Progress Towards Schenkerian Analysis by Computer

Alan Marsden, Lancaster University

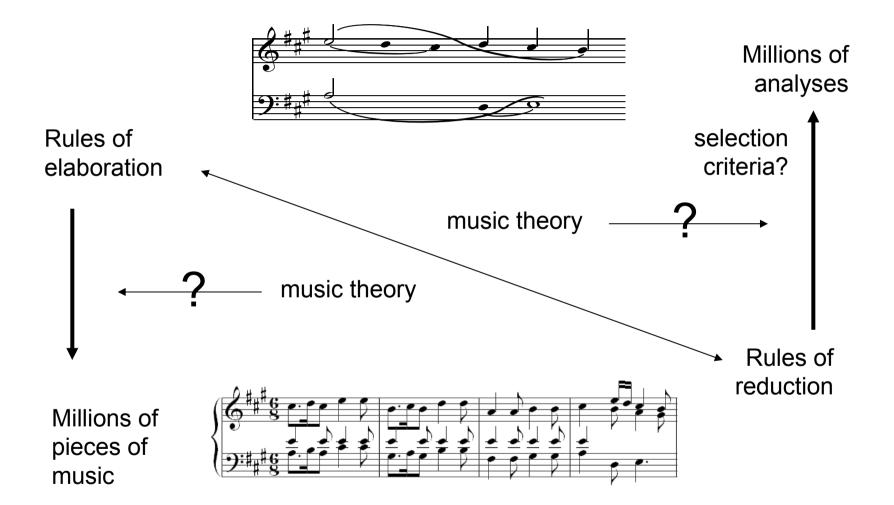
Schenkerian Analysis

Progressively reduces a score, removing less essential features, to reveal the 'background' structure.

Lerdahl & Jackendoff GTTM

F. Lerdahl & R. Jackendoff, *A Generative Theory of Tonal Music* (1983), MIT Press

Benefits

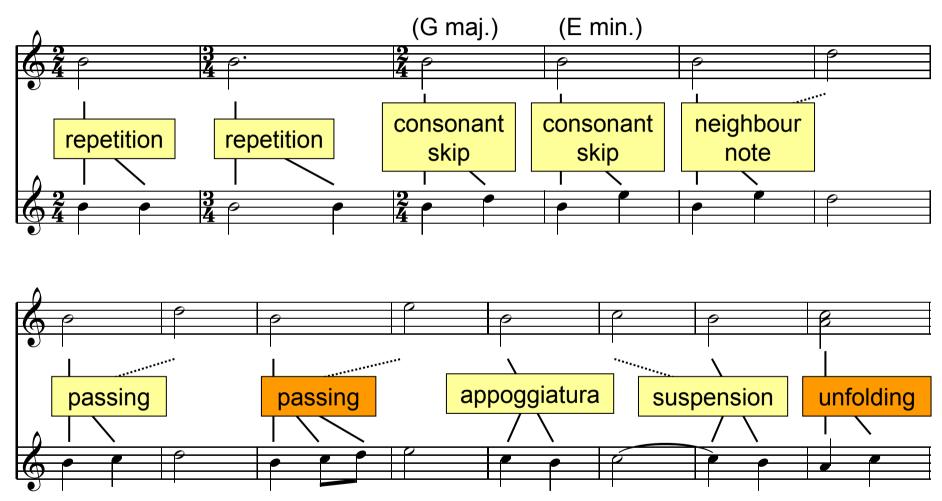

- The most influential and widely adopted theory and method of analysis for tonal music since the last quarter of the 20th c.
- Adumbrates many aspects of musical structure (key, harmony, segmentation, metre).
- Some evidence that it corresponds to perception and cognition of music.
- Based on two centuries of previous music theory.

BUT does remain controversial among musicians, and suffers from obscure arguments about detail.

