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Abstract. Dual fractional cutting plane algorithms, in which cutting planes are
used to iteratively tighten a linear relaxation of an integer program, are well-
known and form the basis of the highly successful branch-and-cut method. It
is rather less well-known that various primal cutting plane algorithms were
developed in the 1960s, for example by Young. In a primal algorithm, the
main role of the cutting planes is to enable a feasible solution to the original
problem to be improved. Research on these algorithms has been almost non-
existent.

In this paper we argue for a re-examination of these primal methods. We
describe a new primal algorithm for pure 0-1 problems based on strong valid
inequalities and give some encouraging computational results. Possible ex-
tensions to the case of general mixed-integer programs are also discussed.
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1 Introduction

Cutting plane algorithms, and more specifically branch-and-cut algorithms,
have become very popular tools in recent years for solving integer and mixed-
integer programs to optimality (see Nemhauser & Wolsey [20]; Padberg &
Rinaldi [23]; Caprara & Fischetti [6]). To the knowledge of the authors, vir-
tually all of the cutting plane algorithms in the modern literature are so-called
dual fractional algorithms, based on the dual simplex method, in which the
main role of the cutting planes is to iteratively tighten a linear relaxation of
the original problem. These essentially have their roots in Gomory’s classical
method of integer forms (Gomory [12]).

What is less well-known is that there are two fundamentally different ways
in which the simplex method and cutting planes can be used to solve integer
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programs. The first alternative, which we call the dual integral approach, is to
maintain integrality and dual feasibility throughout, and use cuts to drive the
solution towards primal feasibility. The only algorithm of this type known to
the authors is that of Gomory [14]. The second alternative, which we call the
primal approach, is to maintain integrality and primal feasibility and use cuts
to drive the solution towards dual feasibility. Algorithms of this third type,
based on the primal simplex method, were devised by Ben-Israel and Charnes
[5] and Young [28], and subsequently simplified by Glover [11] and Young
[29].

An excellent introduction to, and comparison of, the three basic paradigms
can be found in Garfinkel & Nemhauser [10]. However, whereas much effort
has been devoted to improving the dual fractional framework, very little has
been devoted to the dual integral and primal variants. (A prominent exception
is a paper by Padberg & Hong [22], which we discuss in detail in Subsection
2.3.) The main goal of the present paper is to convince the reader that the
third approach, the primal one, is viable.

The remainder of the paper is structured as follows. In Section 2 we in-
troduce basic terms and briefly review the literature on primal cutting plane
methods. In Section 3, we describe a modern primal cutting plane algorithm
for pure 0-1 problems based on strong valid inequalities. We also consider pos-
sible extensions to general mixed-integer problems. In Section 4 we describe an
implementation of this algorithm, and give some computational results which
show that the new algorithm is a drastic improvement over Young’s original
method. Finally, conclusions are given in Section 5.

It should be noted that several other authors have recently become inter-
ested in primal algorithms for integer programming, see for example Schulz,
Weismantel & Ziegler [24], Thomas [26], Urbaniak, Weismantel & Ziegler
[27], Haus, Koppe & Weismantel [17], Firla et al. [9] and Eisenbrand, Rinaldi
& Ventura [7]. But to our knowledge this is the first paper since Padberg &
Hong [22] which attempts to devise a primal method based purely on cutting
planes.

2 Primal cutting plane algorithms
2.1 Notation and definitions
Consider an Integer Linear Program (ILP) of the form:
max{c’x: Ax < b,xeZ"}.
Associated with the ILP are two polyhedra:
— P:={xe R’ : Ax < b} (the feasible region of the linear programming re-
laxation),
— Py :=conv{x e Z : Ax < b} (the convex hull of feasible integer solutions).
A cutting plane is a linear inequality which is satisfied by all points in Py, but
which is not satisfied by all points in P.

Whereas a dual fractional cutting plane algorithm begins by solving the LP
relaxation of the ILP, a primal cutting plane algorithm begins with a feasible
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solution to the ILP, preferably a good one, which we will denote by X. More-
over, it must be a solution with a very specific property: it must be an extreme
point of both P and P;. If no such X is known in advance, then artificial vari-
ables must be used to find one, much as in the ordinary primal simplex
method. However, it is often easy to find one. In particular, for pure 0-1
problems any feasible solution gives a suitable starting vector X.

