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Abstract

The statistical distribution of the height of sea waves in deep water has been modelled using the Rayleigh (Longuet-

Higgins 1952) and Weibull distributions (Forristall 1978). Depth-induced wave breaking leading to restriction on the

ratio of wave height to water depth require new parameterisations of these or other distributional forms for shallow

water. Glukhovskiy (1966) proposed a Weibull parameterisation accommodating depth-limited breaking, modified by

van Vledder (1991). Battjes and Groenendijk (2000) suggested a two-part Weibull-Weibull distribution. Here we propose

a two-part Weibull-generalised Pareto model for wave height in shallow water, parameterised empirically in terms of

sea state parameters (significant wave height, HS , local wave-number, kL, and water depth, d), using data from both

laboratory and field measurements from 4 offshore locations. We are particularly concerned that the model can be

applied usefully in a straightforward manner; given three pre-specified universal parameters, the model further requires

values for sea state significant wave height and wave number, and water depth so that it can be applied. The model

has continuous probability density, smooth cumulative distribution function, incorporates the Miche upper limit for

wave heights (Miche 1944) and adopts HS as the transition wave height from Weibull body to generalised Pareto tail

forms. Accordingly, the model is effectively a new form for the breaking wave height distribution. The estimated model

provides good predictive performance on laboratory and field data.
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1. Introduction

There is considerable interest in understanding the characteristics of ocean waves in shallow water. Specifically, from an

engineering perspective, a design wave height in shallow water is required in order to determine wave loading on coastal

structures, wave run-up and wave overtopping. As discussed by Katsardi and Swan (2011a) in their introduction to

modelling of non-breaking unidirectional waves in intermediate and shallow water, the physics of evolving wave fields

in shallow water is critically dependent upon water depth. Distributions of wave height in shallow water must therefore

be expressed as functions of water depth or related parameters. As summarised in Section 3 below, considerable effort

has been devoted to the development and refinement of parametric forms for the statistical distribution of wave height

in shallow water based on field and laboratory measurements.

There is a long history of modelling the distribution of wave height in coastal regions; Guedes Soares (2003) provides

an introduction. The LoWiSh Joint Industry Project addresses uncertainties in the specification of the maximum wave

height occurring on a continental shelf. One of the objectives of LoWiSh is to review existing distributional forms for

wave height in intermediate and shallow water. In the first phase of the project, the distribution of individual wave

height from laboratory measurements (Katsardi and Swan 2011b) were found to be well described by a Weibull form,

with parameters expressed in terms of Ursell number. However, the same parameterisation did not hold for the field

measurements. The two-part Weibull-Weibull distribution (of Battjes and Groenendijk 2000) was found to explain the

distribution of laboratory wave height well, capturing the discontinuity in slope of the cumulative distribution of wave

height in very shallow water. The limiting characteristics of the largest waves in both intermediate and shallow waters

were found to be critically dependent upon the effective water depth, kLd, where kL is a local wave-number based

upon a locally measured wave period, and d is water depth. In the recent literature, Mai et al. (2011) reports that

a modified form of the two-part Weibull-Weibull distribution is appropriate to characterise the distribution of wave

height from radar level gauge measurements at three locations in the German North Sea. Katsardi et al. (2013) observe

that effective water depth and significant wave height influence the distribution of wave height in shallow water from

laboratory measurements, but that different wave spectral bandwidths and moderate bed slopes (less than 1 : 100) do

not. They also observe that the Weibull-Weibull distribution over-predicts largest wave heights.

The objective of the current work is to extend the analysis conducted during the first phase of LoWiSh to establish

a universal model for wave height in shallow water, appropriate for all available laboratory, field and numerical model

data; and to compare the performance of the new model with competitor models from the literature. The contents of

this article are arranged as follows. Laboratory and field data used for model estimation and validation are described in

Section 2. Section 3 summarises existing models for the distributions of wave height, and motivates the requirements for
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the development of the new model, which is explained in detail in Section 4. Section 5 estimates the Weibull-generalised

Pareto model for the laboratory and field data, and compares model performance against alternative model forms for

the distributions of wave height. Conclusions and recommendations are made in Section 6.

2. Data

Five data sources were used to estimate the Weibull-generalised Pareto (henceforth WGP) model; four correspond to

measured data from offshore locations, and the fifth to measured data from a wave tank at Imperial College London.

