
Multi-agent Team Formation
Diversity Beats Strength?

Leandro Soriano Marcolino, Albert Xin Jiang and Milind Tambe

Appendix
A Diversity Beats Strength
In Section 3.1 we presented an example with non-
deterministic agents that showed that a diverse team can play
better than a uniform team made of copies of the strongest
agent. The full description of the agents used in the exam-
ple can be seen in Table 1, where we show the pdf of the
agents for each world state. We considered the utility vector
< 1, 0, 0 > for all world states.

B Optimal Voting Rules
We present the derivation of the optimal voting rule, stated in
Section 3.1. If an agent φi votes for a certain action ax, the
probability of ax being the action with rank r will be given
by pir, the probability that φi voted for the action with rank r.
This will only be true if we assume a uniform prior probabil-
ity for the ranking of all actions1.

Given a certain voting pattern, each possible ranking for
the actions in the voting pattern is a mutually exclusive event.
Therefore, we sum over all possible ranking combinations
where ax is the best action. The votes of each agent are in-
dependent, hence the multiplication of the probabilities, as
presented in the paper.

Now, we present here the full proof of Theorem 2, stated
in Section 3.1.

Proof of Theorem 2 By Assumption 2 we know that we
are looking for a tie-breaking rule, as the action chosen by the
majority of the votes should always be taken. Let’s consider
the sets and the voting result described in the Assumption 1.
Let < p1, ..., pk > be the pdf of agent φ′best,j , and the pdf of
the other agents of the subset be < p1 − εi, p2 + γi2, ..., pk +

γik >, γil ≥ 0 ∀l ∈ (2, k) and
∑k
l=2 γil = εi. Let b be a rank

in (2, k). The probability of ax being the best action is given
by:

P1 = (p1)
∏
i∈Weak(p1 − εi)

∏
t∈Strong(pb + γtb)

While the probability that ay is the best action is given by:

P2 = (pb)
∏
i∈Weak(pb + γib)

∏
t∈Strong(p1 − εt)

1The appendix will be updated with a more formal explanation.

By Assumption 1, we have that P1 > P2. We can generate
another voting pattern by making one agent φweak in Weak
vote for ay and one agent φstrong in Strong vote for ax. The
probability of ax being the best action will change to:

P ′1 = P1 ∗ (p1−εstrong)(pb+γweak,b)
(p1−εweak)(pb+γstrong,b)

While the probability of ay being the best action will
change to:

P ′2 = P2 ∗ (p1−εweak)(pb+γstrong,b)
(p1−εstrong)(pb+γweak,b)

As (p1 − εstrong) > (p1 − εweak) and (pb + γweak,b) >
(pb + γstrong,b) by the Assumption 1, we have that P ′1 >
P1. Similarly, as (p1 − εweak) < (p1 − εstrong) and (pb +
γstrong,b) < (pb + γweak,b) by the Assumption 1, we have
that P ′2 < P2.

Therefore, assuming that P1 > P2, we have that P ′1 >
P ′2. Hence, for all modifications that can be generated by
switching one of the agents, it is better to break ties in favor
of the strongest agent. We can use all these voting patterns as
a base and apply the same process recursively, to generate all
possible voting patterns with a tie. Therefore, it will always
be better to break ties in favor of the strongest agent.

Now we consider voting patterns with a tie between more
than two options. Let’s suppose that in this case breaking
ties in favor of the strongest agent (φ′best,j) is not the optimal
voting rule. Therefore, we should break the tie in favor of
some option ay . This implies that ay has a higher probability
of being the best action than ax, the option chosen by the best
agent. Now let’s remove the agents that voted in all other
options except ax and ay . This affects the probability of ax
and ay being the best action in the same way. Therefore, we
should still break ties in favor of option ay . However, we
already showed that when there are two options we should
break ties in favor of the strongest agent. Hence, we should
break the tie in favor of option ax. So, by contradiction, we
see that if there is a tie between more than two options we
should still break ties in favor of the strongest agent.

If the strongest agent of the team is not one of the agents
involved in the tie, we can ignore the opinion of the strongest
agent according to Assumption 2, and break the tie in favor of
the strongest agent from the ones involved in the tie, because
Assumption 1 applies to any subset of the agents.



Agent State 1 State 2 State 3 State 4 Strength
Agent 1 < 0.99, 0.01, 0 > < 0, 0.99, 0.01 > < 0.99, 0, 0.01 > < 0.99, 0.01, 0 > 0.7425
Agent 2 < 0, 0.99, 0.01 > < 0.99, 0.01, 0 > < 0.99, 0, 0.01 > < 0, 0.01, 0.99 > 0.4950
Agent 3 < 0.99, 0.005, 0.005 > < 0.99, 0.005, 0.005 > < 0, 0.5, 0.5 > < 0, 0.5, 0.5 > 0.4950
Agent 4 < 0.99, 0.01, 0 > < 0.99, 0.004, 0.006 > < 0, 0.4, 0.6 > < 0.99, 0.003, 0.007 > 0.7425
Agent 5 < 0, 0.3, 0.7 > < 0, 0.7, 0.3 > < 0.99, 0.005, 0.005 > < 0.99, 0.002, 0.008 > 0.4950

Table 1: A team of non-deterministic agents that can overcome copies of the best agent.

C Definition of Fuego∆ and FuegoΘ
In Section 4.2 we used agents Fuego∆ and FuegoΘ in our
experiments. We present here the description of these agents.
Fuego follows an UCT Monte Carlo Go algorithm, so it uses
heuristics to simulate games during the Monte Carlo Simu-
lations. There are mainly 5 possible heuristics in Fuego’s
code. These heuristics have a hierarchical order, and the orig-
inal Fuego agent follows the order <Atari Capture, Atari De-
fend, Lowlib, Pattern> (The heuristic called Nakade is not
enabled by default). We created a variation of Fuego, that
will be called Fuego∆, that follows the order <Atari De-
fend, Atari Capture, Pattern, Nakade, Lowlib>. We also cre-
ated FuegoΘ, that follows the order <Atari Defend, Nakade,
Pattern, Atari Capture, Lowlib>. The memory available for
Fuego∆ and FuegoΘ is half of the memory available for
Fuego.