The goal of the primal method is to iteratively improve the solution X by
moving from one vertex of P; to another, until no more improvement is pos-
sible and optimality is proven. (It can be viewed as an exact version of the
well-known local search heuristic.) Of course, we do not have a description of
P; in advance, and this is why cutting planes are necessary.

This is how the method works. The simplex tableau associated with X is
constructed. If ¥ is dual feasible, it is optimal and the method stops. If not,
then a non-basic variable with negative reduced cost is selected to come into
the basis, and the usual primal simplex criterion is used to select a basic vari-
able to leave the basis. Then a primal simplex pivot is made, leading to a new
vector (or the same one in the case of degeneracy), which we will denote by x*.
If x* is integral, then it represents an improved ILP solution, and it becomes
the new X. If on the other hand it is fractional, then a cutting plane is gen-
erated which cuts off x*. Then, another attempt is made to pivot from X,
leading to a different x*, and so on. The method terminates when X has been
proved to be dual feasible.

2.2 Primal algorithms: Young’'s method

As mentioned above, in the 1960s several authors developed primal cutting
plane algorithms for solving ILPs. For the sake of brevity we present only the
version due to Young [29]. This version is simpler than the preceding ones, yet
was shown by Young to be finitely convergent when an appropriate lexico-
graphic pivot rule is used.

Young’s method maintains integrality not only of x, but of the entire tab-
leau at all times. In order to do this, it only allows a pivot to be made if the
pivot element is equal to 1. If the pivot element is not 1, then a cutting plane is
added with the property that the pivot element in the enlarged LP tableau is 1.

The cutting planes of Young are defined as follows. Suppose that the pivot
row of the simplex tableau takes the form:

Xi+ ) 4= x], (1)

JjeENB

and xi, for some k € NB, wants to come into the basis in place of x;. By as-
sumption, all of the a; are integer, as is x;, and a; > 1. Then the Young cut is

> laj/alx; < |7 fai). (2)

jeENB

After adding a new slack variable (say, s) to the Young cut and adding it to
the tableau, we now find that it can serve as an alternative pivot row. Indeed,
ax can now come into the basis in place of s and the value of the pivot element
is |ar/ax] = 1.



70 A. N. Letchford, A. Lodi

For the sake of clarity we now present a simple example of Young’s algo-
rithm in operation.

Example 1: Consider the following trivial ILP with two integer variables xj, x;
and two slack variables sy, 55:

max f =5x; +2x;
Subject to: 2x; 4+ x5+ 57 =3
—2xX1+Xx2+85 =0

xeZ?

2
1, seZi.

An obvious initial basic, primal feasible and integral solution is obtained by
making s; and s, basic, to give X := (0,0) and the corresponding initial sim-

plex tableau is as follows.

X1 X2 S1 A\

—flo|l 5 2 0 o0
si|3] 21 1 0
500 =2 1 0 1

The standard primal simplex rule dictates that x; should be made basic in place
of s1. The first constraint therefore becomes the pivot row, leading to a pivot
element with value 2. Since the pivot element is not 1, we generate the cutting
plane

12/2)x1 + [1/2)x + [1/2)s1 < [3/2

or, equivalently, x; < 1. Appending the slack variable s3 this results in the fol-
lowing equation being added to the tableau:

X1 +s3=1.
Now we can make x; basic in place of s3, to yield the following tableau:

X1 X2 St 8§22 83

—f1-510 2 0 0 -5
ss| 110 1 1 0 =2
5 o 1 0 1 2
x| 1|1 0o o0 o0 1

The new X is (1,0) and the profit has increased from 0 to 5. Next, we should
make x; basic in place of s;. This time the pivot element is 1 so we do not need
to generate a Young cut. The next tableau is therefore:
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X1 X2 5 S 853
—f1-710 0 -2 0 -1
X3 110 1 1 0 =2
S 110 0 -1 1 4
X1 1|1 0 0 0 1

The new X is (1,1) and the profit has increased from 5 to 7. Moreover it is
dual feasible, and hence optimal.