The offshore locations are (a) Ameland Westgat (AWG), at 8m water depth on the Dutch coast for December 2007; (b)

Petten, at 8m and 20m water depth on the Dutch coast for different measurement campaigns over the period 2001-2008;

(c) the Field Research Facility (FRF) at 9m water depth on the coast of North Carolina for different measurement

campaigns over the period 2003-2007, and (d) North Cormorant (NC), at 160m water depth in the northern North Sea

for the period November 2006 to February 2007.

Wave data at AWG were measured with a Saab Rex WaveRadar sensor. The Saab WaveRadar has been shown to

give reliable measurements of the sea surface elevation over the frequency band (0.06, 0.60)Hz by Ewans et al. (2014).

The unit on the AWG platform was mounted at 26.5m above the sea surface, clear from immediate obstructions and

in particular without obstruction for waves from between north and north-west, the direction of largest storm waves.

The sensor recorded the sea surface elevation continuously at 2Hz. Waves approaching from the seaward direction of

north-north-west traverse small bottom slopes, reaching a maximum slope of 1 : 400 near to the platform. The wave

data at the North Cormorant platform were also recorded with a Saab Rex WaveRadar sampling continuously at 2Hz.

The sensor was located on the south-east corner of the platform at an elevation of 28.7m above mean sea level. Although

North Cormorant in no way represents a shallow water location, we include it in the present study to ascertain whether

a distribution for wave height can be specified which is applicable generally, not only in shallow water.

Wave data at the AWG and North Cormorant platforms were processed according to the following steps: (a) Air-gap

was inverted to estimate surface elevation above a nominal datum, (b) Mean water level was calculated for consecutive

10 minute segments, (c) A 2Hz spline was fitted through each of these 10-minute values to represent a continuously

varying mean water level, (d) The continuously varying mean water level time series was subtracted from the surface

elevation above the nominal datum time series, and (e) Individual waves were identified on zero-crossing basis.

The Petten wave data were recorded with a Directional Waverider buoy located in a nominal water depth of 20m (the

MP1 site), nearly 8km from the shore, and an Etrometa wave staff located in a nominal water depth of 8m (the MP3

site). MP3 is behind a bar (approximately 1.9km seaward) and on the forward face of a second bar. These bars are likely

to have introduced local breaking and shoaling, resulting in effects in the MP3 data that are not observed in the deeper

water sites at Petten nor the other field locations not affected by bars. The average beach slope between MP1 and MP3
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is approximately 1 : 600. The slope is less than 1 : 600 seaward of MP1. The Directional Waverider buoy data at MP1

were recorded at 1.28Hz, while the wave staff data at MP3 were recorded at 2.56Hz. Still water level measurements were

made at MP3 with a digital level meter. Further details of the measurements can be found in Hordijk (2003, 2004).

The Field Research Facility measurements were made with a pressure transducer in 8.5m water depth. The measurements

from the pressure sensor were made at 2Hz and were converted to surface elevations, using linear wave theory, with a

spectral density cap corresponding to an f−4 decay rate for frequencies f above 0.25Hz, to avoid amplification of noise

at high frequencies. The beach slope at the pressure transducer location is 1 : 150. Seaward of the location the bottom

slope is around 1 : 300. Further details of the measurements can be found in Birkemeier et al. (1997).

For each of the field locations, original 20-minute sea state samples were combined into rolling three-hour sea states for

consideration here. A small number of the resulting 3-hour sea states were omitted due to missing data or obviously

unrealistic values. The resulting number of sea states for analysis per location was 414 (at AWG), 3646 (at NC), 4383

(at FRF) and 676 (at Petten). In addition, we found it useful to consider the Petten samples at 8m and 20m separately,

henceforth denoted P8 and P20 respectively for brevity.

The experimental tank data were obtained in a specially commissioned wave flume at Imperial College London adopting

a 1:100 laboratory length scale and 1:10 laboratory time scale. At laboratory scale, the flume is 60m long and 0.3m

wide. The waves were generated by an absorbing flap-type wave maker located in deep water (0.7m at model scale).

