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Preface

Optimal Projections for Clustering (OPC) is an open source MATLAB and Octave library that implements
clustering methods that seek the optimal low dimensional subspace to identify (or separate) clusters. This
is a recognised issue in high-dimensional data clustering [12], but also occurs whenever irrelevant features,
or correlations among subsets of features exist, or when clusters are defined in different subspaces. These
characteristics cause the spatial data structure to become less informative about the underlying clusters. To
correctly identify clusters algorithms need to simultaneously solve two interrelated problems, (i) identify the
subspace in which clusters can be distinguished, and (ii) associate observations to clusters [12].

OPC focuses on methods which seek low dimensional subspaces that are optimal with respect to a given
clustering objective. This distinguishes the methods in this library from generic dimensionality reduction
techniques, which determine the low dimensional embedding by optimising an objective function that is not
related to any clustering criterion [27]. Consequently, although generic dimensionality reduction techniques
have been successfully applied in numerous clustering applications, they are not guaranteed to find a subspace
that preserves (or reveals) the cluster structure. A further limitation of using generic dimensionality reduction
techniques for clustering is that the low dimensional data embedding typically varies substantially across
different methods. This is a problem from a user’s perspective because there is no principled approach to
select one embedding over the others, even if the user knows the type of clusters they are seeking.

Numerous implementations of clustering algorithms and generic dimensionality reduction techniques are
available in the MATLAB programming language. The MATLAB toolbox for dimensionality reduction, is
the most extensive MATLAB toolbox for this purpose that we are aware of. A number of open source
MATLAB implementations of robust PCA (which is not included in the previous toolbox) like fastRPCA,
are also available.

To the best of our knowledge OPC is the only library in the MATLAB programming language that
implements dimensionality reduction methods explicitly designed for clustering. The methods included op-
timise clusterability criteria motivated from k-means, normalised graph cut, spectral, and density clustering.
Partitioning, as well as divisive hierarchical clustering algorithms are provided. To render the algorithms
accessible to non-expert users, all the implemented algorithms require minimal input from the user, and
employ parameter settings recommended in the literature. However, all the parameters of each algorithm
can be modified by specifying optional arguments.

A very appealing characteristic of clustering algorithms that perform dimensionality reduction internally
is that they enable the visualisation of the clustering model. Such visualisations constitute an invaluable
component of the process of validating a clustering model. OPC provides a common interface across algo-
rithms to produce such visualisations. The optimal projection matrix is one of the outputs of all partitioning
algorithms in the library. This matrix jointly with the cluster assignment vector, can be readily used to
visualise the clusters. The divisive hierarchical algorithms return the cluster hierarchy as an object of the
cluster tree, ctree, class. This class enables the visualisation of the binary partition at each node of the
cluster hierarchy (tree). It also enables the modification of the clustering model by pruning subtrees, or
partitioning leaves of the current model. The binary partition at any node of the ctree object can also be
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altered by modifying the arguments of the projection pursuit algorithm used to produce it. An extensive
example of validating and modifying the clustering model using these functionalities is provided in Section 6.

To render OPC extensible, we include an interface that allows the user to create divisive hierarchical
algorithms that have all the aforementioned features by providing as input only a projection pursuit function
for clustering. Section 8 illustrates how to obtain the well known bisecting k-means algorithm [23] through
this approach, as well as how to create a divisive hierarchical version of the LDA-k-means algorithm [3].
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Installation

To install OPC a C and C++ compiler is required. Detailed installation instructions for MATLAB and
Octave are provided in the following sections. OPC depends on the following two open source libraries that
are included in the library:

1. A cluster tree class, called ctree, which is a modification of the tree class by Jean-Yves Tinevez.

2. The improved Fast Gauss Transform [14].

In Octave after each restart you also need to load the statistics and optim packages (see last paragraph of
Section 2.2 for more details). The setpath script also performs this task.

2.1 MATLAB

OPC requires the statistics and optimization MATLAB toolboxes. To use OPC it is also necessary to
compile the C++ FIGtree library [14]. The most recent version (0.9.3) is included in the OPC library in the
directory src/libs/figtree-0.9.3/. For instructions on how to compile the library refer to the README.md
file within this directory, or equivalently to the FIGtree GitHub page. Effectively, the process involves two
steps. First the C++ library needs to be compiled. It is recommended to use the GCC compiler, which is
straightforward to install in Linux and Mac.

$ # Note this is taking place in the command line not within MATLAB or Octave

$ # Assuming OPC_DIR is the path to the directory where OPC was uncompressed

$ cd (OPC_DIR )/src/libs/figtree -0.9.3/

$ make all

In Microsoft Windows GCC is also recommended but there are instructions on how to compile the library
using Microsoft Visual Studio. Moreover, the SourceForge FIGtree page contains releases with Windows
binaries.

After the successful compilation of the C++ library the MATLAB interface to FIGtree needs to be
compiled, as well as two C++ functions that compute one-dimensional Gaussian kernel density estimators and
their derivatives. The script install in the root OPC directory is included to simplify this process. Beware
that this script assumes that the path to the FIGtree library is (OPC DIR)/src/libs/figtree-0.9.3/. If
the FIGtree is in a different location then edit the install.m script to provide the correct path to the
corresponding folder. In MATLAB:

>> cd('(OPC_DIR )/')
>> install
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2.2 GNU Octave

OPC uses object oriented programming and contains classdef classes. These are only supported after the
Octave 4.0 release. OPC is therefore incompatible with previous versions.

OPC requires the statistics package, and the non-linear optimization package, optim. Both packages can
be found at the extra packages for Octave repository. Detailed instructions to install and load extra packages
in Octave are provided in relevant documentation page. Once these are installed they need to be loaded
after every restart of Octave. The setpath script located in the root OPC directory loads these packages
and adds the OPC directory and its subfolders to the Octave search path.

To complete the installation of OPC it is necessary to compile the FIGtree library, and two C++ func-
tions that compute one-dimensional Gaussian kernel density estimators and their derivatives. Refer to the
description of this process in the previous section.

2.3 Documentation

A PDF version of the documentation is provided at this link, as well as in the directory documentation of the
OPC GitHub repository. An HTML version of the documentation is available at http://www.lancaster.

ac.uk/staff/pavlidin/software/opc/documentation/document/onlinedoc.html.
The script file reproduction script.m in the root OPC directory contains all the material to reproduce

every example in this document in MATLAB. To recreate all the figures (in PNG format) uncomment the
lines which call the print function, which follow calls to the plot and nplot functions. Beware that the
new figures will be stored in the documentation/figures directory, overwriting the existing figures there.

2.3.1 Function Reference

A function reference for OPC is available at this link. Contributors, or users that prefer a local copy of
this can use the M2HTML documentation system to automatically generate an HTML function reference
for OPC. Unfortunately this is supported only in MATLAB.

To create this follow the steps below:

1. Download the M2HTML documentation system from: https://www.artefact.tk/software/matlab/
m2html/

Uncompress the zip file in a folder of your choice, e.g. /home/user/Downloads.

2. From the folder documentation contained in the OPC library copy the subfolder
documentation/m2html template/docs

to the templates folder which is included in the M2HTML package:
/home/user/Downloads/m2html/templates.

$ # Note this is the terminal not the MATLAB CLI

$ cp -r (OPC_DIR )/ documentation/m2html_template/docs /home/user/Downloads/m2html/templates/

3. Copy the script m2html.m, which is located in the documentation/m2html template/ OPC folder, to
the main directory of M2HTML: /home/user/Downloads/m2html/.

$ # Note this is the terminal not the MATLAB CLI

$ cp (OPC_DIR )/ documentation/m2html_template/m2html.m /home/user/Downloads/m2html/

4. From MATLAB or Octave, (i) add the M2HTML folder to the path; (ii) ensure the path for the OPC
library is set, and (iii) execute the script create reference:

>> % From root OPC directory: add OPC folders to path (if not already done)

>> setpath

>> % Add m2html folder to path

>> addpath('/home/user/Downloads/m2html ');
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>> % Create HTML function reference

>> create_reference

The HTML function reference is located in the directory documentation/reference. To access it use a
web-browser to open the file index.html located in this directory.

2.3.2 Contributing

The preferred way to contribute to OPC is to fork the main repository on GitHub. Detailed instructions are
available through the online Git documentation.

Please use GitHub issues to file bug reports and feature requests.
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3

Implemented Methods

The OPC library contains implementations of the following clustering algorithms:

1. Principal Direction Divisive Partitioning (PDDP) [2]

2. Density-enhanced Principal Direction Divisive Partitioning (dePDDP) [25]

3. Minimum Density Divisive Clustering (MDDC) [18]

4. Maximum Clusterability Divisive Clustering (MCDC) [6]

5. Linear Discriminant Analysis k-means (LDA-k-means) [3]

6. Dimensionality Reduction for Spectral Clustering (DRSC) [16, 17]

7. Minimum Spectral Connectivity Projection Pursuit (SCPPDC) [7]

8. Minimum Normalised Cut Divisive Clustering (NCUTDC) [5]

9. Bisecting k-means [23] and a projection pursuit version of this algorithm based on LDA-k-means. The
implementation of these algorithms is used as an illustration of how the user can extend the library.

We next provide a brief exposition of the implemented methods. Throughout we assume that the dataset
consists of n vectors in the d–dimensional Euclidean space, X = {xi}ni=1 ⊂ Rd. The rows of the data
matrix, X ∈ Rn×d, correspond to data points. The projection matrix is defined as V ∈ Vq(Rd) = {A ∈
Rd×q |A>A = Iq}, where 1 6 q < d, and Iq is the identity matrix in q dimensions. When there is a single
projection vector we use lower case notation, v, to denote vectors that lie on the d–dimensional unit–sphere,
v ∈ Sd = {x ∈ Rd | ‖x‖2 = 1}.