The Young cuts (2) can actually be regarded as a variant of the well-
known Gomory fractional cuts (see Gomory [12] and Nemhauser & Wolsey
[20]). Indeed, consider what would have happened if we had performed the
pivot to bring x; into the basis. The row (1) would have been divided by the
pivot element to yield:

ac'xi+ ) (ap/an)x; = x; far. (3)

jeENB

Generating a Gomory fractional cut from (3) gives:

ac'xi+ > fla/a)x; = [(x] Jar), 4)

jeENB

where f(-) denotes fractional part. Using the equation (3), this is easily shown
to be equivalent to (2).

This means that, geometrically, the Young cuts have the effect of cutting
off the fractional vector x* which would have been obtained if a primal sim-
plex pivot had been performed. That is, they remove points which are adjacent
to X on the current polyhedron. Of course, they do not cut off ¥ — this would
not be sensible, given that ¥ might be optimal. Instead they are frequently
tight (satisfied at equality) at X.

Unfortunately, the algorithm of Young typically leads to long sequences of
degenerate pivots in which, although cuts are being added, X stays the same.
Modifications have been suggested by, e.g., Arnold & Bellmore [1], [2], [3] and
Sharma & Sharma [25], but the resulting algorithms are not competitive with
dual fractional cutting plane algorithms (and certainly not with branch-and-
cut).

2.3 Primal algorithms: the Padberg-Hong method

As mentioned above, research on primal cutting plane algorithms has been
almost completely inactive. An important exception is a paper by Padberg &
Hong [22], which describes a primal cutting plane algorithm for the Symmetric
Travelling Salesman Problem (STSP). (A summary of this paper also appears
in Padberg & Grotschel [21], sections 1.4 and 4.2.)

The approach of Padberg and Hong differs significantly from the older
algorithms of Young et al. in several ways. First, they begin with a subset of
the system Ax < b, rather than the entire system, which is of exponential size
in the case of the STSP. Second, they use only facet-defining cuts, such as sub-
tour elimination, 2-matching, comb and chain inequalities. These cuts are gen-
erated dynamically by constraint identification algorithms. Third, they also al-
low the addition of several cuts at each iteration, instead of only one. All three
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of these features are now standard in dual fractional algorithms, but none of
them were permitted in Young’s method. Moreover, whereas Young’s method
maintains integrality of the entire simplex tableau at all times, Padberg and
Hong require only that the vector ¥ be integral.

Finally, whereas Young’s method is guaranteed to find the optimal solu-
tion (eventually), Padberg and Hong’s method does not do so. It can reach the
point where X is not dual integral, x* is not a tour, yet no more violated facet-
inducing cuts can be found. In this case, rather than branch or use general-
purpose cuts, Padberg and Hong simply solve the current linear programming
relaxation to optimality, using primal simplex pivots, in order to obtain a
bound which can be used to assess the quality of the best tour found.

The constraint identification algorithms of Padberg and Hong are essen-
tially equivalent to what are called separation algorithms in the modern liter-
ature (see Nemhauser & Wolsey, [20] and Grétschel, Lovasz & Schrijver [15]).
However, they are tailored to the primal context. Whereas a standard sepa-
ration algorithm searches for a valid inequality which cuts off a fractional
vector x*, the algorithms used by Padberg and Hong add the extra require-
ment that the inequality found be tight (satisfied at equality) at X. That is, they
solve the following problem:

The Primal Separation Problem for a Class of Inequalities: Given some
class F of inequalities which are valid for Py, some x* € P and some X
which is an extreme point of both P and Py, find a member of & which is
violated by x* and tight for X, or prove that none exists.

Presumably their intuition for doing this was as follows. If one were to add
a cut which is violated by x* but not tight at X, then the next point encountered
(x, say) would simply be a convex combination of X and x*. Given that the
STSP is a 0-1 problem, x would still be fractional and no progress would have
been made towards either finding an improving solution or proving optimality
(dual feasibility) of x. This argument is valid for general 0-1 ILPs, and also
for mixed 0-1 problems, but it is less clear for problems with general integer
variables, because when general integer variables are present it is possible for
a convex combination of X and x* to be integral even when x* is not.