The waves then propagated up a 1 : 15 slope to a water depth of 0.5m for three different beach slopes: constant water

depth of 0.3m (flat-bed), 1 : 100 and 1 : 250 gradient. For each test case, 8 separate runs with different random

phasing were undertaken. Each run consists of 256s of complete data, giving a total record length of 2048s, for each

test case. The sampling rate was 128Hz. Wave trains corresponding to JONSWAP and log-normal spectral shapes with

different spectral parameters were measured at up to 8 gauge locations. A total of 175 cases corresponding to different

combinations of wave spectrum, bed slope and gauge were recorded (together henceforth referred to as Tank data). The

full details of the laboratory set-up, instrumentation, and experimental measurements undertaken at Imperial College

London are given by Katsardi et al. (2013). At full scale, each of the 175 cases corresponds to observation of a three-hour

sea state.

For each data source and sea state, values of sea state significant wave height (HS , derived from the zeroth order

moment of the wave spectrum) and water depth d were available, together with values of individual wave heights and

corresponding individual wave numbers (kL, determined from individual zero-crossing wave periods using the linear

dispersion relationship). We use the median of individual wave numbers as sea state wave number. Further information

regarding the data sources and cases used in this work is available on request from the authors.
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3. Distributions for wave height

A number of distributional forms have been proposed for wave height. In this section, we begin (in Section 3.1) by

summarising some of the more popular distributional forms. With this background, we motivate a new model (in Section

3.2).

3.1. Existing models for wave height

Cumulative distribution function FH and probability density function fH for different descriptions of the distributions

of wave height h (> 0) as described below, where HS (> 0) is significant wave height.

Rayleigh distribution (Longuet-Higgins 1952)

Longuet-Higgins (1952) introduced the Rayleigh distribution for wave height, with

FH(h) = 1− exp

[(
− h√

8s

)2
]

, fH(h) =
2h

8s2
exp

[(
− h√

8s

)2
]

where s is parameterised in terms of HS as s = HS/4.

Glukhovsky distribution (Glukhovskiy 1966)

Glukhovskiy (1966) used a Weibull distribution for wave height in shallow water, with

FH(h) = 1− exp

[
−A

(
h

Hm

)K]
, fH(h) =

AK

Hm

(
h

Hm

)K−1
exp

[
−A

(
h

Hm

)K]

where, following van Vledder (1991)

A = Γ(1/K + 1)K , K =
2

(1−Hm/d)
, Hm =

√
8
HS

4

Γ(1 + 1/k)√
Γ(1 + 2/k)

and k =
2

1−
√

8HS/(4.5636d)

and Γ is the cumulative distribution function of the gamma distribution. Note that all of A, K, Hm and k are assumed

> 0.

Forristall distribution in deep water (Forristall 1978)

Forristall proposed the following Weibull distributional form for wave height in deep water, the parameters of which

were estimated from measurements of Gulf of Mexico hurricanes, where

FH(h) = 1− exp

[
− 1

β

(
h

HS/4

)α]
, fH(h) =

α

βHS/4

(
h

HS/4

)α−1
exp

[
− 1

β

(
h

HS/4

)α]
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where

α = 2.125 and β = 8.42 .

Tayfun distribution (Tayfun 1990)

Tayfun generalised the asymptotic model of Boccotti (1989) to include the effects of higher order non-linearities, such

that

FH(h) = 1− c0f exp

[
−c1

(
h

HS/4

)2
]

, fH(h) =

(
2c1h

(HS/4)2
f − 1

HS/4
df

)
exp

[
c1

(
h

HS/4

)2
]

where

c0 = 1 , c1 = 1/[4(1 + rm)] , f = 1 +

(
Hs

4

)2(
1− r2m
4rmh2

)
and df = −

(
Hs

4

)2(
1− r2m
2rmh3

)
and parameter rm is estimated from the wave spectrum as explained in Tayfun and Fedele (2007).

Forristall distribution in shallow water (Forristall 2007)

Forristall developed the following Weibull distributional form for wave height in shallow water, the parameters of which

are expressed in terms of Ursell number U (> 0), with

FH(h) = 1− exp

[
−
(

h

αHS

)β]
, fH(h) =

β

αHS

(
h

αHS

)β−1
exp

[
−
(

h

αHS

)β]

where

U = HS/(k
2d3) , α = 0.6917 + 0.1012U and β = 2.126 + 1.1365U .