3.1 Principal Direction Divisive Partitioning and density-enhanced
version

The most widely used approach to combine dimensionality reduction and clustering is to project the d–
dimensional dataset onto the first q principal components. Principal Component Analysis (PCA) can be
considered the most popular projection pursuit method. PCA can be formulated either as maximising
the variance of the projected data, or minimising the squared reconstruction error [10]. PCA is the only
projection pursuit method that has a closed form solution. For a given choice of q, the projection index
is optimised by the q eigenvectors associated with the q largest eigenvalues of the data covariance matrix.
Although there is no guarantee that the subspace spanned by any q < d principal components preserves the
cluster structure, this approach has been found to be effective in a plethora of applications [12].
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PDDP and dePDDP are two divisive clustering algorithms that recursively project (subsets of) the data
onto their first principal component. PDDP bi-partitions the data by splitting at the mean of the projections,
while dePDDP constructs a one-dimensional kernel density estimator (KDE) and splits at the lowest local
minimum. Effectively, both algorithms bi-partition each cluster using a separating hyperplane,

H(v, b) = {x ∈ Rd | v>x = b},

where v is the unit-length vector normal to the separating hyperplane, and b ∈ R is the displacement of the
separating hyperplane from the origin.

3.2 Minimum Density Divisive Clustering

The Minimum Density Divisive Clustering (MDDC) algorithm recursively bi-partitions the data using Min-
imum Density Hyperplanes (MDHs) [18]. An MDH avoids intersecting high density clusters by seeking the
hyperplane that minimises the integral of the empirical probability density function along its surface,

Î(v, b) =

∫
H(v,b)

p̂(x)dx.

If a density estimator that uses isotropic Gaussian kernels is employed,

p̂(x) =
1

n(2πh2)d/2

n∑
i=1

exp

{
−‖x− xi‖

2

2h2

}
,

then Î(v, b) can be estimated through the one-dimensional density estimator,

Î(v, b) =
1

n
√

2πh2

n∑
i=1

exp

{
− (b− v>xi)2

2h2

}
.

The ability to compute Î(v, b) through the above equation enables us to estimate MDHs. The MDH is the
solution to the following optimisation problem,

v? = min
v∈Sd

f(v), (3.1)

f(v) = min
b∈R

{
Î(v, b) + c0 max {0, µv − ασv − b, b− µv − ασv}1+c1

}
. (3.2)

The second term in the last equation, c0 max {0, µv − ασv − b, b− µv − ασv}1+c1 , is a penalty function that
ensures that the optimal MDH is within α standard deviations, σv from the mean of the projected data, µv.
Such a constraint is necessary since it is always possible to obtain hyperplanes with density arbitrarily close
to zero if the hyperplane is sufficiently far from the centre of the data. The terms c0 and c1 are constants
whose values are fixed (see [18]), while α is adaptively set by the projection pursuit algorithm.

The most computationally expensive task in the estimation of MDHs is the minimisation of the one
dimensional kernel density estimator, for each v. This is achieved by first evaluating f(v) on a grid of m
points, to bracket the location of the minimiser, and then applying bisection to compute the minimiser at
the desired accuracy. The Fast Gauss Transform [14] reduces the computational cost of the first step, and by
far most computationally expensive step, from O(mn) to O(m+n). Bisection requires O(− log2 ε) iterations
to locate the minimiser with accuracy ε.

3.3 Maximum Clusterability Divisive Clustering

Variance ratio clusterability [32] is a measure of strength or conclusiveness of the cluster structure in a
dataset. Let {Ci}ki=1 denote a k-way partition of the data set X , and µ(·) the function that takes as input
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a set of data points and returns their mean vector. Then the variance ratio clusterability of X is defined as,

max
C1,...,Ck

∑k
j=1 |Cj | ‖µ(X )− µ(Cj)‖2∑k
j=1

∑
xi∈Cj

‖xi − µ(Cj)‖2
,

such that: X =

k⋃
i=1

Ci, and Ci ∩ Cj = ∅,∀i 6= j.

It is easy to show that the partition that maximises the variance ratio clusterability also minimises the
k-means objective function,

min
C1,...,Ck

n∑
i=1

min
j=1,...,k

‖xi − µ(Cj)‖22,

such that: X =

k⋃
i=1

Ci, and Ci ∩ Cj = ∅,∀i 6= j.

The Maximum Clusterability Divisive Clustering (MCDC) [6] algorithm recursively bi-partitions the data
by identifying the unit-length vector that maximises the variance ratio clusterability index of the projected
data. The resulting hyperplane separators are called Maximum Clusterability Hyperplanes (MCHs). For
any C ( X the binary partition of X is given by {C,X \ C}. Let Σ the data covariance matrix, Σ =
n−1

∑n
i=1(xi − µ)(xi − µ)>. Then the projection index for a given v is given by,

f(v) = max
C⊂X

|C|
(
v>(µ(C)− µ(X ))

)2
+ (n− |C|)

(
v>(µ(X \ C)− µ(X ))

)2
n

n−1v
>Σv +

∑
xi∈C (v>(xi − µ(C)))

2
+
∑

xi∈X\C (v>(xi − µ(X \ C))
2 .

For the special case of one dimensional data it is possible to identify the set C? that optimises the variance
ratio clusterability in O(n log n) time. This is feasible because in this case the set C? satisfies, C? = {x ∈
X | v>x < b} for some b ∈ R.

3.4 Linear Discriminant Analysis k–Means

The LDA-k-means algorithm [3] exploits the connection between Linear Discriminant Analysis (LDA) and
k-means clustering. To see this we first need to introduce some notation. Without loss of generality assume
that the data are centred at zero. Define the total scatter, the between-cluster scatter, and the within-cluster
scatter matrices as,

St =

n∑
i=1

xix
>
i ,

Sb =

k∑
j=1

|Cj |µ(Cj)µ(Cj)
>,

Sw =

k∑
j=1

∑
xi∈Cj

(xi − µ(Cj))(xi − µ(Cj))
>,

respectively. Then the k-means objective function can be expressed as,

min
C1,...,Ck

k∑
j=1

∑
xi∈Cj

‖xi − µ(Cj)‖2 = min
C1,...,Ck

tr (Sw) , (3.3)
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where tr (·) is the trace operator. Since St = Sw +Sb, minimising tr (Sw) is equivalent to maximising tr (Sb).
In LDA the cluster assignment (class labels) are assumed known and the algorithm seeks the orthonormal
matrix V ∈ Vk−1(Rd) that,

max
V

tr
(
V >SbV

)
tr (V >SwV )

, s.t. V >V = Ik−1. (3.4)

The fact that both LDA and k-means aim to minimise the within class (cluster) scatter and maximise the
between class scatter motivates the LDA-k-means algorithm. LDA-k-means is a two step iterative algorithm.
In the first step the (k − 1)-dimensional linear subspace in which the data are projected is fixed, and the
objective is to identify the cluster assignment that maximises the ratio of the between class scatter to the
within class scatter of the projected data:

max
C1,...,Ck

tr
(
V >SbV

)
tr (V >SwV )

= max
C1,...,Ck

tr
(
V >(St − Sw)V

)
tr (V >SwV )

= max
C1,...,Ck

tr
(
V >StV

)
tr (V >SwV )

− 1⇒

min
C1,...,Ck

tr
(
V >SwV

)
= min

C1,...,Ck

k∑
j=1

∑
xi∈Cj

‖V >xi − V >µ(Cj)‖2

The k-means algorithm is applied to solve this problem. In the second step the cluster (class) assignment
is considered fixed and the objective is to identify the orthonormal matrix V that maximises the objective
function. LDA is used to solve this problem. The only element of the algorithm that remains unspecified is
the initial choice of V . In [3] it is recommended to initialise V to the first (k − 1) principal components.

The convergence of LDA-k-means algorithm is not discussed in [3]. Since no implementation of k–means
is guaranteed to identify the globally optimal solution to the problem in Eq. (3.3) the two-step procedure in
LDA-k-means can fail to converge, or even to to monotonically improve the objective function, Eq. (3.4). It is
important to note that the are multiple formulations of the LDA problem. We make use of the formulation
which maximises the eigenvalues of the matrix S−1t Sb. Although this formulation is not guaranteed to
converge, it benefits substantially from the available closed form for the LDA step.

3.5 Minimum Normalised Cut Divisive Clustering

The approach to clustering based on graph theory associates clusters with strongly connected components
of a graph, G = (V,E). The set of vertices, V , corresponds to the data set, V = X , while edge weights
represent pairwise similarities between them [28]. The graph, G, can be equivalently represented through an
adjacency, or similarity, matrix, A ∈ Rn×n, defined as,

Aij = k(xi, xj), (3.5)

where k(·) is a kernel function (with the Gaussian kernel being the most frequent choice). The degree of a
vertex is defined as,

di =

N∑
j=1

Aij .

For any subset C ⊂ X, the volume of C is defined as:

vol(C) =
∑
xi∈C

di.

A graph cut is a partition of the vertices of a graph into k pairwise disjoint components. The minimum
normalised cut of a graph is the solution to the following optimisation problem,

min
C1,...,Ck

NCut(C1, . . . , Ck) = min

k∑
j=1

cut (Cj ,X \ Cj)

vol(Cj)
, (3.6)
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where the cut of binary partition is defined as,

cut (Cj ,X \ Cj) =
1

2

∑
j: xj∈Cj

∑
i: xi∈X\Cj

Aji

Dividing the value of the cut for each binary partition with the cluster volume (normalisation) discourages
the optimal solution from containing partitions (clusters) with very few vertices (data points), which is
undesirable from a clustering perspective. However, it also renders the problem NP-hard.

The minimum normalised cut divisive clustering (NCUTDC) [5] is an algorithm that recursively bi-
partitions the data using hyperplanes. NCUTDC relies on the fact that if the data points are projected onto
a vector, v ∈ Sd, and the Laplace kernel is used to compute the pairwise similarities,

Aij = exp
(
−
∣∣v>xi − v>xj∣∣ /σ) ,

then the hyperplane that optimises the minimum normalised cut criterion (which is equivalent to a binary
partition of the form, X = {C?,X \ C?} where C? = {x ∈ X | v>x < b} for some b ∈ R) can be computed
in log-linear time. The projection index for this method is:

f(v) = min
b∈R

NCut
(
Cv,b, C

c
v,b

)
, where,

Cv,b = {v>x | v>x < b, x ∈ X},
Cc

v,b = {v>x | v>x > b, x ∈ X},

It is important to stress that because the projection index underlying NCUTDC uses similarities computed
on the projected data, this algorithm cannot operate on an arbitrary graph or similarity matrix.