It was later shown by Padberg & Grotschel [21] that the extra restriction
that the inequality be tight at X does not create any difficulties. Indeed, they
showed that an inequality solves the primal separation problem if and only if
the same inequality solves the standard separation problem for the point
ex* + (1 — &)x, where ¢ is some small positive quantity whose encoding length
is polynomial in the encoding length of the inequalities defining P;. The same
argument can be easily adapted to general mixed-integer programs.

Interestingly, the reverse does not hold: there is no obvious way to trans-
form the standard separation problem into the primal version. This raises the
possibility that, for some classes of inequalities, primal separation may be
easier than standard separation. This is indeed the case; see Section 5.

3 A modern primal cutting plane algorithm

3.1 Basic framework

In limited experiments which we have performed with Young’s algorithm, we
have found that a huge number of cuts is generated, with coefficients growing
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in an exponential manner, so that the LP solver encounters precision problems
and crashes, sometimes before even a single non-degenerate pivot has been
made. This happens even for relatively small instances (say, 10 variables and 5
constraints). This means that Young’s algorithm, elegant though it is, is use-
less from a practical viewpoint.

In the light of the Padberg-Hong paper, and also the literature on dual
fractional methods (see Nemhauser Wolsey [20], Padberg & Grotschel [21]),
the key to producing a viable primal method would appear to be the use of
separation algorithms to generate strong cutting planes dynamically. As said in
Subsection 2.3, in the case of 0-1 ILPs there is a strong case for using primal
separation algorithms, in order to generate cutting planes which are tight at x.
The situation is not so clear for mixed problems, or for problems with general
integer variables, so for simplicity of exposition we begin with the pure 0-1
case. Moreover, we initially assume that the constraint matrix Ax < b is small
enough to be stored explicitly in the initial LP. More complicated problems
are dealt with in the following subsections.

Our basic algorithmic framework is the following, which can be shown to
converge finitely under certain mild assumptions:

— Step 1: Find a ‘good’ initial ¥ and construct an appropriate tableau. (We do
not require that the entire tableau be integral.)

— Step 2: If X is dual feasible, stop.

— Step 3: Perform a primal simplex pivot. If it is degenerate, return to 2.

— Step 4: Let x* be the new vector obtained. If x* is integral, set X := x* and
return to 2.

— Step 5: Call primal separation for known strong inequalities. If any are
found, pivot back to X, add one or more cuts to the LP, and return to 3.

— Step 6: Generate one or more general-purpose cuts (such as Gomory frac-
tional or mixed-integer cuts), add them to the LP, pivot back to X and re-
turn to 3.

An interesting thing here is that, for pure 0-1 ILPs, we can easily generate
a Gomory mixed-integer cut in step 6 which is guaranteed to solve the primal
separation problem, i.e., to be tight at X. For the sake of brevity we do not
prove this in detail, but here is the basic idea. Consider a mixed-integer cut
generated from the row of the simplex tableau associated with variable x;,
where x; is fractional. It is well-known that this cut is a strengthened version
of a so-called intersection cut derived from the disjunction (x; < 0) v (x; = 1)
(see for example Balas, Ceria and Cornuéjols [4]). The intersection cut is by
definition tight at all » points which can be obtained by increasing the value of
a non-basic variable until x; becomes equal to either 0 or 1. One of these
points is X itself. Therefore the intersection cut is tight at x. The mixed-integer
cut, being at least as strong, is therefore also tight at X.