Previous Work

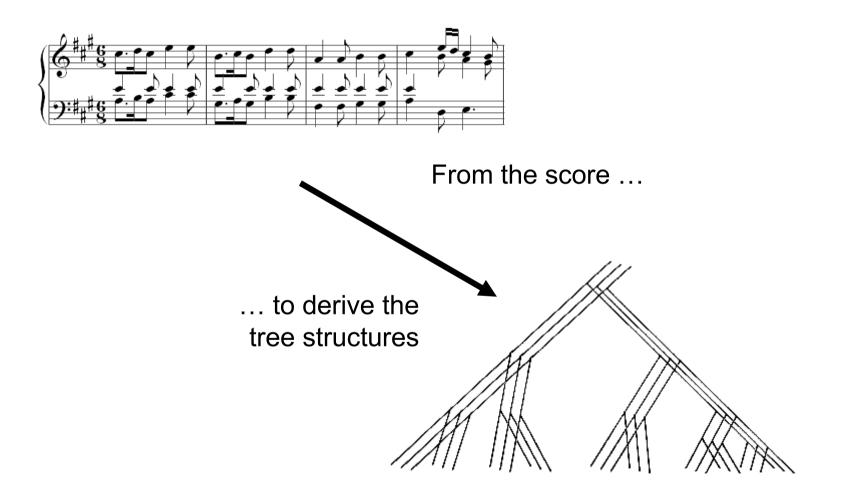
- Kassler (1967, 1975, 1977, 1988)
 - program which successfully analyses three-voice middlegrounds
- Smoliar et al. (1976, 1978, 1980)
 - program capable of verifying an analysis
- Mavromatis & Brown (2004)
 - demonstration of theoretical possibility of Schenkerian analysis by context-free grammar
- Hamanaka, Hirata & Tojo (2005-7)
 - implementation of Lerdahl & Jackendoff reduction with adjustment of parameters (now moving towards automatic parameter-setting)
- Gilbert & Conklin (2007)
 - probabilistic grammar for melodic reduction

The Research Problem

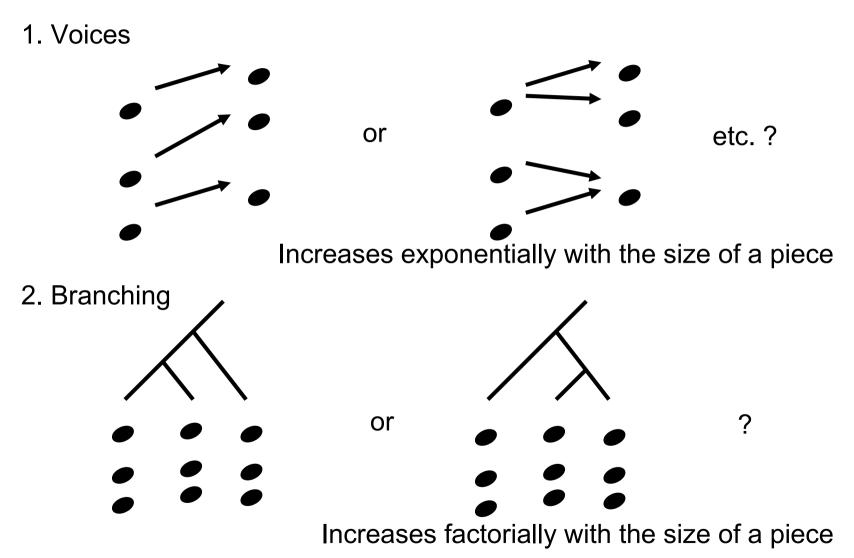

A Framework for Empirical Research

- 1. Formalise rules of reduction.
- 2. Derive all possible reductions of a fragment of music.
- 3. Measure certain characteristics of a sample.
- 4. Measure the same characteristics in 'correct' analyses of the same fragments.
- 5. Compare the distribution of values from the sample to the values from the analyses.
- Possible selection criteria can be derived from characteristics where the distribution of values in 'correct' analyses differ consistently from those in the sample.

1. Formalisation of Reduction

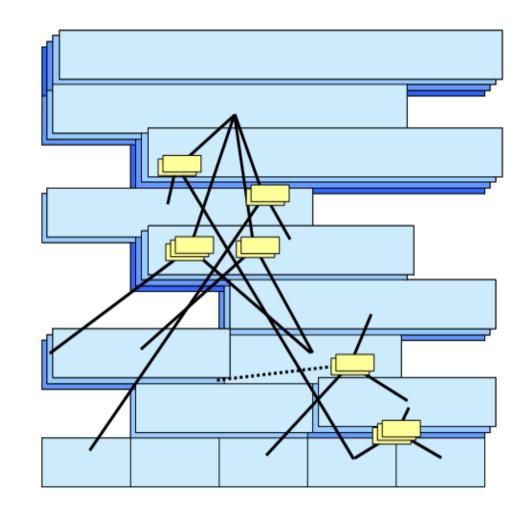

- See Alan Marsden, 'Generative Structural Representation of Tonal Music', *Journal of New Music Research*, 34 (2005), 409-428
- 1. All elaborations are binary.
 - elaborations producing more than one new note accommodated by special intermediate 'notes'
 - analysis is a set of binary trees, each corresponding roughly to a voice of the structure
 - trees can share nodes (one note can be elaborated in more than one way; a note can arise from more than one elaboration)
- 2. Elaborations generate new notes within the same time-span (cf. Lerdahl & Jackendoff, Komar).
- 3. Only certain kinds of elaborations are possible.
- 4. Elaborations have harmonic constraints.
- 5. Some elaborations require specific preceding or following context notes.