3.6 Dimensionality Reduction for Spectral Clustering

Spectral clustering is a family of methods that solve a continuous relaxation of the original NP-hard graph
cut problem in (3.6) [4, 21, 28]. To describe the continuous relaxation of the normalised graph cut problem
it is first necessary to define the graph Laplacian matrix:

Ln = In −D−1/2AD−1/2,

where A is the adjacency matrix defined in Eq. (3.5), D = diag(d1, . . . , dn) is the degree matrix, and In is
the identity matrix in n dimensions. For a given k-way partition of X into {C1, . . . , Ck}, define the (n× k)
matrix T as:

Tij =

{ √
di/vol(Cj), if xi ∈ Cj ,

0, otherwise.
(3.7)

The minimum normalised cut problem can be formulated as [21]:

min
C1,...,Ck

tr
(
T>LnT

)
, subject to: T>T = Ik, and T as defined as in Eq. (3.7),

or equivalently [15]:

max
C1,...,Ck

tr
(
T>D−1/2AD−1/2T

)
subject to: T>T = Ik, and T as defined as in Eq. (3.7).

The continuous relaxation which gives rise to spectral clustering allows T to be any orthonormal matrix
in Rn×k [28]. The normalised cut spectral clustering problem is thus expressed as [21]:

min
T∈Rn×k

tr
(
T>LnT

)
, subject to: T>T = Ik.
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The solution to the above optimisation problem is the matrix T whose columns are the k eigenvectors of Ln

that correspond to the k smallest eigenvalues (or equivalently the k eigenvectors that correspond to the
k largest eigenvalues of D−1/2AD−1/2).

The Dimension Reduction Spectral Clustering (DRSC) [16] algorithm aims to identify the projection
matrix, V , that maximises the sum of the k largest eigenvalues of the D−1/2AD−1/2, where both the
similarity and degree matrices, A and D respectively, are computed from the projected data, XV ∈ Rn×q.
The sum of the k largest eigenvalues of D−1/2AD−1/2 is a measure of spectral connectivity, with larger
values indicating more separable clusters.

max
U,V

trace(U>D−1/2AD−1/2U), (3.8)

s.t. U>U = I, (3.9)

Aij = k(‖V >xi − V >xj‖), (3.10)

V >V = I. (3.11)

The above formulation is equivalent to minimising the sum of the k smallest eigenvalues of Ln. It is clear
that for a given V the matrix U that maximises the trace in (3.8) has columns given by the k eigenvectors
associated with the k largest eigenvalues of D−1/2AD−1/2 (or equivalently the k smallest eigenvalues of Ln).

DRSC employs a two-stage algorithm to solve the above optimisation problem. In the first stage V is
fixed and the k eigenvectors of D−1/2AD−1/2 are computed to obtain U . In the second stage, U is fixed and
for each column of V gradient ascent is performed to maximise the trace in (3.8). The projection index for
this method can therefore be written as:

f(V ) =

n∑
n−k+1

λj

(
D−1/2AD−1/2

)
=

k∑
j=1

λj (Ln) ,

s.t. Aij = k(‖V >xi − V >xj‖),
V >V = I,

where λj(·) denotes the j-th smallest eigenvalue of its matrix argument. However, in the computation of the
gradient of f(V ) in the second stage of the algorithm, the degree matrix D is considered fixed, and therefore
the influence of V on the degrees of the vertices is ignored. The gradient estimated by assuming D is fixed
is not the gradient of the overall objective function. There is furthermore no guarantee that this direction
estimated through this approach is even an ascent direction for the objective function. This can cause DRSC
to fail to converge.

3.7 Spectral Connectivity Projection Pursuit Divisive Clustering

Spectral Connectivity Projection Pursuit Divisive Clustering (SCPPDC) [7] recursively bi-partitions the
data by projecting onto the linear subspace that minimises the second smallest eigenvalue of the normalised
graph Laplacian, Ln. In more detail, for each projection matrix, V , the data are first projected onto V , and
then the similarity matrix, A, the degree matrix, D, and the normalised graph Laplacian, Ln, are computed
from the projected data. The projection index employed by this method is the value of the second smallest
eigenvalue of Ln(V ):

f(V ) = λ2 (Ln(V )) + ωV >V,

where the second term, ωV >V , with ω > 1, is a penalty function included to ensure that the columns of V
are orthogonal. SCPPDC therefore employs the same objective function as DRSC for the case when k =
2. However, unlike DRSC, the projection pursuit algorithm employed by SCPPDC is globally convergent
because the algorithm uses the gradient of the overall objective function. Furthermore in each gradient
descent step SCPPDC updates the entire projection matrix, rather than optimising each column of V
separately as in DRSC.
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3.8 Bisecting k–means

Bisecting k-means [23] is a well known divisive clustering algorithm originally proposed for document clus-
tering, that recursively applies 2-means. Since 2-means can be viewed as separating the clusters by first
projecting the data onto the vector connecting the two centroids and then assigning observations to clusters
based on their location relative to the mid-point between the two centroids, this algorithm can be considered
as performing dimensionality reduction.

This algorithm is included in the library as an example of how a user can extend the functionality of the
library by specifying a function that performs projection pursuit for clustering (see Section 8). A projection
pursuit version of bisection k-means based on the LDA-k-means algorithm is also discussed in Section 8.
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4

General Information

The algorithms in OPC are designed to require minimum input from the user, so that non-expert users can
directly apply the implemented methods. However all the parameters of each algorithm can be controlled by
specifying the optional parameters through name, value pairs. All clustering algorithms (except drsc) require
only the specification of the data matrix and the number of clusters. (drsc also requires the specification
of the scaling parameter of the Gaussian kernel used to compute similarities, because the cross–validation
approach recommended in [16] is computationally very expensive.)
Complete documentation for each function is available using help, or through the HTML function reference
(see Section 2.3.1).

Output Arguments

The partitioning algorithms, ldakmeans and drsc, return as the first three output arguments:

1. idx: A vector of cluster assignments, idx ∈ {1, . . . , k}n

2. V: The projection matrix

3. fval: The value of the projection index at termination

Both ldakmeans and drsc return additional output arguments that are specific to each algorithm.
All divisive clustering algorithms in OPC return the following two output arguments:

1. idx: A vector of cluster assignments, idx ∈ {1, . . . , k}n

2. t: A ctree object that represents the cluster hierarchy in the form of a binary tree

Cluster Hierarchy class ctree

The class ctree implements a generic interface to interact with cluster hierarchies that enables the visuali-
sation, and modification of the hierarchy. The properties of the ctree are:

1. Node: A cell array each element of which stores a binary separator (node) of the cluster hierarchy.
Different clustering algorithms can return objects of different classes to represent the binary separator.

2. Parent: A vector containing the index of the parent of each node. In particular, if j = Parent(i)

then Node{j} is the parent of Node{i}.

3. method: String specifying the clustering algorithm used to create the ctree object.

4. cluster: A vector containing the cluster assignment from this clustering model.

5. data: The data matrix on which the clustering model has been estimated
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6. params: A structured array containing all the parameters employed by the algorithm.

The first two properties are necessary to describe a cluster hierarchy, while the cluster assignment,
cluster is the main output from any clustering algorithm. The last two properties data and params are
useful to visualise and modify the clustering model.

The main methods for the ctree class are:

1. get(id): Returns the binary separator at Node{id}. The structure of these will be discussed next.

2. findleaves(): Returns the indices of the leaves of the ctree object (that is the locations in the Node

cell array). By construction the leaves correspond to the final clusters.

3. nnodes(): Returns the number of nodes in the tree.

4. depth(): Returns the depth of a tree.

5. perf(labels): This function takes as input the actual cluster assignment and computes the quality of
the binary partition at each node of the ctree object. For internal nodes quality is measured in terms
of the success ratio [18], while on leaves it is measured in terms of purity [35]. The function returns a
new ctree object.

6. plot(labels,colours): This function produces a visualisation of the entire cluster hierarchy. The
user can provide as optional input the actual cluster assignment, labels. In this case the observations
in the figure produced are coloured according to the actual cluster membership. The user can also
determine the colour used for each cluster, by setting the last optional argument colours. (colours
must be a k×3 matrix specifying an RGB triplet for each one of the k clusters.)

7. nplot(id, labels,colours): This function produces a visualisation of the binary separator in Node{id}.
The interpretation of the optional arguments, labels and colours is the same as for the plot() func-
tion described above.

8. prune(id): Prunes the subtree rooted at Node{id}. (After this operation Node{id} is a leaf node.)
The function returns a new ctree object.

9. split(id,varargin): Splits a leaf node of the tree using the algorithm used to originally create
this ctree object with the same parameter settings. The user can modify any of the settings of the
clustering algorithm by specifying the optional arguments. The syntax is identical to that used by the
divisive algorithm used to create the specific ctree object initially. The function returns a new ctree

object.

The last two functions, prune and split are extensively discussed in the section on model validation and
modification (Section 6). Visualisation of clustering models obtained by different algorithms are discussed in
almost every example in Section 5. We next describe the objects that describe binary separators (elements
of the Node cell array in the ctree class.

Binary separators

Different clustering algorithms produce objects of different classes to describe the binary separator employed.
The properties discussed below are shared by all classes of binary separators in OPC, and suffice to understand
how to extract all the meaningful information from such objects.

1. v: Stores the optimal projection matrix/ vector. The data (subset) is first projected onto v and then
bi-partitioned.