Battjes-Groenendijk distribution in shallow water (Battjes and Groenendijk 2000)

Battjes and Groenendijk proposed a two-part Weibull-Weibull distributional form for wave height in shallow water, the

parameters of which were estimated from laboratory measurements. Above a high threshold Htr (> 0)

FH(h) = 1− exp

[
−
(
h

H2

)k2]
, fH(h) =

k2
H2

(
h

H2

)k2−1
exp

[
−
(
h

H2

)k2]

where

k2 = 3.6 , Htr = 0.35 + 5.8 tan(α)d ,

and α is the bed slope. The form of H2 (> 0) is obtained from equation 7 of Battjes and Groenendijk (2000).
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Mendez-Losada-Medina distribution (Mendez et al. 2004)

Mendez et al. (2004) developed a wave height distribution based on a bore approach for modelling energy dissipation in

the inner surf zone, which includes shoaling and breaking, with parameters Hrms (> 0) and Hmax (> 0), such that

FH(h) = 1− exp

[
−φ2(κ)

(
h

Hrms − κh

)2
]

, fH(h) =
2φ2(κ)Hrmsh

(Hrms − κh)3
exp

[
−φ2(κ)

(
h

Hrms − κh

)2
]

for 0 ≤ h < Hmax, where

φ(κ) ≈
(
1− κ0.944

)1.187
and κ =

Hrms

Hmax
.

The value of κ is evaluated in terms of Iribarren number Ir as

κ = (4.7− 28.8Ir + 26.2I2r )

(
Hrms

d

)5/2

where Ir = m

(
gT 2

m

2πHrms

)1/2

,

and Tm is the mean wave period, evaluated here are the mean of the individual wave periods for the sea state.

3.2. Motivating a new model

To account for changing characteristics of the distribution of wave height in shallow water, the notion of a two-part

distribution (such as that of Battjes and Groenendijk 2000), parameterised in terms of sea state and beach characteristics,

is attractive and forms the basis of the new model proposed here. It would appear that the Weibull-Weibull distribution

of Battjes and Groenendijk (2000) can be improved in a number of important ways. Firstly, in the Weibull-Weibull

distribution of Battjes and Groenendijk (2000), the upper Weibull distribution is intended to account for wave limiting

processes associated with shallow water, but it has no upper limit (since the Weibull distribution extends to infinity),

contradicting observation and theory. Secondly, the two-part distribution has a continuous cumulative distribution

function, but a discontinuous density, which is obviously inconsistent with observation. For these reasons, we might seek

a new model form that (a) accounts for an upper limit to wave height, and (b) has continuous probability density and

hence smooth cumulative distribution.

There is considerable motivation for retaining a Weibull form for the body of the distribution of wave height. For linear

waves in a narrow-banded sea state, wave heights are Rayleigh-distributed. Is is clear from Section 3 that the Weibull

distribution, of which Rayleigh is a special case, has been found to describe distributions of wave height from field data

well. Moreover, Glukhovskiy (1966) showed that the Weibull exponent might depend on the ratio of significant wave

height to water depth. Extreme value theory (e.g. Coles 2001) indicates that exceedances H − u of a high threshold u,

can be modelled by a generalised Pareto (GP) distribution, with scale parameters σ (> 0) and shape parameter ξ, for
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random variables H with any max-stable distribution with tail probability function

Pr(H > h|H > u) =

(
1 +

ξ

σ
(h− u)

)−1/ξ
for h > u .

It would appear therefore that the GP distribution would be a suitable (conditional) model for large wave heights. If

the GP shape parameter ξ is negative, the distribution of the excess has an upper bound h∗ = u− σ/ξ. In this context,

Miche (1944) suggested, due to steepness and water depth constraints, that the limiting wave height can be described

by a function of local wave-number kL and water depth d. The Miche limit hmax satisfies

kLhmax
2

= βπ tanh(kLd) .

In the original work, the value of β was set at 0.142 and the value of kL estimated from a non-linear analysis. In the

current work we have estimated kL as the local linear wave-number from the dispersion equation

ω2
L = gkL tanh(kLd)

where TL is the local wave period, such that ωLTL = 2π. We can therefore incorporate a physically-motivated upper

end point to the GP tail by setting the GP upper bound equal to the Miche limit. The number of wave heights observed

in a sea state, and predicted by theory, varies smoothly with the value of wave height. This requires that the cumulative

distribution function should be smooth, and the probability density function at least continuous, for consistency with

observation and theory. We can impose density continuity by introducing dependencies between parameters of the new

model. Detailed model development is presented in Section 4.