3.2 Enhancements

The next step is to extend this basic scheme to cope with problems (such as the
STSP) in which the system Ax < b has a huge (perhaps exponential) number
of rows. Following Padberg and Hong, and also by analogy with the dual
fractional approach, this can be tackled by using only a subset of these in-
equalities to construct the initial LP relaxation and generating the remaining
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ones dynamically via a primal separation algorithm. However, there is a small
complication: we might encounter the situation where x* is binary, primal
separation fails, yet x* violates an inequality in the system Ax < b which is not
tight for X. The following simple example shows how this might happen.
Example 2: Consider the following ILP with three 0-1 variables xj, x», x3:
max f =x;+x+ X3
Subject to:  x; +x; <1
X1 +x3<1
X +x3 <1
xe{0,1}°.
Suppose that x = (1,0,0) and that therefore only the first two constraints are

tight. Suppose moreover that only these two constraints are present in the
initial LP relaxation. One simplex tableau corresponding to X is:

X1 X2 X3 S1 2
fl=1{o o 1 -1 o0
X1 11 0 0
X2 00 1 - 1 -1

Now suppose we choose to make x3 basic in place of x;. This yields the fol-
lowing tableau:

X1 X2 X3 N 82

—f1-2]-120 0 -1 -1
X3 1 1 0 1 0 1
X3 1 11 1

However, this corresponds to x* = (0,1,1). This clearly violates the third
constraint, but the third constraint is not tight at ¥ and therefore would not
be generated by a primal separation algorithm.

On such occasions we would appear to have no choice but to call a stan-
dard (i.e., non-primal) separation algorithm for the system Ax < b. Note
however that x* is known to be 0-1, a fact which could be exploited to sim-
plify the standard separation algorithm. (For example, in the case of the
STSP, it is much easier to identify violated subtour elimination inequalities
when x* is integral than when x* is arbitrary. One merely has to compute
connected components in a graph.)

Due to the above complication, in order to solve pure 0-1 ILPs with Ax < b
huge it is necessary to change step 4 of the algorithm given in the previous
subsection to:
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— Step 4’: Let x* be the new vector obtained. If x* is integral and feasible, set
X := x* and return to 2.

It is also necessary to insert the following step between steps 5 and 6:

— Step Sb: If x* is integral but not feasible, find an inequality in the system
Ax < b which is violated by x* yet not tight at X, add it to the LP and per-
form a single (dual) simplex pivot to arrive at a new (fractional) point X
which is a convex combination of X and x*. Set x* := X.

We know from the argument at the end of the previous subsection that,
after step 5b is performed, a mixed-integer cut generated in step 6 will cut off
the new (fractional) x* and be tight at X. Therefore it would also cut off the
previous (integral) x*, which implies that the non-tight inequality generated in
step 5b can be discarded. (Intuitively, the mixed-integer cut can be regarded as
a ‘rotated’ version of the cut found in step 5b — rotated in such a way as to
solve the primal separation problem.)

Example 2 (continued): In step 5b we would generate the cut x; + x3 < 1.
Adding a slack variable and expressing it in terms of the non-basic variables
yields —2x; — s — 52 + 53 = —1. We add this to the tableau and perform a
dual simplex pivot (making x; basic in place of s3) to yield the following tab-
leau:

X1 X2 X3 S8 852 53
=320 0o 0o -12 -12 -1)2
3| 1200 0 1 —12 12 12
»| 1200 1 0 12 —12 12
x| 1201 0 0 12 12 -1

This corresponds to the point x := (1/2,1/2,1/2), which therefore becomes
our new x*. Then, regardless of whether we generate a fractional cut or mixed-
integer cut in step 6, and regardless of the row chosen to generate it, we will
obtain the cut (1/2)s; + (1/2)s, + (1/2)s3 = 1/2. In terms of the original vari-
ables, this is x; + x; + x3 < 1. This is tight at X and cuts off both the original
invalid integer point (0,1,1) and the new fractional point (1/2,1/2,1/2).
Therefore it solves the primal separation problem and the inequality
X3 + x3 < 1 generated in step 5b can be discarded.

Now we consider other ways in which this basic framework can be en-
hanced (see Padberg & Rinaldi [23] and Caprara & Fischetti [6], for a de-
scription of these techniques in the dual fractional context). First, to avoid the
basis becoming too large, we can use a cut pool. Whenever the slack of a cut
becomes positive, we can remove the cut from the LP and place it in the pool.
Each time an augmentation (i.e., an improvement) occurs in step 4, cuts which
have become slack can be moved from the LP to the pool and cuts which have
become tight can be moved from the pool to the LP. Variable pricing (i.e.,
starting with a subset of variables and introducing others dynamically when
needed) can also be done easily.