2. fval: Value of the projection index for associated projection pursuit algorithm. For instance for an
MDH the projection index is the value of the density on the optimal split point. For NCUTDC fval

is the value of the minimum normalised cut. If fval is ±∞ this signifies that the projection pursuit
algorithm has failed to identify a valid separator for this dataset (see examples in Section 7.1).
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3. params: A structured array containing all the parameter values for the projection pursuit algorithm
employed to estimate this binary separator.

4. idx: A vector containing the row-numbers (indices) of the observations allocated to this binary separa-
tor in the ctree object. Observations allocated to the left child have a negative sign while observations
allocated to the right child have a positive sign.

5. tree params: A structured array containing information that is only used when displaying a ctree

object on the terminal.

In the next code snippet we provide a very simple example of how to extract information from ctree object,
making use of all the above information. We first compute a cluster hierarchy with PDDP. (Each algorithm
will be discussed in much greater detail in the next section.)

>> % load an example dataset

>> load('datasets/optidigits.mat');
>> % Estimate a divisive hierarchical model using PDDP

>> [idx ,t] = pddp(X ,10);

>> % Produce visualisation (output not shown presently)

>> plot(t);

>>

>> % Get separator at left child of root node

>> node2 = t.get (2);

>> % Identify which observations were allocated Node 2

>> obs = abs(node2.idx);

>> % Identify how many observations were allocated to Node 2

>> length(node2.idx);

>> % Projection matrix for this node (1st PC for this data subset)

>> node2.v

>> % Value of projection index: PDDP uses total_scatter by default

>> node2.fval

Overview of Main Optional Arguments

The following list of optional input arguments is not exhaustive but is meant to illustrate the main parameters
that are common across most of algorithms. For a comprehensive list of all the optional arguments for each
algorithm use help from the command line interface, or refer to the HTML function reference.

verb All algorithms (except gppdc) accept the optional input argument verb. If verb is non-zero then
progress information is displayed during the clustering process. Algorithms that perform projection pursuit
illustrate a two-dimensional visualisation of the current candidate solution at each step. This slows down
the progress of the algorithm considerably, especially for divisive clustering algorithms, and especially on
Octave (the MATLAB pca function is much faster than the Octave princomp function). On the other hand
such visualisation enable the user to obtain important insights as to whether or not the algorithm locates
meaningful partitions. We therefore recommend setting verb=0 (which is the default) when estimating a
cluster hierarchy, and enabling this option when more insight is required for particular splits in the tree (see
Section 6).

labels, colours The labels optional argument allows the user to define the actual cluster assignment.
This information is used only to assess performance and to improve the visualisation (see verb option above),
by assigning colours to observations based on the actual cluster. The argument colours allows the user to
specify the colour used to display observations from each cluster. These two options are very useful when
performing exploratory data analysis.
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split index This optional argument is relevant for divisive algorithms only. It must be set to a handle
associated with a function that takes three inputs:

1. v: the currently optimal projection matrix/ vector,

2. X: a data matrix containing the observations from the cluster that is currently split,

3. par: a structured array that contains all the parameters of the algorithm,

and returns the value of a splitting criterion. At each step all divisive clustering algorithms split the current
cluster that has the highest split index value. OPC functions that can be used as split indices are:

1. reldepth: Relative depth of separating hyperplane [18].

2. total scatter: Total scatter [2].

v0 This optional argument determines the initial projection matrix used to perform projection pursuit. For
divisive clustering algorithms it must defined as a handle associated with a function that takes two inputs:

1. X: a data matrix containing the observations from the cluster that is currently split,

2. par: a structured array that contains all the parameters of the algorithm,

and returns the value a projection matrix/ vector. OPC functions that can be used as to set the initial
projection matrix/ vector are:

1. pcacomp: Returns principal component vectors in the order specified by the user.

2. mc v0: Returns vector connecting centroids of 2-means algorithm.

For partitioning algorithms, like drsc, and for algorithms that estimate a single separating hyperplane, like
mdh, mch and ncuth, v0 can be defined as fixed projection matrix/ vector.

minsize Most algorithms enable the user to specify the minimum number of observations in a cluster.

maxit, ftol Algorithms that use numerical methods to identify the optimal projection matrix accept as
arguments maxit: the maximum number of iterations, and ftol which specifies the function tolerance (that
is the minimum change in the value of the objective function value in two consecutive iterations, required to
allow the numerical algorithm to continue).
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5

Using OPC

In this section we present examples of using the algorithms implemented in OPC. Our aim is to illustrate
not only the syntax and the main options for each algorithm, but also to highlight how a user can obtain
insights about the clustering models produced.

We use the optical recognition of handwritten digits (optidigits) dataset from the UCI repository [13].
This dataset is included in the library and combines the training and test datasets specified in UCI. Ob-
servations correspond to vectorised images of handwritten digits 0–9. The images have been compressed to
8×8 pixels resulting in a 64 dimensional dataset. The data are preprocessed by removing two features which
have the same value for all observations, and standardising the remaining features. The resulting dataset
consists of 5620 data points in 62 dimensions. The data matrix and the true cluster assignments are stored
in optidigits.mat.

>> % Load optiditigs dataset: X := data matrix , labels := true cluster assignment

>> load('datasets/optidigits.mat');

5.1 Clustering without Dimensionality Reduction

We first apply k-means and spectral clustering to the full dimensional data. We use the built-in kmeans

function in MATLAB and Octave, and the OPC function spclust that implements the spectral clustering
algorithm of Ng. et al. [15]. The function spclust by default performs spectral clustering using the Gaussian
kernel to estimate the similarity (kernel) matrix. If the scale parameter is not specified then spclust uses the
local scaling rule recommended in [31]. We have found that this rule is effective in a plethora of applications
and hence incorporate it as the default option in spclust. (MATLAB code for the complete self–tuning
spectral clustering algorithm [31], which also estimates the number of clusters, can be found here.)

Note that the default initialisation of kmeans in both MATLAB and Octave is through the k-means++
algorithm [1], and therefore the output of the kmeans function is not deterministic. This also affects spectral
clustering because the final cluster assignment is performed through kmeans. To ensure that results are
reproducible we set the random number seed. All the results reported in this document were obtained on
MATLAB 2018a.

>> % set random number seed to ensure reproducibility (MATLAB only)

>> % in Octave use rand('seed ',x) and randn('seed ',x)
>> rng (987)

>> % k-means clustering

>> km = kmeans(X,10);

>> % Spectral clustering

>> % (In Octave the pdist function can fail for this dataset size)

>> sc = spclust(X,10);
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5.1.1 Assessing Clustering Performance

The cluster performance function implements four well-established external cluster evaluation measures:
Purity [35], Normalised Mutual Information [24], adjusted Rand index [8], and V -measure [19].

>> % Evaluate cluster performance

>> % (performance will vary on consecutive kmeans executions due to

>> % random initialisation. Performance is reported for illustration)

>> cluster_performance(km , labels)

ans =

struct with fields:

Purity: 0.4683

NMI: 0.5145

AdjRand: 0.3371

Vmeasure: 0.5101

>> cluster_performance(sc , labels)

ans =

struct with fields:

Purity: 0.6521

NMI: 0.6191

AdjRand: 0.4817

Vmeasure: 0.6189

5.2 Dimensionality Reduction as pre-processing step prior to Clus-
tering

The most common approach to handle datasets containing irrelevant or correlated features is to first perform
dimensionality reduction, and then apply a clustering algorithm. Although this approach has frequently
produced satisfactory results, there is no guarantee that this will be the case as highlighted in the influential
review paper on high–dimensional clustering [12]. The dimensionality reduction MATLAB toolbox contains
a large number of generic dimensionality reduction methods. At present we will use PCA, which is most
widely used in practice and for which a built-in implementation is available in both MATLAB and Octave.
The function pcacomp in OPC takes as input a data matrix and a vector of integers that specifies which
principal components should be returned. The first output argument of pcacomp is a matrix whose columns
are the principal component vectors in the order these are specified in the second argument to the function.
We first choose to project the data onto the first 9 principal components. This choice is made because for a
k-means clustering (k − 1) dimensions are sufficient.

>> % Estimate the first 9 PCs

>> V = pcacomp(X ,[1:9]);

>> % Perform clustering

>> kmPCA = kmeans(X*V,10);

>>

>> % (On this lower dimensional dataset the pdist function in

>> % Octave can work even if it failed on the original dataset)

>> scPCA = spclust(X*V,10);

>> % Assess performance

>> cluster_performance(kmPCA , labels)

ans =

struct with fields:
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Purity: 0.6842

NMI: 0.6444

AdjRand: 0.5201

Vmeasure: 0.6442

>> cluster_performance(scPCA , labels)

ans =

struct with fields:

Purity: 0.6381

NMI: 0.6472

AdjRand: 0.4695

Vmeasure: 0.6466

Another common approach is to use the first q principal components that retain a pre–specified proportion
of the variance. Different values for this proportion have been suggested. In the present dataset preserving a
proportion very close to one requires retaining all 62 dimensions. We therefore use a threshold of 0.9 which
is attained by projecting onto the first 33 principal components.

>> % Estimate the first 33 PCs

>> V = pcacomp(X ,[1:33]);

>> % Perform clustering

>> kmPCA = kmeans(X*V,10);

>> scPCA = spclust(X*V,10);

>> % Assess performance

>> cluster_performance(kmPCA , labels)

ans =

struct with fields:

Purity: 0.6295

NMI: 0.6106

AdjRand: 0.4566

Vmeasure: 0.6100

>> cluster_performance(scPCA , labels)

ans =

struct with fields:

Purity: 0.6290

NMI: 0.6307

AdjRand: 0.4442

Vmeasure: 0.6289

Projecting onto the first k−1 principal components allows k-means to substantially improve its performance
with respect to all evaluation measures, but for spectral clustering some performance measures improve while
others do not. If the dimensionality of the projection subspace is instead 33 then k-means still performs
better than on the full dimensional data but worse than when q was set to nine. The performance of spectral
clustering is also worse when 33 rather than 9 principal components are used.

