<td>1.00</td>
</tr>
<tr>
<td>Pooled (perfectly dependent)</td>
<td>0.62</td>
<td>0.94</td>
</tr>
<tr>
<td>Pooled (independent) sites</td>
<td>0.22</td>
<td>0.30</td>
</tr>
</tbody>
</table>

Standard errors (uncertainty) of the 50 and 100 year return levels

- Pooling dependent data produces false estimates of the standard errors
- The effective sample size is smaller for pooled perfectly dependent data compared to pooled independent data
Extremal dependence

- We can also consider the extremal dependence **Wind Speed** (WS) and **Significant Wave Height** (H_s) at a given site.
- A storm is characterised by a number of different factors, such as wind and waves.
- A severe storm can be a result of high waves but also a combination of extreme wind and waves.
We can also consider the extremal dependence **Wind Speed** (\(WS\)) and **Significant Wave Height** (\(H_s\)) at a given site.

A storm is characterised by a number of different factors, such as wind and waves.

A severe storm can be a result of high waves but also a combination of extreme wind and waves.

Should we model \(WS\) and \(H_s\) **jointly or independently?**

We are interested in the joint behaviour \(WS\) and \(H_s\) **during a storm**.
Extremal dependence

Bivariate Normal distribution

The dependence in the body of the data is different to that of the tail

Consider the bivariate Normal distribution with $\rho = 0.8$

Calculate,

$$P(X > z \mid Y > z)$$

for $z \to \infty$,

<table>
<thead>
<tr>
<th>z</th>
<th>$P(X > z \mid Y > z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>1.00</td>
<td>0.60</td>
</tr>
<tr>
<td>1.50</td>
<td>0.49</td>
</tr>
<tr>
<td>2.00</td>
<td>0.33</td>
</tr>
<tr>
<td>2.50</td>
<td>0.00</td>
</tr>
<tr>
<td>3.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>
Extremal dependence

Bivariate extreme value distribution

The dependence in the body of the data is different to that of the tail

Consider the bivariate extreme value distribution with $\rho = 0.8$.

Calculate

$$P(X > z \mid Y > z) \text{ for } z \to \infty,$$

<table>
<thead>
<tr>
<th>z</th>
<th>$P(X > z \mid Y > z)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.00</td>
<td>0.72</td>
</tr>
<tr>
<td>4.00</td>
<td>0.79</td>
</tr>
<tr>
<td>6.00</td>
<td>1.00</td>
</tr>
<tr>
<td>8.00</td>
<td>1.00</td>
</tr>
<tr>
<td>10.00</td>
<td>1.00</td>
</tr>
</tbody>
</table>
Data

- Storm peak events from a 50 year data set:
 - Significant wave height [metres]
 - Wind speed [miles per hour]
 - Surface level pressure [hectopascal]
 - Storm direction [degrees]

- Sites have different local characteristics
Original margins

(NSLP vs H_s) (WS vs H_s)

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu
r.towe@lancaster.ac.uk

The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea
Fréchet margins

Consider the data on Fréchet margins, \(F(z) = \exp(-1/z) \)

\((\text{NSLP vs } H_s)\) \hspace{1cm} \((\text{WS vs } H_s)\)
Definition

Consider a pair of random variables (X, Y) with identical margins,

Asymptotic independence:

$$P(X > z, Y > z) = 0, \text{ as } z \to \infty$$

Two extreme events are unlikely to occur simultaneously

Consider the measure: $\bar{\chi}$

Asymptotic dependence:

$$P(X > z, Y > z) > 0, \text{ as } z \to \infty$$

Two extreme events are likely to occur simultaneously

Consider the measure: χ
Extremal dependence measures

Asymptotic independence:
- \(\bar{\chi} \) determines the strength of asymptotic independence
- \(\bar{\chi} \in (-1, 1) \).
- If \(\bar{\chi} = 1 \) \(\Rightarrow \) asymptotic dependence
Extremal dependence measures

Asymptotic independence:
- \(\bar{\chi} \) determines the strength of asymptotic independence
- \(\bar{\chi} \in (-1, 1) \).
- If \(\bar{\chi} = 1 \) \(\Rightarrow \) asymptotic dependence

Asymptotic dependence:
- \(\chi \) determines the strength of asymptotic dependence
 \[
 \chi = P(X > z \mid Y > z)
 \]
- \(\chi \in (0, 1) \).
- When \(\chi = 0 \) \(\Rightarrow \) asymptotic independence
Extremal dependence measures

Asymptotic independence:
- $\bar{\chi}$ determines the strength of asymptotic independence
- $\bar{\chi} \in (-1, 1)$.
- If $\bar{\chi} = 1 \Rightarrow$ asymptotic dependence