Elaborations



Further detail in Marsden, CHum (2001) and JNMR (2005).

2. Derivation of Possible Reductions



Combinatorial Problems

'Reduction Matrix'

- A 'matrix' of local solutions, from which all possible reductions may be derived
- Complexity related to *n*³

'Chart-Parser' Derivation (CYK Algorithm)

- Similar to dynamic programming
- Construct a 3D matrix of valid local solutions.
 - lowest level is all the 'chords' of the surface of the piece:
 1D, n cells
 - higher levels are all possible chords derived by reduction from all possible pairs of chords below:
 - 2D, (*n* − *l*) * *x* cells
 - (*l* = level of reduction, *x* = unknown but limited number of possible local solutions)
- Any valid reduction tree can be derived from the matrix by selecting a top-level cell and then iteratively selecting pairs of possible children.

Example of Reduction Matrix

Row 5 0-5 16 67 E5 67 C5 75 C4 50 A3 25 G3 Row 4 0-4 8 63 E5 38 D5 25 C4 50 B3 25 A3 38 G3 Row 3	1-5 14 67 _E5 67 C5 75 C4 50 A3 25 G3				
Row 3 0-3 7 67 E5 33 D5 33 C4 33 B3 50 A3 Row 2	1-4 6 33 _E5 33 D5 67 B3 22 A3 44 G3	2-5 12 100 C5 75 C4 50 A3 25 G3			
0-2 6 100 E5 50 C4 25 B3 50 A3	1-3 5 50 _E5 30 D5 40 pB3-G3 40 B3 40 A3	2-4 4 43 D5 57 B3 14 A3 57 G3	3-5 10 100 C5 100 C4 50 G3		
0-1 4 100 E5	1-2 4 67 _E5 50 pB3-G3 17 B3 67 A3	2-3 3 50 D5 50 B3 50 A3	3-4 2 100 D5 67 B3 67 G3	4-5 9 100 C5 100 C4 50 G3	
0 2 100 E5 100 C4	1 2 100 <u></u> E5 100 B3	2 2 100 A3	3 1 100 D5 100 B3	4 1 100 _D5 100 G3	5 8 100 C5 100 C4

Example of Selection

Row 5 0-5 16 100 E5 100 C4						
Row 4 0-4 8 100 E5 100 C4	1-5 14					
Row 3 0-3 7	1-4 6	2-5 12				$B \begin{cases} 1B & 4B & 6 \\ \hline \hline$
Row 2 0-2 6 100 E5 100 C4	1-3 5	2-4 4	3-5 10			$\begin{array}{c ccccccccccccccccccccccccccccccccccc$
Row 1 0-1 4	1-2 4 100 _E5 100 pB3-G3	2-3 3	3-4 2 100 D5 100 G3	4-5 9		$ \begin{array}{c} A \\ \hline \begin{array}{c} \hline \\ \hline $
Row 0 0 2 100 E5 100 C4	1 2 100 _E5 100 B3	2 2 100 A3	3 1 100 D5 100 B3	4 1 100 _D5 100 G3	5 8 100 C5 100 C4	Surface

Open University, 18 July 2008

•

Piece

Current Research Materials

Rondo themes from Mozart piano sonatas

5 * 10⁸ solutions, not including the 'correct' one

7 * 10¹⁰ solutions, including the 'correct' one

2 * 10²⁰ solutions, including the 'correct' one

7 * 10²³ solutions, including the 'correct' one

3. Selection and Measurement of a Sample

- Selecting a random sample is not trivial
 - selecting an option at one point in the matrix affects options at other points
 - currently selects top-down giving equal likelihood to each remaining option at each point
- 400 samples from each example which included the 'correct' analysis
 - aiming at 1000 samples per example
- 'Correct' analyses derived from teaching materials
 - original analyses less detailed than computationally derived reductions
 - selection of a close match from the possibilities in the reduction matrix

4. Measurement of Characteristics (1)

- 1. duration ratio of children
- 2. short-long: number of reductions with shorter first child
- **3. syncopations:** reductions which cover a beat stronger than the beat at their start
- **4.** harmonic simplicity: harmonies which are I or $V^{(7)}$
- 5. root position harmonies
- 6. second-inversion harmonies
- **7. harmonic support:** proportion of the 'surface' covered by a reduction which is consonant with the reduction
- **8. pitch support:** proportion of the 'surface' covered by a reduction which contains the pitches of the reduction