5.3 Linear Discriminant Analysis k–means

The first algorithm we discuss in which dimensionality reduction is an integral part of the clustering process
is LDA–k–means [3]. The function ldakmeans implements this algorithm. As discussed in Section 3.4,
LDA–k–means is a partitioning algorithm that aims to identify the optimal low-dimensional projection, and
cluster assignment through a two-stage iterative algorithm. In the first stage, the projection matrix is fixed
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and k-means is applied on the projected data to identify the optimal cluster/ class assignment. In the second
stage, the labels are treated as given and Linear Discriminant Analysis (LDA) is used to identify the optimal
linear subspace. The inability to identify the global optimum of the k-means objective function, and the
variability due to the random initialisation of the centroids in the kmeans function, cause the algorithm
to not be guaranteed to converge, or even to improve the value of the objective function over consecutive
iterations.

We apply ldakmeans twice to illustrate this point. The first execution yields a very good performance
on this dataset. The performance is substantially lower in the second application of the algorithm. Enabling
visualisation also illustrates that the algorithm does not monotonically improve the projection index, which
is defined as the ratio of the trace of the between-cluster and within-cluster scatter matrices.

>> % Setting verb=1 enables visualisation

>> [ldakm ,U,fval] = ldakmeans(X,10,'verb' ,1);
>> cluster_performance(ldakm , labels)

ans =

struct with fields:

Purity: 0.8096

NMI: 0.7808

AdjRand: 0.6772

Vmeasure: 0.7807

>> % Visualisation using actual labels

>> [ldakm ,U,fval] = ldakmeans(X,10,'labels ',labels ,'verb' ,1);
>> cluster_performance(ldakm , labels)

ans =

struct with fields:

Purity: 0.6916

NMI: 0.6663

AdjRand: 0.5509

Vmeasure: 0.6661

5.4 Divisive Clustering based on Principal Components

We next proceed to discuss divisive hierarchical clustering algorithms. In this section we discuss PDDP and
dePDDP; two methods that recursively project the data (subset) onto their first principal component, and
split at a point along the projection vector. Note that this approach enables these algorithms to identify
clusters defined in different subspaces. This is not feasible in the standard approach of first performing
dimensionality reduction, and then clustering.

5.4.1 Principal Direction Divisive Partitioning

The pddp function implements the PDDP algorithm.

>> % Perform PDDP with default settings

>> [idx1 ,t1] = pddp(X,10);

Clusters: 1 2 3 4 5 6 7 8 9 10

>> % Evaluate cluster performance

>> cluster_performance(idx1 , labels)

ans =

struct with fields:

Purity: 0.5171
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(a) Labels unspecified (b) Labels specified

Figure 5.1: Visualisation of clustering model in a ctree object without and with the specification of the true
cluster labels (left and right respectively). In the latter case the default, hsv, MATLAB colormap is used.

NMI: 0.4324

AdjRand: 0.2842

Vmeasure: 0.4324

The second output argument is an object of the ctree class that stores the cluster hierarchy. The predicted
clusters can also be inferred from this ctree object using the method tree2clusters:

>> sum(idx1 ~= tree2clusters(t1))

ans =

0

5.4.2 Visualisation of Clustering Models in OPC

A very appealing characteristic of OPC is that it enables the user to visualise the clustering model produced
by any divisive hierarchical algorithm in the library. The user can plot both the entire hierarchy, or specific
nodes. The plot function in the ctree class produces visualisations of the entire hierarchical model:

>> % Plot cluster hierarchy

>> plot(t1);

>> % The optional argument 'labels ' causes observations

>> % to be coloured according to the actual cluster label

>> plot(t1 ,labels );

>> % The user can further specify which colours will be used for each cluster

>> plot(t1 ,labels , lines (10));

The output of the first two calls to the plot() function is illustrated in Figure 5.1. Each scatterplot in
the figure depicts the data subset assigned to the corresponding node in the hierarchy projected into a
two-dimensional subspace. In the case of algorithms that utilise one-dimensional projections the horizontal
axis corresponds to the optimal projection vector, v?, while the vertical axis is the direction of maximum
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variance orthogonal to v?. If the projection matrix contains two or more columns the plot function selects
the two vectors along which the projected data exhibit the highest variance. In the present case, because
PDDP projects each data subset onto the first principal component the vertical axis corresponds to the
second principal component.

If the optional argument labels is not specified, red and blue colours are used to indicate the observations
assigned to the left and right child of the node, as shown in the left sub-figure in Figure 5.1. If this argument
is specified then the cluster label determines the colour of each point in the figure. The user can also define
the colour for each cluster, by specifying a (k × 3) matrix, whose i–th row is the RGB triplet used to colour
the i–th cluster.

Clearly the visualisation which uses the actual cluster labels to colour observations is very informative
about how the actual clusters are partitioned at each level of the hierarchy. However, what is more important
for unsupervised learning is that the visualisation of the cluster hierarchy without using the actual labels
also allows the user to draw valuable insights about the validity of the binary partitions at each node. Such
insights are crucial in the process of validating a clustering model, unless very strong assumptions about the
types of distributions that give rise to the data are imposed. This issue will be explored further in Section 6,
but for now we provide a few examples of insights that can be obtained from Figure 5.1:

1. The splits at depth 0, 1 and 2 of the cluster hierarchy appear to be intersecting dense regions. This
could be an artefact of the visualisation because plot allocates the same space for the visualisation of
each binary partition, and the number of observations allocated to these nodes is higher, compared to
nodes closer to the leaves. Therefore closer inspection is required.

2. The leaf nodes (clusters) 11 and 18 appear to contain at least two dense clusters that are well separated
by a sparse region. In leaf 11 the first principal component appears to be a direction which allows the
separation of the two dense clusters. For the cluster at node 18 this does not appear to be the case.

3. The split at node 8 appears to separate a part of a large cluster and a few outliers from the rest of the
data. In its right child, leaf node 17, the first principal component is largely affected by the presence
of an outlier.

4. The principal component vector (direction of maximum variance) in leaf node number 17 is effectively
determined by an outlier.

The nplot method of the ctree class enables the visualisation of the binary partition at any node of the
cluster hierarchy. This function takes as mandatory inputs an object of class ctree, and the number of the
node to be visualised. It also accepts as optional arguments labels and colours. The data are projected
in a two-dimensional space using the same approach as in the plot function described previously. Let’s first
consider the root node of the tree.

>> % Plot partition at root node of the cluster hierarchy

>> nplot(t1 ,1);

>> % Plot partition at root node of the cluster hierarchy using actual labels

>> nplot(t1 ,1,labels );

Figure 5.2 (even without the labels) illustrates that the first split of the data intersects a very dense region.
The premise that underlies PDDP, that if there are two well separated clusters in the data then these will
be separable along the first principal component, does not appear to be valid in this example.

When the clustering algorithm uses a hyperplane to bi-partition the data at each node, the nplot

function also illustrates a kernel density estimator constructed from the projection of the data onto the
vector orthogonal to the separating hyperplane (black line). The scale of this function is illustrated on the
right vertical axis. If the true clusters labels are specified, as in the second sub-figure in Figure 5.2, then each
cluster is assigned to the halfspace that contains the majority of its observations. The overall density can
then be seen as a two component mixture arising from the clusters assigned to the two halfspaces. The red
and blue dashed lines illustrate these two component densities. This visualisation is intended to highlight
the extend to which the separating hyperplane splits clusters in the data. The fact that in Figure 5.2 the
two densities overlap considerably is a clear indicator that this hyperplane is splitting clusters.
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(a) Labels unspecified (b) Labels specified

Figure 5.2: Visualisation of binary partition at the root node of the cluster hierarchy without and with
the specification of the true cluster labels (left and right respectively). The black line is the kernel density
estimator of the data projected onto the vector that is orthogonal to the separating hyperplane

5.4.3 Quality of a Binary Partition

The success ratio is a measure of how effectively a binary partition separates at least one cluster from the
rest, in datasets that contain two or more clusters [18]. This measure is always between zero and one, with
higher values indicating better performance. To compute the success ratio for a specific binary partition we
will use the information from the ctree object that stores the cluster hierarchy. To access a node of this
object we can use the method get of the ctree class. Each node of the tree is a structured array. The idx

element of this array contains the indices (row numbers in the data matrix X) of the observations allocated
to this node. Observations allocated to the left child of a node have negative sign while those allocated to
the right child have a positive sign. The code snippet below uses these properties to compute the success
ratio at the root node.

>> % Get root node of cluster hierarchy

>> node1 = t1.get (1);

>> % Assess quality of binary partition through success ratio

>> success_ratio(sign(node1.idx), labels)

It is possible to evaluate the success ratio at each node of the cluster hierarchy, using the method perf

of the ctree class.

>> % Evaluate performance at each node of t1

>> t1 = perf(t1, labels)

The output of the above function is displayed on the terminal (but is too large to be presently included).

5.4.4 density-enhanced PDDP

We next consider whether the splitting criterion used by dePDDP will improve the clustering result.

>> [idx2 , t2] = depddp(X,10);
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(a) Cluster hierarchy (b) First binary partition

Figure 5.3: Visualisation of cluster hierarchy and first binary partition performed by dePDDP

Clusters: 1 2 3 4 Divisive process terminated because no cluster can be split further

Clusters Identified: 4

The output above indicates that dePDDP did not identify 10 clusters. The algorithm fails to partition a
cluster when the one-dimensional kernel density estimator constructed from the projection of the data onto
the first principal component is unimodal. This is interpreted as an indication that the data belong to a
single cluster.

Figure 5.3 illustrates the clustering model created by this algorithm, as well as the binary partition at the
root node. From this figure we see why the algorithm failed to estimate 10 clusters and why the clustering
model produced is not valid for this dataset. The one-dimensional data projection onto the first principal
component always contains one or a few observations that are very distant from the rest. The estimated
density has a very small mode around these observations and as a result at each bi-partition dePDDP splits
one or a few outliers from the rest of the data. Around the bulk of the data the density estimator is unimodal.

A naive (and ineffective as we will see) approach to overcome this issue would be to impose a constraint
on the minimum number of points in a cluster, by specifying the minsize option (available in all divisive
hierarchical clustering algorithms in OPC).