Asymptotic dependence:
- χ determines the strength of asymptotic dependence
 \[\chi = P(X > z \mid Y > z) \]
- $\chi \in (0, 1)$.
- When $\chi = 0 \Rightarrow$ asymptotic independence

$\bar{\chi}$ and χ can be estimated empirically or by using a model.
Asymptotic independence case

\((\text{NSLP } v \ H_s)\)

<table>
<thead>
<tr>
<th>Site</th>
<th>(\hat{\chi}) (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.61 (0.50, 0.72)</td>
</tr>
<tr>
<td>B</td>
<td>0.61 (0.50, 0.72)</td>
</tr>
<tr>
<td>C</td>
<td>0.59 (0.47, 0.70)</td>
</tr>
<tr>
<td>D</td>
<td>0.65 (0.53, 0.77)</td>
</tr>
</tbody>
</table>

Estimates of \(\hat{\chi}\) for the 4 sites with the threshold set at the respective 80\% quantile estimation threshold
Asymptotic dependence case

\((WS \text{ v } H_s)\)

<table>
<thead>
<tr>
<th>Site</th>
<th>$\hat{\chi}$ (95% CI)</th>
<th>$\hat{\chi}$ (95% CI)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0.95(0.81,1.00)</td>
<td>0.73(0.69,0.79)</td>
</tr>
<tr>
<td>B</td>
<td>0.86(0.73,0.98)</td>
<td>0.74(0.69,0.78)</td>
</tr>
<tr>
<td>C</td>
<td>0.85(0.71,0.99)</td>
<td>0.73(0.68,0.78)</td>
</tr>
<tr>
<td>D</td>
<td>0.84(0.71,0.97)</td>
<td>0.72(0.67,0.77)</td>
</tr>
</tbody>
</table>

Estimates of ($\hat{\chi}$ and χ) for the four sites with the threshold set at the respective 80% quantile estimation threshold.
Possible covariates

- The marginal behaviour of the **height of waves** and the **speed of winds** is influenced by:
 - Land shadow
 - Storm direction
- Can consider storm direction to be a covariate
- Is the dependence structure, therefore influenced by the same covariates?
Site locations
Asymptotic independence case

Introduce storm direction \((\theta) \) as a covariate by using a Fourier series:

\[
\bar{\chi}(\theta) = 2 \min\{\eta_+(\theta), 1\} - 1, \quad \text{where}
\]

\[
\log[\eta_+(\theta)] = \alpha_0 + \sum_{i=1}^{d} \alpha_{1i} \cos(\alpha_{2i} + i\theta), \quad \theta \in [0, 360^\circ).
\]
Motivation
Extremal dependence
Covariate modelling
Concluding Remarks

\((\text{NSLP vs } H_s) : \bar{\chi}(\theta) \)

\(\bar{\chi}(\theta) \) for Site A

\(\bar{\chi}(\theta) \) for Site B

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea
The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea

$(NSLP \text{ vs } H_s) : \tilde{\chi}(\theta)$

$\tilde{\chi}(\theta)$ for Site C

$\tilde{\chi}(\theta)$ for Site D

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu
r.towe@lancaster.ac.uk
Asymptotic dependence case

Introduce storm direction (θ) as a covariate by using a Fourier series:

$$\logit[\chi(\theta)] = \beta_0 + \sum_{i=1}^{d} \beta_i \cos[\beta_{2i} + i\theta], \text{ for } \theta \in [0, 360^\circ)$$
(WS vs H_s) : $\chi(\theta)$

$\chi(\theta)$ for Site A

$\chi(\theta)$ for Site B

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea
Motivation

Extremal dependence

Covariate modelling

Concluding Remarks

\((WS \ vs \ H_s) : \chi(\theta) \)

\(\chi(\theta) \) for Site C

\(\chi(\theta) \) for Site D

Ross Towe, Emma Eastoe, Jonathan Tawn, Philip Jonathan and Yanyun Wu

r.towe@lancaster.ac.uk

The Extremal Dependence of Storm Severity, Wind Speed and Surface Level Pressure in the Northern North Sea
Concluding Remarks

- Need to think carefully about pooling of dependent samples, and dependence between extreme values. Intuition can be misleading.
- Wind speed and wave height are asymptotically dependent.
- NSLP and wave height are asymptotically independent.
- Extremal dependence varies with storm direction are vital for reliable estimation of joint design values for winds, waves and currents.
- Empirical modelling of χ and $\bar{\chi}$ may guide the choice of covariates for joint extreme value modelling.