However, fixing variables on the basis of reduced costs seems more prob-
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lematic. This is because the primal approach as stated yields a sequence of
lower bounds but not upper bounds. Of course, if for some reason the code has
to be terminated before optimality has been proven, we can simply do what
Padberg and Hong did, and solve the current LP to optimality to obtain an
upper bound. This LP can be solved in a relatively small number of primal
simplex pivots, because X can be used as a starting basis.

Finally, we briefly consider the possibility of branching. In order to obtain
a method which is competitive with branch-and-cut (Padberg & Rinaldi [23]),
it would be desirable to somehow integrate primal cutting plane methods with
branch-and-bound. However, branching is problematic in the primal context.
The point is that one wishes to cut off x* but does not want to cut off the
current best known feasible solution X (it may be optimal). If one tries to
branch in the standard way, by choosing a fractional variable x; and creating
two subproblems (one with the constraint x; = 0 added and the other with the
constraint x; = 1 added), ¥ will be excluded from one of the two subproblems.
This would mean that we had no starting basis on one of the branches.

What is really needed is a non-standard branching rule which removes x*
but leaves X intact on both sides. Here is an example of such a non-standard
branching rule. Suppose that there is a pair of 0-1 variables x;, x; such that
X;=X;=0and 0 <x; <x; < 1. Create two branches, one with the constraint
x; = 0 added; the other with the constraint x; > x; added. With this rule, no
feasible solution is lost, X is feasible for both branches, and x* is removed in
both branches.

We know of some more general and powerful branching rules, which will
be described in a future paper. In the present paper, however, we are mainly
concerned with the cutting side.

3.3 Extension to mixed-integer problems

The approach outlined so far applies only to pure 0-1 ILPs and it is natural to
ask if it can be generalized. In fact, it can be applied with little modification to
mixed 0-1 problems — i.e., problems in which variables are either continuous
or binary. (We omit details for the sake of brevity.) However, it is much harder
to deal with problems in which general integer variables are present. This is
because, when such variables are present, it is possible for a convex combina-

tion of X and x* to represent a feasible solution even when x* does not.

Example 3: Consider the following ILP with two variables x1, x,:
max [ =x;+x;
Subject to: x; —x; <0
X1 +3x <6
xeZ er

The fractional point x* = (3/2,3/2) is adjacent to the integer point ¥ = (0,0),
but the point (2/3)x* 4+ (1/3)x = (1, 1) is integral (and optimal).
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This means that we can no longer guarantee that there is a valid inequality
which is simultaneously tight for ¥ and violated by x*. That is, there may be
no inequality which solves the primal separation problem.

Surprisingly, it turns out that primal separation algorithms suffice even in
this case, at least in theory. Let us denote by X the point on the line connecting
X and x* which is a feasible MILP solution. If there are several candidates for
X, then choose the one which is closest to x*. Then a simple geometric argu-
ment shows that there is a valid inequality which is violated by x*, yet tight at
X. Such an inequality can be found (in theory) by calling a primal separation
algorithm with x replacing X in the input. If such an inequality is obtained and
added to the LP, then a new attempt to pivot from X will take us to X. In this
way we can augment successfully.

A more serious problem is branching. Recall that we desire a branching
rule which will exclude a fractional point x* but which will leave X intact on
both branches. Whereas this is fairly easy to accomplish in the (mixed) 0-1
case, there is no obvious way of doing it when general integer variables are
present. This is a challenging problem for future research.

4 Computational experiments

In this section we give the results of some computational experiments which
show the improvement obtained by using the algorithm presented in Sub-
section 3.1 instead of Young’s algorithm. Because Young’s method breaks
down for anything but very small instances, we have constructed a number of
small, random 0-1 ILPs.