>> [idx2 , t2] = depddp(X,10,'minsize ' ,10);
Clusters: 1 Divisive process terminated because no cluster can be split further

Clusters Identified: 1

The above message indicates that with a minimum cluster size of 10 the data cannot be split. This should
not be surprising as we can see from Figure 5.3 that the density estimator has no local minima apart from
the one at its left tail.

An important parameter in dePDDP is the bandwidth used in the density estimator. By default dePDDP
estimates the bandwidth parameter, h, through the rule suggested by Silverman [22] for the approximation
of multimodal univariate densities,

h = 0.9n−1/5σ̂,

where σ̂ is the standard deviation of the projected data. The user can modify this by providing as input a
function handle. The associated function must take as input a data matrix and a structured array containing
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the algorithm’s parameters, and return a positive scalar. This function is used to estimate the value of the
bandwidth parameter for each cluster. In the next code snippet we halve the value of the bandwidth.

>> % Define function handle for bandwidth selection (note 2nd input argument not used)

>> fh = @(x,p)(0.45* size(x ,1)^( -0.2)* std(x* pcacomp(x ,1)));

>> [idx2 , t2] = depddp(X,10,'minsize ',10, 'bandwidth ', fh);

Clusters: 1 2 3 4 5 6 7 8 9 10

dePDDP with these settings can estimate 10 clusters, but a visualisation of the clustering model produced
(which is omitted for brevity) illustrates that this model does not overcome any of the previously identified
problems.

The inspection of the clustering models produced by PDDP and dePDDP strongly suggests that for this
dataset dimensionality reduction by projecting onto the first principal component is not appropriate. In the
next section we explore algorithms that attempt to identify the optimal projection vector with respect to
explicit clustering criteria.

5.5 Divisive Clustering based on Optimal Hyperplanes

First we consider divisive clustering algorithms obtained by recursively bi-partitioning the data through
hyperplanes that are estimated by identifying the optimal one-dimensional data projection. Three such
methods will be discussed. The Maximum Clusterability Divisive Clustering (MCDC) algorithm attempts
to identify the one-dimensional projection that optimises variance ratio clusterability; a criterion connected
to the k–means objective function. Normalised Cut Divisive Clustering (NCUTDC) recursively bi-partitions
the data using hyperplanes that minimise the value of the normalised graph-cut criterion. The last method,
Minimum Density Divisive Clustering (MDDC) attempts to identify the hyperplane along which the integral
of the estimated density is minimised.

For methods based on separating hyperplanes, OPC also includes a separate implementation of the
underlying binary segmentation algorithm. To distinguish between the two, the names of functions that
produce a complete divisive clustering model end in dc, while those that perform a binary partition using a
hyperplane as a cluster separator, end in h. For example, the MCDC algorithm is implemented in the mcdc

function, while the mch function estimates maximum clusterability hyperplane(s).

5.5.1 Maximum Clusterability Divisive Clustering

The MCDC algorithm is implemented in the function mcdc.

>> [idx3 ,t3] = mcdc(X,10);

>> cluster_performance(idx3 ,labels)

ans =

struct with fields:

Purity: 0.7710

NMI: 0.7174

AdjRand: 0.6371

Vmeasure: 0.7174

>> plot(t3);

>> nplot(t3 ,1);

The clustering performance of this algorithm improves that of k–means applied on the full dimensional data,
as well as that of k–means applied on the data projected onto the first 9 or 33 principal components.

It is important to note that the initialisation of the projection pursuit algorithm in MCDC is performed
by applying 2-means on the data (subset) and computing the vector that connects the cluster centroids.
Since by default kmeans in MATLAB and Octave uses the k–means++ algorithm [1], the output mcdc can
differ in consecutive executions with identical input parameters.
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(a) Cluster hierarchy (b) First binary partition

Figure 5.4: Visualisation of cluster hierarchy and first binary partition performed by MCDC

The plot of the model hierarchy, and the first binary partition is provided in Figure 5.4. The figure shows
that MCDC performs a much more sensible clustering, compared to PDDP and dePDDP. The visualisation
of the binary partition at the root of the tree clearly shows that the projection pursuit algorithm has
managed to identify a hyperplane that traverses a relatively sparse region and separates two dense clusters.
This provides clear evidence of a clustering structure in the data which was not visible through PDDP and
dePDDP (Figures 5.2 and 5.3, respectively). Inspecting the visualisation for the entire clustering model one
observes that the majority of binary partitions at internal nodes appear to be separating effectively dense
clusters. A number of leaves appear to contain more than one cluster and are natural candidates for further
splitting. An extensive example of using the methods of the ctree class to validate and modify a clustering
model is provided in Section 6.

We can examine whether an alternative initialisation would improve the final clustering model. In the
example below we set the initial projection vector to be the first principal component. This is achieved
by specifying the optional argument v0. For divisive hierarchical clustering algorithms this input argument
must be set to a function handle. The associated function must accept two inputs: the data matrix, and a
structured array containing the parameters of the algorithm.

>> % Function handle returns 1st PC

>> fh = @(x,p)( pcacomp(x ,1));

>> [idx4 ,t4] = mcdc(X,10,'v0', fh);

>>

>> % Assess clustering performance

>> cluster_performance(idx4 ,labels)

ans =

struct with fields:

Purity: 0.7466

NMI: 0.6727

AdjRand: 0.5760

Vmeasure: 0.6727
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Figure 5.5: MCDC cluster hierarchy using first principal component to initialise projection pursuit algorithm

This initialisation causes a small deterioration in clustering performance. The visualisation of the resulting
clustering model in Figure 5.5 reveals that the resulting clusters are more balanced, but there still remain
clear indications that some leaves of the hierarchy contain more than one cluster, and should therefore be
split.

5.5.2 Minimum Normalised Cut Divisive Clustering

We next produce a clustering model using the minimum Normalised Cut Divisive Clustering (NCUTDC)
algorithm.

>> [idx5 ,t5] = ncutdc(X,10);

>>

>> % Assess clustering performance

>> cluster_performance(idx5 ,labels)

ans =

struct with fields:

Purity: 0.7810

NMI: 0.6950

AdjRand: 0.6200

Vmeasure: 0.6949

NCUTDC performs better than spectral clustering applied on the full–dimensional data, and the datasets
obtained after projection onto the first 9 and 33 principal components. This indicates that the dimension-
ality reduction approach is enabling the algorithm to identify better quality clusters. The resulting cluster
hierarchy is illustrated in Figure 5.6.
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Figure 5.6: Cluster hierarchy obtained from NCUTDC using default parameter settings

5.5.3 Minimum Density Divisive Clustering

The interface of the mddc function is identical to the previous two functions, mcdc, and ncutdc. We thus
thus directly execute the algorithm with the default settings

>> [idx6 ,t6] = mddc(X,10);

>>

>> % Assess clustering performance

>> cluster_performance(idx6 ,labels)

ans =

struct with fields:

Purity: 0.8110

NMI: 0.7716

AdjRand: 0.7054

Vmeasure: 0.7716

>> nplot(t6 ,2);

Figure 5.7 provides a visualisation of the binary partition at node 2 of the cluster hierarchy. The dashed blue
line in this figure corresponds to the projection index for MDH, f(v) defined in Eq. (3.2). The scale of this
function is depicted on the right vertical axis. Notice that f(v) is identical to the kernel density estimator
(black solid line) within the range of α standard deviations around the mean, and increases abruptly outside
this range. The definition of the projection index in Eq. (3.2) ensures that the minimiser is always within
α standard deviations of the mean of the data. A more extensive discussion of mddc is postponed until
Section 6.
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Figure 5.7: Binary partition at node 2 of cluster hierarchy produced by MDDC algorithm.

5.6 Spectral Clustering

In this section we describe two algorithms that attempt to identify the optimal linear subspace to perform
spectral clustering: Dimensionality Reduction for Spectral Clustering (DRSC), and Spectral Clustering Pro-
jection Pursuit (which to retain the naming conventions in OPC we call Spectral Clustering Projection
Pursuit Divisive Clustering, SCPPDC). Both are gradient-based algorithms that aim to minimise eigen-
value(s) of the normalised graph Laplacian. Unlike the divisive clustering algorithms discussed in previous
sections the two methods presented in this section are not limited to one-dimensional projections and can
be applied for any choice of the dimensionality of the projection space, q. This enables these methods to
identify clusters whose convex hulls are not linearly separable.

Both DRSC and SCPPDC are computationally very expensive, because each function evaluation involves
the computation of the similarity matrix, O(n2), and its eigen-decomposition, O(n3). The gradient ascent
scheme for DRSC optimises each column vector of V separately, which increases the computational cost by
a factor of q.

5.6.1 Dimensionality Reduction for Spectral Clustering

We will pre-process the data by micro-clustering before applying DRSC so that the algorithm terminates
within a reasonable time. Micro-clustering [34] is effectively k-means clustering using a value of k that is much
larger than the expected number of clusters in the data. We will use 200 micro-clusters as recommended for
SCPPDC to render the results of the two algorithms comparable. In [16] it is suggested to select σ through
10-fold cross–validation using as performance measure the mean-squared error from the k-means step (last
step of spectral clustering). This approach is computationally very expensive. Instead at present we use the
bandwidth selection rule suggested in [7], and implemented in the function scpp def sigma. Finally, the
dimensionality of the projection space, q, needs to be set. Following [16], the default setting for q in drsc is
q = k−1. We initialise DRSC using the first k−1 principal component vectors, rather than a set of random
orthonormal vectors. We have found that this initialisation improves performance considerably in the vast
majority of cases. The user can modify this parameter specifying the optional argument v0. Since DRSC
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is a partitioning algorithm, v0 can be specified either as a function handle (as before), or as a projection
matrix (which is not allowed for divisive algorithms). When the optional argument v0 is set q is determined
by the number of columns of the initial projection matrix.