4. Measurement of Characteristics (2)

- 9. interval between children
- 10.voice split/join: reductions which share a child
- 11. delay: number of reductions with a rest as first child
- **12. shortening:** number of reductions with a rest as second child
- 13. post-context from parent: number of levels between lowest common ancestor and required context
- 14. post-context from surface: number of levels between surface and required context

5. Comparison of Measures: Rhythm

Measure	Example	Average	Std. dev.	'Correct'	Deviation
duration ratio	Mozart2	1.95	0.230	1.39	-2.41
	Mozart3	2.17	0.258	1.40	-2.98
	Mozart5	2.17	0.348	1.69	-1.38
short-long	Mozart2	0.262	0.0750	0.303	-3.09
	Mozart3	0.270	0.0746	0	-3.62
	Mozart5	0.188	0.0795	0.111	-0.967
syncopation	Mozart2	0.0935	0.0293	0	-3.19
	Mozart3	0.147	0.0414	0	-3.54
	Mozart5	0.0683	0.0357	0.0270	-1.16

Comparison of Measures: Harmony

Measure	Example	Average	Std. dev.	'Correct'	Deviation
harmonic	Mozart2	0.909	0.0606	0.939	0.500
simplicity (I/V)	Mozart3	0.846	0.0313	0.900	1.71
	Mozart5	0.747	0.102	0.833	0.840
root position	Mozart2	0.530	0.149	0.545	0.105
	Mozart3	0.544	0.120	0.600	0.471
	Mozart5	0.510	0.156	0.909	2.56
second inversion	Mozart2	0.250	0.135	0.182	-0.503
	Mozart3	0.243	0.106	0.200	-0.411
	Mozart5	0.257	0.134	0	-1.92

Comparison of Measures: Support & Interval

Measure	Example	Average	Std. dev.	'Correct'	Deviation
harmonic	Mozart2	0.725	0.0328	0.737	0.361
support	Mozart3	0.676	0.0335	0.712	1.08
	Mozart5	0.683	0.0463	0.753	1.52
pitch support	Mozart2	0.818	0.0123	0.821	0.250
	Mozart3	0.558	0.0104	0.559	0.138
	Mozart5	0.337	0.0216	0.313	-1.10
interval	Mozart2	0.545	0.172	0.263	-1.65
	Mozart3	1.45	0.447	1.07	-0.86
	Mozart5	0.734	0.318	0.250	-1.52

Comparison of Measures: Voices

Measure	Example	Average	Std. dev.	'Correct'	Deviation
voice	Mozart2	0.0121	0.0185	0	-0.657
split/join	Mozart3	0.00717	0.0510	0	-0.476
	Mozart5	0.0148	0.0289	0	-0.514
delay	Mozart2	0.0538	0.0412	0	-1.31
	Mozart3	0.121	0.0517	0	-2.34
	Mozart5	0.172	0.0837	0.111	-0.725
shortening	Mozart2	0.0774	0.0440	0.0303	-1.07
	Mozart3	0.208	0.0643	0.1	-1.68
	Mozart5	0.0942	0.0670	0.0556	-0.577

Comparison of Measures: Post-Context

Measure	Example	Average	Std. dev.	'Correct'	Deviation
post-context from parent	Mozart2	0.240	0.211	0	-1.13
	Mozart3	0.312	0.228	0.083	-1.00
	Mozart5	0.350	0.297	0.200	-0.505
post-context from surface	Mozart2	0.420	0.214	1	2.70
	Mozart3	0.213	0.183	0.167	-0.251
	Mozart5	0.470	0.242	0.2	-1.11

6. Possible Criteria

- Prefer reductions with
 - few syncopations
 - few short-long reductions
 - equal durations
 - small intervals
 - no voice splitting/joining
 - few 'delay' and 'shortening' reductions
 - post-contexts close to lowest common parent

Further Work

- Incorporation of the most obvious selection criteria to prune derivation
- Experimentation on search procedures (with Geraint Wiggins)
- Testing for derivation of published analyses
 - Oster archive (Chopin, Beethoven)
 - Das Meisterwerk in der Musik

Further detail at www.lancs.ac.uk/staff/marsdena/research/schenker

Supported by the Arts and Humanities Research Council (AHRC): researchleave award 'Analysing Musical Structure: Harmonic-Contrapuntal Reduction by Computer'