We have chosen to use multi-dimensional 0-1 knapsack problems, i.e., prob-
lems of the form max{c’x:Ax <b,xe{0,1}"}, where ce Z", A€ Z™"
and b e Z7'. These were chosen for two reasons. First, we have an obvious
initial X, since the origin is always feasible. Second, there is a simple well-
known class of strong cutting planes, the so-called lifted cover inequalities
(LCIs) — see for example Nemhauser & Wolsey [20]. Suppose that an indi-
vidual constraint has the form Y " | @;x; < b and suppose that C = {1,...n}
is a cover, i.e., that >, _~a; > b. Then the cover inequality ). ~x; < |C| — 1
is valid and can be /ifted to become facet-inducing for the 0-1 knapsack poly-
tope conv{x € {0,1}" : "1, a;x; < b}, though not necessarily for the multi-
dimensional knapsack problem itself.

It was proved in Ferreira, Martin & Weismantel [8] that (standard) sepa-
ration of cover inequalities is ./"#-hard and, in our paper Letchford & Lodi
[18] we prove that the primal version is too. Therefore we resort to a simple
heuristic for primal separation based on the ideas in Gu, Nemhauser & Sa-
velsbergh [16]. We just pick each individual knapsack constraint in turn and
insert items into C in non-increasing order of x* value until C is a cover.
However, we ensure that exactly one member j € C satisfies X; = 0, to ensure
that the cover inequality generated is tight at X. Then we lift the inequality in
a greedy way to obtain an LCI which is tight at x. All violated LCIs found are
added to the LP.

This is how we generated our test problems. For n € {5, 10, 15,20,25} and
m € {5,10}, we constructed five random instances, making 50 instances in to-
tal. The objective function coefficients are integers generated uniformly be-
tween 1 and 10. For the instances with m = 5, the left-hand side coefficients
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Table 1. Results with Young’s method

n Opt Proven Aug. Overall on-line off-line
Cuts %GAP  %GAP

2.0 6.0 0.00 0.00
4.6 127.0 7.32 3.50
6.8 102.4 10.56 6.56
8.6 184.6 9.16 5.93
11.8 85.2 6.92 4.08

10

20
25

—

w
OO =W
OO O = W

0.8 1436.0 6.26 0.00
42 1151.2 11.62 3.08
6.6 390.2 15.38 3.62
8.6 136.0 14.52 6.17
11.6 99.2 12.04 4.29

w1

[

W
—_ O W A W
SO O WA

are also integers generated uniformly between 1 and 10. For the instances with
m = 10, the left-hand side coefficients have a 50% chance of being an integer
generated uniformly between 1 and 10, but also have a 50% chance of being
zero. That is, these instances are sparse. In all cases the right-hand side of each
constraint was set to half the sum of the left hand side coefficients. (This is
well-known to lead to non-trivial instances of the multi-dimensional 0-1 knap-
sack problem.)

We found that more complex instances (e.g., with larger coefficients, more
constraints or variables, or higher density) caused Young’s algorithm to run
into numerical difficulties and crash.

We used the CPLEX 7.0 callable library for performing primal simplex
pivots. For all algorithms, we handled the upper bounds of 1 implicitly (see,
for example, page 39 of Nemhauser & Wolsey [20]). This led to a significant
reduction in both memory and running time, but the cost was a rather com-
plicated checking of cases when selecting the variables to enter and leave the
basis, and also a need to check sign conventions carefully when generating
cuts.

The results with Young’s original algorithm are displayed in Table 1. The
letters ‘D’ and ‘S’ indicate dense and sparse instances respectively. The num-
ber of variables is given in the column marked ‘»’. The column ‘Opt’ shows
the number of times (out of five) the optimal solution was found without nu-
merical problems due to the integers in the tableau becoming huge. (We set a
limit of one million for this purpose.) The column ‘Proven’ shows the number
of times the optimal solution was found and proven to be optimal. The fol-
lowing two columns show the average number of successful augmentations
and the average number of Young cuts added before either proving optimality
or exiting due to huge coefficients. The column headed ‘on-line % GAP’ gives
the average percentage gap between the best lower bound and the upper bound
obtained by solving the final LP to optimality. The column headed ‘off-line
%GAP’ gives the average percentage gap between the best lower bound and
the actual integer optimum (found by the CPLEX Mixed-Integer solver).