4. The Weibull-generalised Pareto (WGP) model

In this section we describe the Weibull-generalised Pareto (WGP) model for the distribution of the wave height motivated

above. The WGP distribution is two-part or piecewise, taking the form of a (truncated) Weibull distribution to the left

and a generalised Pareto distribution to the right of some transition threshold u. The model exhibits continuous density

and smooth cumulative distribution function on (0, h∗]. The model incorporates the Miche formulation for the upper

limit, hmax = h∗.

A full description of maximum likelihood estimation of WGP parameters is given in Section 5. As motivation for the

functional forms adopted for some WGP model parameters in terms of known sea state covariates (such as HS), we also

discuss elements of the inferences made here. As detailed in Section 5, during model estimation we found some of the

measured data for FRF and P8 to be inconsistent with physical intuition and therefore suspect. Hence, in this section,
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we choose to motivate WGP model development using AWG, NC, P20 and Tank only, although all data sources are

eventually considered in Section 5.

4.1. Model parameterisation

WGP transition threshold

The transition threshold u is chosen to be the extreme value threshold for the GP model. Exceedances of u should

therefore be reasonably viewed as being extreme, and consistent with observations from an extreme value model. u

therefore needs to be a relatively high quantile of the distribution of wave height. If u is set too low, we violate this

extreme value assumption. If u is too high, we are left with insufficient data to estimate the GP model well. The

characteristics of the GP distribution (e.g. Scarrott and MacDonald 2012) are such that, given u is set sufficiently high

that the GP distribution is an adequate description of individuals, increasing u will result in no change in ξ or h∗, and

a linear trend (with gradient ξ) in σ. We therefore seek a relatively small value for u such that these tail characteristics

are present. Figure 1 illustrates this behaviour for a typical sea state of Tank data. The upper and left lower panels

show GP parameter estimates as a function of u. For this particular example, any choice of u ∈ (0.06, 0.09)m would

appear reasonable, for example. A general feature of the distribution of wave height is that the value of sea state HS

lies above the mode of the distribution, on the downward tail of the density. This suggests that a linear form u = ρHS

in HS (for some ρ > 0) might be a convenient choice for transition threshold u. This is particularly convenient from

the perspective of establishing a “designer distribution”, the parameters of which are straightforward to specify. In

principle, direct estimation of factor ρ might be feasible under the WGP model, but we found this problematic. In the

evaluation reported in Section 5, ρ = 1 is assumed.

Weibull body

The Weibull distribution of wave height h below the transition threshold ρHS is specified in terms of scale parameter µ

(> 0) and shape parameter κ (> 0) . The cumulative distribution function takes the form

Pr(H ≤ h) = 1− exp

[
−µ
(

h

ρHS

)κ]
for h ≤ u .

Glukhovskiy (1966) suggests that µ is related to ρHS/d as

κ = 2

(
1− φ

(
ρHS

d

))−1

where function φ(x) = cx for some constant c. This yields a Rayleigh distribution as HS/d tends to zero. We attempted

to use a similar form. However, as demonstrated by the estimates in Figure 2, we found empirically that the a curve of
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the form φ(x) = λx1.7 for constant λ (> 0) is more appropriate. Note that the value of λ is estimated during maximum

likelihood inference below, but that the exponent (= 1.7) in the functional form for φ is not.

Generalised Pareto scale

HS is commonly used as scaling factor in distributional forms for individual wave height. With this in mind, we estimated

the GP tail form for all data, and found a clear near linear relationship (See Figure 3) between GP scale estimate and

HS corresponding to σ = αHS with α ≈ 0.22. We adopt this functional form for σ in all subsequent inference.

Miche limit

Miche (1944) introduced an upper limit hmax for waves described in Section 3.2 with parameter β originally specified

as 0.142, but estimated to be 0.12 during the first phase of the LoWiSh Joint Industry Project. When GP shape ξ is

negative, the GP distribution has an upper bound h∗ = u − σ/ξ. We incorporate the Miche limit within the WGP

model by equating hmax and h∗ yielding

h∗ = u− σ

ξ
= 2βπ

tanh(kLd)

kL
= hmax

from which

ξ = σ

(
u− 2βπ

tanh(kLd)

kL

)−1
= α

(
1− 2βπ

tanh(kLd)

kLρHS

)−1
,

the right hand expression emerging once the parameterisation u = ρHS , σ = αρHS is adopted. To impose continuity of

WGP density at the transition threshold u, the Weibull density fW (h) and GP density fGP (h) must be equal at h = u.