>> % the next algorithm is very slow. set seed to ensure reproducibility

>> % without having to run all the code up to this point

>> % In Octave use randn('seed ',x); and rand('seed ',x)
>> rng (56789);

>> % micro -clustering

>> [d2c ,centroids] = kmeans(X ,200);

>>

>> % Set scale parameter for Gaussian kernel to SCPPDC recommendation

>> sigma = scpp_def_sigma(X);

>>

>> % Execute drsc

>> [idx7 ,W,fval ,sumD] = drsc(centroids ,10, sigma);

>>

>> % Assign cluster labels to observations using

>> % the cluster labels of the micro -clusters

>> idx7 = reverse_assign(idx7 , d2c);

>>

>> cluster_performance(idx7 , labels)

ans =

struct with fields:

Purity: 0.1181

NMI: 0.0585

AdjRand: 4.2323e-04

Vmeasure: 0.0274

DRSC terminates after exhausting the maximum number of iterations (the default value for which is 50)
without converging. A plot of the projection index after each complete pass over all the columns of V
(contained in the third output argument fval) indicates that the algorithm is not monotonically improving
the objective function. The clustering quality of the identified solution is also poor.

5.6.2 Spectral Clustering Projection Pursuit Divisive Clustering

Next we apply the SCPPDC algorithm on the optidigits dataset. The syntax for this divisive hierar-
chical algorithm is identical to the previous algorithms. The function scppdc uses all the default values
recommended in [7], and the user need only specify the data matrix and the number of clusters. A critical
parameter for this algorithm (as for all spectral clustering methods) is the choice of the scale parameter,
σ, of the Gaussian kernel that is used to compute pairwise similarities. By default this parameter is set
through the function scpp def sigma. The user can modify this by setting the optional argument sigma

to a function handle. The associated function must accept as arguments a data matrix and a structured
array containing the parameters of the algorithm. Also very influential is the choice of the initial projection
matrix. In scppdc the projection matrix is initialised to the first two principal components of the cluster
being split. The user can modify this by specifying the optional argument v0. As in all divisive hierarchical
algorithms, v0 must be a handle to a function that returns a projection matrix and accepts as inputs the
data matrix and a structured array containing all the parameters of the algorithm.

>> rng (1098765);

>> [idx8 , t8] = scppdc(X,10);

Clusters: 1 2 3 4 5 6 7 8 9 10

>> % Visualisation

>> plot(t8)

>> plot(t8 ,labels)

>> % Performance assessment

>> cluster_performance(idx8 ,labels)
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(a) Labels unspecified (b) Labels specified

Figure 5.8: Cluster hierarchy produced by scppdc without and with the specification of labels

ans =

struct with fields:

Purity: 0.8384

NMI: 0.7676

AdjRand: 0.7007

Vmeasure: 0.7676

Figure 5.8 illustrates the cluster hierarchy produced by scppdc. The only leaf node (cluster) that appears
to contain more than one clusters is the node with number 4. The second sub-figure in Figure 5.8 verifies
that this impression is correct. It is also clear that the ability to separate non-convex clusters in the two-
dimensional projection space enhances the performance of this algorithm. This is verified by the cluster
performance measures. SCPPDC achieves the highest performance out of all the considered methods on
this dataset, and importantly improves substantially over spectral clustering applied on the full dimensional
dataset, as well as on data projected onto the first q principal components, and DRSC.
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6

Model Validation and Modification

In this section we illustrate how to validate and modify a clustering model produced by any divisive hier-
archical clustering algorithm in OPC. For partitioning algorithms, visualisation is straightforward using the
projection matrix, and the in-build function plot and scatter in MATLAB and Octave. To modify the
clustering model the user can set the optional input arguments, as discussed in the previous section.

The interactive validation and modification of divisive hierarchical models is more challenging, and con-
stitutes the focus in the remainder of this section. In the present example we will use the optidigits dataset
used in the previous section, but assume that the actual number of clusters is unknown, and start with an
initial guess of k = 5. We use the mddc function to construct the initial cluster hierarchy, but the interface
we describe relies on methods of the ctree class and is hence applicable to all divisive hierarchical clustering
methods in OPC. The functions for visualisation, plot and nplot have been discussed extensively in the
previous section. The two main functions for the modification of a ctree object are prune and split.

>> rng (201800630);

>> load('datasets/optidigits.mat');
>>

>> % Cluster optidigits datasets assuming k=5

>> [idx ,t] = mddc(X,5);

>> Visualise cluster hierarchy (plot not shown)

>> plot(t);

>> % Evidence of 3 well separated clusters

>> nplot(t,2);

>> % Hyperplane intersects dense area

>> nplot(t,3);

An inspection of the cluster hierarchy (not shown for brevity), and the hyperplane separators in nodes 2
and 3 (shown in Figure 6.1), suggests that the leaf node 2, appears to contain 3 well separated dense clusters,
while the hyperplane in node 3 intersects a dense region. The hyperplane separator for the cluster at node 2
appears to be effectively separating one of the three dense clusters. We can therefore use this hyperplane to
split the cluster at node 2. This is achieved by calling the split function (method of the class ctree) with
no optional arguments. If no optional arguments are specified, the split function partitions a leaf node
using the binary separator estimated with the parameter settings used to create the first instance of the
ctree object (in this example t). An inspection of the new leaf node with number 10 (omitted for brevity),
illustrates that this cluster contains two of the three dense clusters identified in node 2, and that the MDH
for this node separates these clusters effectively. We therefore split node 10 by calling the split function
without specifying any arguments.

>> % Split cluster at leaf node 2 using estimated MDH

>> t1 = split(t,2);

>> % Plot omitted for brevity

>> nplot(t1 ,10);

>> % Split cluster at leaf node 10 using estimated MDH

>> t1 = split(t1 ,10);

>> % Visualise cluster hierarchy
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(a) Node 2 (b) Node 3

Figure 6.1: Binary partitions at nodes 2 and 3 of initial clustering hierarchy

>> plot(t1);

We next explore whether the binary partition at node 3 can be improved. To consider alternative hyperplane
separators, we first prune the subtree rooted at this node (the split function can only be applied to a leaf
node). Note that after the tree is pruned the numbers of different nodes can change, as shown in Figure 6.2.
Node numbers in ctree objects are always consecutive, and represent the order in which nodes were added
to the model.

>> % Prune tree at node 3

>> t1 = prune(t1 ,3);

Having pruned the tree we next explore whether the cluster at node 3 can be partitioned more effectively.
If we apply the split function on the cluster at node 3 we will obtain the same hyperplane as before.
The split function accepts all the optional arguments (using the same syntax) of the divisive hierarchical
clustering algorithm that created the first instance of the ctree object. In this example, we consider MDHs
obtained by initialising the projection vector at the 2nd and 3rd principal component. To this end we need
to set the v0 argument. In the code below we also set the verb argument to one to enable the visualisation
of the progress of the algorithm. Monitoring the progress of the projection pursuit algorithm we observe
that the most promising MDH is obtained for the initialisation at the third principal component. Using the
default parameter settings the algorithm rejects this solution because it is outside the default range around
the mean of the data. To overcome this we increase the maximum range by setting alphamax to 1.2 (from
a default of one). Note in the second sub-figure in Figure 6.3 that the local minimiser along the projected
density is very close to the boundary of the range of admissible MDHs (evident by the blue dashed line that
illustrates the projection index, Eq. (3.2)).

>> % Consider alternative parameter settings for PP algorithm:

>> % initialise at 2nd PC

>> split(t1 ,3,'v0',@(x,p)( pcacomp(x,2)), 'verb' ,1);
>> % initialise at 3rd PC, and increase range of admissible MDHs

>> split(t1 ,3,'v0',@(x,p)( pcacomp(x,3)), 'alphamax ' ,1.2, 'verb' ,1);

40



(a) Tree after splitting node 2 (b) Tree after pruning node 3

Figure 6.2: Cluster hierarchy after splitting node 2 and its children, and then after pruning node 3. Note
how the numbers of nodes have changed after pruning the tree: node numbers represent the order in which
nodes are added to the tree

>> % Update cluster hierarchy

>> t1 = split(t1 ,3,'v0',@(x,p)( pcacomp(x,3)), 'alphamax ' ,1.2);

An inspection of the outcome of the revised clustering model indicates that both clusters arising from
the split of node 3 are likely to contain more than one clusters. We first split the right child of node 3 and
continue splitting clusters until no leaf exhibits evidence of containing more than one dense clusters. In the
following, the default parameter values for the projection pursuit algorithm appear appropriate, so they are
not modified. For brevity we omit the visualisations of the individual binary partitions in the following code
snippet.

>> % Visualise and then split leaves that

>> % appear to contain more than one clusters

>> nplot(t1 ,9);

>> t1 = split(t1 ,9);

>> nplot(t1 ,11);

>> t1 = split(t1 ,11);

>> nplot(t1 ,12);

>> t1 = split(t1 ,12);

>> nplot(t1 ,15);

>> t1 = split(t1 ,15);

>> nplot(t1 ,10);

>> t1 = split(t1 ,10);

>>

>> % Assess performance

>> idx = tree2clusters(t1);

>> cluster_performance(idx , labels)

ans =

struct with fields:
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(a) Initialisation at 2nd PC (b) Initialisation at 3rd PC

Figure 6.3: Candidate MDH for cluster at node 3 obtained by initialising at the second and third principal
component respectively

Purity: 0.8475

NMI: 0.7842

AdjRand: 0.7263

Vmeasure: 0.7842

>> % Visualise clustering model

>> plot(t1 ,labels)

The performance of the final model is higher than that of the model obtained by mddc using the default
settings and the correct number of clusters. The visualisation of the cluster hierarchy in Figure 6.4 verifies
that this is a reasonable clustering model for this dataset.
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Figure 6.4: Final clustering model
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7

Extensions

7.1 Maximum Hard Margin Clustering

Maximum Margin Clustering (MMC) [30], extends the maximum margin principle, which has been very
successful in supervised and semi-supervised classification, to clustering. The MMC problem can be expressed
as identifying the binary labelling of X that will maximise the margin of a Support Vector Machine classifier
estimated on the labelled data. MMC corresponds to a nonconvex integer optimisation problem, for which
exact methods are only feasible for very small datasets. MMC algorithms that can handle reasonably sized
datasets are not guaranteed to converge to the global optimum. The minimum density hyperplane (MDH),
the minimum normalised cut hyperplane (NCUTH), and the spectral connectivity projection pursuit (SCPP)
algorithm (when one-dimensional projections are used) converge to the maximum hard margin hyperplane
as the bandwidth (scaling) parameter is reduced towards zero [18, 5, 7].