Table 2 shows the analogous figures for our primal cutting plane algorithm,
but there is an extra column showing the average number of LCIs generated.

Already it is apparent that our proposed algorithm is superior to Young’s
original scheme. However, we found that the algorithm can be improved fur-
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Table 2. Improved version with LCIs

n Opt Proven Aug. Overall primal on-line off-line
Cuts LCIs %GAP %GAP

515 5 2.0 5.2 4.4 0.00 0.00

10 | 5 5 4.8 13.8 8.6 0.00 0.00

D 153 2 7.2 390.6 12.0 5.68 4.12
20 | 5 2 10.0  380.2 28.6 1.38 0.00
2513 2 132 4774 21.2 1.98 0.76
515 5 0.8 5.0 5.0 0.00 0.00

10 |5 5 4.6 10.0 9.0 0.00 0.00

S 1515 4 6.8 113.0 11.6 1.06 0.00
20 | 3 2 94  376.8 24.6 6.68 3.14

25 | 1 1 11.8  400.6 30.6 6.32 2.18

Table 3. Results with augmentation heuristic added

n Opt Proven Aug. Overall primal on-line off-line
Cuts LCIs %GAP  %GAP
515 5 2.0 5.8 4.4 0.00 0.00
10 | 5 5 4.8 13.8 8.6 0.00 0.00
D 1515 4 8.0 1122 16.6 0.68 0.00
20 | S 2 10.0 4222 34.2 1.28 0.00
25 | 4 2 132 466.2 26.6 1.94 0.57
515 5 0.8 5.0 5.0 0.00 0.00
10 |5 5 4.6 10.2 9.0 0.00 0.00
S 1515 4 6.8 93.6 12.4 1.48 0.00
20 | 5 2 102 3432 30.6 2.20 0.00
25 | 4 1 126 3752 40.2 4.00 0.22

ther by the addition of a simple heuristic for augmentation, which is called
whenever we have generated 25 Gomory cuts without success (i.e., without
either augmenting or proving dual feasibility). The heuristic is to iteratively
pick, among all indices j such that x} is fractional, the index which minimizes
|x; — X;|, and to (temporarily) add to the LP the extra constraint x; = X;. The
effect of this is that, next time we pivot from X, we will obtain a different x*
for which x} is integral. Repeating this procedure, we often find that we arrive
at an integral x*, in which case we can augment successfully (and delete all of
the extra constraints). This gave the results shown in Table 3.

In our view these results are very promising. It seems likely that the addi-
tion of branching to this scheme will lead to a viable algorithm for 0-1 pro-
gramming. This will be the subject of a future paper.

5 Discussion and conclusions

We have examined the potential of primal cutting plane algorithms and ar-
gued that, just as dual fractional cutting plane algorithms can be improved by
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using ‘strong’ cuts, cut pools, branching, etc., so can primal algorithms. We
have also provided preliminary computational results to back this claim.

Two other recent papers provide further motivation for working on primal
algorithms. First, in our companion paper, Letchford & Lodi [18], we show
that primal separation is often much easier than standard separation. Amongst
other things, we give primal separation algorithms for the following inequal-
ities which are faster than their corresponding standard equivalents by a
polynomial factor:

— odd cycle inequalities for the stable set problem,

— subtour elimination constraints for the STSP,

— weak odd CAT inequalities for the Asymmetric TSP,

— simple comb inequalities for the STSP (a polynomial-time algorithm for the
standard separation of these inequalities has been recently given by Letch-
ford and Lodi [19]).

A second paper containing relevant results is that of Eisenbrand, Rinaldi &
Ventura [7]. They show that a class of 0-1 ILPs can be solved in polynomial
time if and only if the associated primal separation problem can. Moreover,
they show that primal separation of blossom inequalities for capacitated b-
matching problems is much easier than standard separation, although not
necessarily asymptotically faster.

Acknowledgement. The authors would like to thank both Robert Weismantel and the anonymous
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