Since

fW (h) =
κµ

ρHS

(
h

ρHS

)κ−1
exp

[
−µ
(

h

ρHS

)κ]
and fGP (h) =

1

σ

(
1 +

ξ

σ
(h− ρHs)

)− 1
ξ−1

exp[−µ] ,

equality at h = u = ρHS , together with σ = αρHS leads to the equation µακ = 1, enabling the parameterisation of µ

in terms of α and λ (the latter via κ).

4.2. Summary of WGP model

The proposed WGP model is piecewise. The transition threshold for the two-part model is ρHS , where ρ is set to unity

for wave height in this work. The left hand side of the model (h ∈ (0, ρHS ]) takes a Weibull form with density

fW (h) =
κµ

ρHS

(
h

ρHS

)κ−1
exp

[
−µ
(

h

ρHS

)κ]

where the shape of the Weibull distribution is parameterised as
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κ = 2

(
1− λ

(
HS

d

)1.7
)−1

.

The right hand side (h ∈ (u, hmax]) is a (conditional) GP distribution

fGP |H>HS (h|H > ρHS) =
1

αρHS

(
1 +

ξ

α

(h− u)

ρHS

)− 1
ξ−1

.

Imposing µακ = 1, we can parameterise the GP shape parameter ξ as

ξ = α

(
1− 2βπ

tanh(kLd)

kLρHS

)−1
.

With prior knowledge of sea state water depth d, significant wave height HS and wave number kL, the WGP requires

just three parameters (scale α, Miche β and Weibull shape adjustment λ) to be estimated.

5. Estimating the WGP model

In this section we report parameter estimates for the WGP model, and evaluate its performance relative to competitor

models described in Section 3.

5.1. Maximum likelihood estimation

Maximum likelihood (ML) inference was used to fit the WGP model to individual sea states and sets of sea states.

Estimates for WGP parameters α, β and λ for individual sea states per data source are visualised as box-whisker plots

in Figure 4. The figure indicates that estimates for α are in the region of 0.22, for β around 0.15 and for λ around unity.

Comparison of observed and fitted densities and distributions for typical sea states of AWG, North Cormorant (NC),

Petten 20m (P20) and Tank are given in Figure 5. Quantile-quantile plots (not shown) indicate reasonable estimation

in general for individual sea states and combinations thereof.

We note from Figure 4 that estimates for β from FRF and Petter 8m (P8) are more variable than from other sources,

and that very large values of β are estimated for some sea states. This is of particular interest since β locates the

corresponding Miche limit. Miche (1944) suggests β = 0.142 . Figure 4 indicates that for some sea states, at FRF and

P8 in particular, the estimated values of β are greater than 4. This appears implausible, as discussed below.

Figure 4 also indicates that estimation of λ is more problematic for AWG and NC, the latter certainly due to the small

values and lack of variability in HS/d for that source. The figure further shows the corresponding parameter estimates

obtained using all sea states (combined) per data source as short horizonal lines. These are consistent with estimates
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from individual sea states. Maximum likelihood estimates were generated using all sea states for AWG, P20 and Tank

(i.e. sources in shallow water), and for AWG, NC, P20 and Tank (i.e. sources with no concerns about data validity).

Values for the triplet (α, β, λ) of (0.21,0.15,0.92) and (0.22, 0.15, 0.70) were obtained respectively. A number of further

estimates restricted to different domains of HS/d were also obtained for different combinations of sources, showing

general consistency with Figure 4, with estimates for α ∈ (0.21, 0.22), β ∈ (0.13, 0.15) and λ ∈ (0.70, 1.16). Based on

these combined inferences, we propose a parameter set α = 0.22, β = 0.15 and λ = 1.0 for adoption in applications of

the WGP model. Illustrative quality of fit to typical cases from different sources are given in Figure 5.