We illustrate this using the test set of the optical recognition of handwritten digits dataset, which is
widely used as a benchmark in the MMC literature. One of the most difficult binary classification problems
from this dataset is the separation of digits 3 and 9 [33, Table IV]. We standardise the dataset as in all
previous examples. In the next example we recursively halve the bandwidth parameter employed by the
mdh function until the vector that is orthogonal to the estimated MDH converges. At each iteration the
projection vector is initialised to the vector that is orthogonal to the previously identified MDH.

>> load('datasets/optidigitsTest.mat');
>> % Observations corresponding to digits 3 and 9

>> index = find(labels ==3 | labels ==9);

>> % Standardise data matrix

>> X = normalise(X(index ,:), 1);

>> labels = labels(index);

>>

>> % Estimate MDH with default bandwidth

>> [~,hp0] = mdh(X);

>>

>> hp = hp0;

>> % Value of alpha for which MDH is obtained

>> a = hp.params.alpha;

>> v0 = 0*hp.v;

>> while abs(hp.v' * v0) < 1-1.e-6,

>> % obtain initial projection vector and bandwidth parameter

>> v0 = hp.v;

>> h = 0.5*hp.params.bandwidth;

>> [idx ,hp1]= mdh(X,'v0',v0,'alphamin ',a,'alphamax ',a,'bandwidth ',h);
>>

>> % Numerical problems can occur at very low bandwidth:

>> % isinf(fval) signals projection pursuit failed

>> if isinf(hp1.fval),

>> break;

>> else
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(a) Initial MDH (b) Final MDH

Figure 7.1: Large hard margin separators obtained by recursively applying mdh for decreasing sequence of
bandwidths

>> hp = hp1;

>> end

>> end

>> plot(hp0 ,X);

>> plot(hp ,X);

>> % Misclassification error

>> er = 1 - purity(idx , labels(index))

er =

0.0248

The minimum normalised cut hyperplane (NCUTH) also converges to the maximum hard margin hyper-
plane as σ, the scaling parameter of the Gaussian kernel used to compute pairwise similarities, is reduced
towards zero. In the next example we illustrate this using the ncuth function.

>> % Estimate NCUTH with default bandwidth

>> [~,hp0] = ncuth(X);

>> hp = hp0;

>> v0 = 0*hp.v;

>> while abs(hp.v'*v0) < 1-1.e-10,

>> v0 = hp.v;

>> s = 0.5*hp.params.sigma;

>> [id,hp1]= ncuth(X,'v0',v0,'sigma ',s);
>>

>> % Numerical problems can occur for very low scaling parameter:

>> % isinf(fval) signals projection pursuit failed

>> if isinf(hp1.fval),

>> break;

>> else

>> hp = hp1;

>> end
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(a) Initial NCUTH (b) Final NCUTH

Figure 7.2: Large hard margin separators using ncuth for a decreasing sequence of scaling parameters for
the Gaussian kernel

>> end

>> plot(hp0 ,X);

>> plot(hp ,X);

>> % Misclassification error

>> er = 1 - purity(id, labels)

er =

0.0248

The large margin hyperplanes obtained by both NCUTH and MDH achieve a substantial improvement over
all the methods reported in [33, Table IV]. These include the standard clustering algorithms: k-means, kernel
k-means, spectral clustering, as well as the maximum margin clustering methods: generalised maximum
margin clustering [26], and the iterative support vector regression [33]. NCUTH and MDH also outperform
the more recent cutting plane maximum margin clustering algorithm [29]. (A MATLAB implementation of
the last method is available from the lead author’s personal page.)

7.2 Kernel PCA: Non-linear clustering

In this section we illustrate a simple example of using Kernel Principal Component Analysis (KPCA) [20] to
enable the identification of non–linearly separable, by hyperplane based methods. Through KPCA the data
is embedded in a high-dimensional feature space in which clusters are linearly separable. Hyperplanes in the
feature space correspond to nonlinear cluster boundaries in the original space. We illustrate this through a
widely used two dimensional data set containing two clusters, each in the shape of a half moon, arranged so
that they cannot be separated by a hyperplane [9].

The next example illustrates the use of the functions, kpca and kpca predict included in OPC. These
functions are based on the KPCA description in [20] and have the same syntax and default arguments as
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the implementation of KPCA in the R package kernelab [11]. The only important difference between kpca

and kpca predict in OPC and kernlab is that in OPC the user needs to specify the kernel matrix as an
argument.

>> load('datasets/halfmoons.mat');
>> % Hyperplane separator in original space

>> idx1 = ncuth(X);

>>

>> % Select randomly 200 observations to estimate KPCA

>> s = randperm(size(X,1) ,200);

>> % Compute Kernel matrix for data sample

>> sigma = 6;

>> K = exp(-sigma*squareform(pdist(X(s ,:)).^2));

>> % Compute Kernel Principal Components

>> pcv = kpca(K);

>> % Project all feature vectors onto pcv

>> Kp = exp(-sigma*mypdist2(X, X(s ,:)).^2);

>> X2 = kpca_predict(K,Kp,pcv);

>>

>> % Hyperplane separator in feature space

>> idx2 = ncuth(X2);

(a) Original space (b) Feature space

Figure 7.3: Clustering obtained by hyperplane separators in the original, Euclidean space and in the kernel
defined feature space.

48



8

Extending OPC

The OPC library provides a simple interface for users to create divisive hierarchical algorithms based on
projection pursuit methods for clustering. The function gppdc implements a framework for generic projection
pursuit divisive clustering algorithms. Like all divisive clustering algorithms in OPC, this function returns
the cluster assignment idx, and a ctree object that represents the cluster hierarchy. The user can interact
with this object in the same way as in all the previous examples. The function requires three mandatory
inputs: the data matrix, X, the number of clusters, k, and a handle to a function that bi-partitions the data
through projection pursuit clustering, pphandle.

The handle pphandle must be associated to a function that performs binary partitioning through projec-
tion pursuit. This is the only function that the user needs to specify. The function must have the following
syntax:

[v,fval,idx] = ppfunc(X,param)

where X is the data matrix, and param is a structured array, which contains any additional arguments which
are required to perform projection pursuit. For example the param structure can contain a handle to a
function that determines the initial projection matrix. The output arguments of ppfunc are: the projection
matrix, v, the value of the projection index, fval, and the binary cluster assignment, idx ∈ {1, 2}n.

By default at each step of the divisive algorithm gppdc splits the cluster with the largest value of the
projection index, fval. This behaviour can be modified by setting the split index argument discussed
below. Note that if the projection pursuit algorithm aims to minimise the projection index and the user
wants at each step to split the cluster with the lowest projection index, an immediate way to achieve this
without the need to define a split index function is for pphandle to return minus one times the actual
projection index.

The generic projection pursuit divisive clustering function, gppdc, accepts three optional input arguments:
param, split index, and labels.

1. param is used to specify the structured array that contains all the necessary parameters for the pro-
jection pursuit algorithm, as well as for the computation of the split index. This structured array is
used as the second input argument to the pphandle function handle, and the third argument of the
split index function (described next).

2. split index is a handle to a function that takes as input the projection matrix, v, the data matrix,
X, and a structured array of parameters (param) and returns a scalar. The output of this function is
the value of the splitting index for the cluster containing the observations in X. At each step of gppdc
the cluster with the highest splitting index is bi-partitioned.

3. labels is used to specify the true cluster assignment. This information is only used after the clustering
model is estimated to compute the success ratio and the purity at internal and terminal nodes of the
tree, respectively.

49



The next code snippet specifies a function which can be used as a projection pursuit function to implement
the bisecting k-means algorithm [23]. The function does not require the specification of any parameters. The
data matrix is the only input argument. It applies 2-means to identify the two cluster centroids (C), and
the assignment of observations to clusters (idx). The projection matrix in this case is the vector connecting
the two centroids (normalised to have unit-length). In [23] it is recommended to split the cluster with the
largest size. The projection index, fval, is therefore equal to the number of observations.

function [v,fval ,idx] = bisKmeansPP(X)

[idx ,C,sumd] = kmeans(X,2,'EmptyAction ','singleton ','Replicates ' ,1);
v = (C(1,:) - C(2,:))';
v = v./norm(v ,2);;

fval = size(X,1);

end

The above function is in the file bisKmeansPP.m in the directory src/generic. To perform bisecting k-means
through OPC using as cluster splitting criterion the total scatter we can use the gppdc function as:

>> load('datasets/optidigits.mat');
>> [idx ,t] = gppdc(X,10, @(x,p)( bisKmeansPP(x)), 'split_index ', @(v,x,p)( total_scatter(x)));

The user can visualise and modify the cluster hierarchy obtained through gppdc through the functions, plot,
nplot, prune, and split discussed extensively in Section 6. No additional code needs to be written for this
functionality to be available.

A projection pursuit version of bisecting k-means can be obtained by using LDA-k-means instead of
standard k-means to recursively bi-partition the data. To achieve this the user need only define a function that
reorganises the order of the output arguments of ldakmeans, to match the pphandle syntax requirements:

function [v,fval ,idx] = lda2m(X)

[idx ,v,fval ,C,iter] = ldakmeans(X,2);

end

The above function is in the file lda2m.m in the directory src/generic script file. A “bisecting” version of
LDA-k-means is readily obtained as:

[idx , t] = gppdc(X,10, @(x,p)(lda2m(x)));

By not specifying a split index function in the above algorithm the cluster that has the maximum projection
index (which in the LDA-k-means case is the ratio of between–cluster to within–cluster scatter) is split at
each step.
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