Figure 6 shows individual wave heights h against zero-crossing period for sea states with relatively high HS/d for each

data source in turn. Also shown per source is the expected level of the Miche limit h∗ estimated using different assumed

values of β (and α = 0.22, λ = 1). For all sources except FRF and P8, values of h do not approach any of the Miche limits

(for β = 0.14 or larger). However, for FRF and P8 there are occurrences which exceed the Miche limit for β = 0.15. One

exceptional value for P8 is particularly suspicious. A similar effect is observed in Figure 7, which shows the empirical

cumulative distribution function of hmax/h∗ per source assuming β = 0.15. For FRF and P8, there are clear exceedances

of unity, implying that a value of β > 0.15 is necessary if these observations are credible. We believe that for some sea

states, surface elevations estimated from pressure signals at FRF are inaccurate and give rise to unrealistic parameter

estimates. At P8, we believe that surface elevations are measured correctly, but that the sand bar on which the P8 wave

staff is mounted causes wave heights to be amplified to values larger than would normally occur over a gently sloping

beach, giving rise to the unusually large wave heights observed and the large estimated β.

5.2. Comparison with other models

Using the parameter values α = 0.22, β = 0.15 and λ = 1.0, we compare the performance of the WGB model with all

other models described in Section 2 in describing the empirical distribution of wave height for all individual sea states.

As introduction, Figure 8 shows Rayleigh (Rlg), Glukovskiy (Glk), Battjes-Groenendijk (BtG), Forristall (Frr), Forristall

(LoWiSh, FrL), Tayfun (Tfn), Mendez-Losada-Medina (MLM) and WGP distributions for the AWG sea state reported

in the top middle panel of Figure 6. The empirical density is shown in thick grey, and the WGP in thick (dot-dashed)

black. In this particular case, all model forms with the exception of MLM appear to perform approximately equally

well.

For all cases for all sources, we quantify relative performance of competing distributions in terms of the Kullback-Leibler

(KL) divergence. KL divergence quantifies the difference between a reference distribution (with cumulative distribution

function F0 and density f0) and a test distribution (with cumulative distribution function F1 and density f1), using the

average ratio of density functions

D(F0, F1) =

∫ ∞
−∞

log

(
f0(h)

f1(h)

)
f0(h)dh .
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Comparing a distribution with itself would yield a KL divergence of zero. Relatively small values of KL divergence

indicate good agreement between the reference and test distributions. In this work, we use the sample approximation

of Perez-Cruz (2008). Using the empirical cumulative distribution per sea state as reference, Figure 9 shows pairs of

box-whisker plots for KL divergence, comparing whole-distribution (left, black) and tail estimates (right, grey) from

different model forms with the empirical estimate per data source. White dots indicate the median KL estimate over

all individual sea states, black boxes interquartile range, and whiskers 95% intervals. The tail is defined as exceedances

of the 70th percentile of the sample for each sea state.

Inspection of Figure 9 suggests that several of the model forms do well for various data sources, though emphasis

should be given to the performance of the models for the NC, AWG, Tank, and P20 data sets. The Forristall (1978)

distribution (Frr) was developed empirically for extreme deep-water sea states in the Gulf of Mexico. Not surprising

therefore is its good skill for the deep-water North Cormorant (NC) data set; but surprisingly, it also performs well for

the intermediate and shallow-water field data recorded at P20 and AWG respectively. Its poor performance for Tank

might be explained by the fact that the laboratory measurements are unidirectional, whereas the Forristall model was

calibrated using directional field measurements. The Battjes and Groenendijk (2000) distribution (BtG) was developed

for laboratory measurements, and as might be expected performs well for the Tank data set. It does not perform so

well for the shallow water field data sites P20 and AWG. The good skill of the BtG model found for the NC data set

can be attributed to how well the lower Weibull of BtG describes deep-water waves in general, as the transition height

to the upper Weibull was always larger than the maximum in the respective records. Given that the WGP distribution

was developed from fits to the NC, AWG, Tank, and P20 data sets, it should not be surprising that it has the best

overall skill for all of these data sets, performing well for both deep, intermediate and shallow water field data sets and

the shallow-water Tank data set. At the same time, we note that a sample of nearly 5000 sea states corresponding to

different conditions from four different field and laboratory sources were used to estimate the WGP model, the number

of independent observations for model estimation far outweighing the number of model degrees of freedom.

6. Discussion and suggestions for further investigation

The proposed three-parameter Weibull-generalised Pareto (WGP) form for the distribution of wave height in shallow

water offers flexibility as a two-part model with continuous density, incorporating both physical and statistical knowledge.

The WGP form describes the distributions of wave height in the sample data examined well. These samples include

deep, intermediate and shallow water field sources and shallow water tank data. Overall, the proposed WGP performs

at least as well as, and typically better than, competitors for these data sets. This is in part not surprising given that

relationships between model parameters and sea state covariates, and parameter estimates were inferred using the same

data. The estimate for the “Miche β” parameter is in good agreement with the value originally proposed by Miche
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(1944).

In this work, we use the median of measured individual wave numbers to represent the sea state wave number kL in

the Miche expression. We have examined the effect of adopting different quantiles of the distribution of individual wave

number as alternatives to the median, and find that parameter estimates for the WGP model are relatively insensitive

to choices of kL from the body of this distribution. If, in application, the median of individual wave numbers is not

available, we propose it be approximated using the wave number kP corresponding to peak wave spectral frequency.

Estimates (e.g. for design values) obtained from WGP or any competitor will be uncertain due to the inherent difficulty

of modelling unusual events in a sample. The quality of fit of the WGP model to the sample tail (specifically) is generally

good. In the exceptional poorly-fitting cases, there are at two noteworthy causes of discrepancy. Firstly, the WGP form

incorporates the Miche limit explicitly, and therefore can be thought of as corresponding to a breaking wave distribution.

However, we have not limited our analysis to sea states showing clear examples of breaking waves due to depth limitation.

Such a specification might lead to an improved estimated of the breaking wave height distribution. Secondly, and

possibly related at least for non-saturated sea states, is that tail characteristics (in particular) are influenced by sea state

characteristics in addition to HS , kL and d. Identifying and including these might improve overall model performance.

It is clear that available cases from the laboratory tank experiments are not fully representative; notably, the number

of available cases corresponding to truly shallow water, from tank (or indeed from field measurements) is small, of the

order of 30 cases). Yet these are exactly the cases for which a more sophisticated parameterisation of the WGP model

appears possible, and those which would be most informative about the value of “Miche β”. Further experimental work

(particularly tank-based) following a careful statistical experimental design to explore parameter space efficiently and

sufficiently, would seem to be justifiable based on the evidence from this study.

It is interesting to examine sea states where there might be an appreciable degree of breaking. Mendez et al. (2004)

provides an expression for the fraction Nbr of breaking waves in a sea-state in terms of the dimensionless ratio κ of

root-mean-square wave height Hrms to maximum wave height Hmax introduced in Section 3.1

log(Nbr) = (1.033 + 0.297κ− 3.816κ2 + 2.517κ3) log(κ) .

Using this expression we estimated the fraction of breaking waves in all sea states for all sources. We found that not

one of the sea states corresponding to field data from any field location had Nbr > 0.35. For the Tank data, 8 sea states

were identified with Nbr > 0.35. For these sea states only, the performance of all models was evaluated and is shown in

Figure 10. From the figure, we observe that the models of Battjes-Groenendijk (BtG) and WGP are best performing

for the whole distribution, and that Glukovskiy (Glk) and Forristall (LoWiSh, FrL) models are best-performing for the

tail. We caution however that the number of sea states used in this comparison is small, that the extent of breaking
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in these sea states is also relatively small, and that all of Glk, BtG, FrL, Mendez-Losada-Medina (MLM) and WGP

provide reasonable fits to the whole distribution and the tail.

Controlled laboratory conditions are expected to produce cleaner data than possible in from field conditions. However,

there is uncertain as to just how well laboratory conditions represent sea states in the real ocean. For example, attempts

to reproduce directional spreading and wind forcing in laboratory basins are fairly recent additions to experimental

programmes; our tank data from Imperial College London were long-crested and without wind. The advantages of

adding directional spreading and even wind to the parameter space for future laboratory experiments are likely to

outweigh the added cost and complexity in the experimental programme and provide valuable enhancements to the

description of the distribution of ocean wave height.

A number of more sophisticated model forms are available in the literature, which might be appropriate enhancements to

the current WGP model, especially as larger more informative samples from the field and laboratory become available.

Examples include the work of Frigessi et al. (2002), Behrens et al. (2004), MacDonald et al. (2011) and Randell et al.

(2015). At the current time, however, given sample quality and the need for a simple “designer” distribution for

straightforward application, we judge the proposed WGP model fit for purpose.
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