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Abstract

This document presents supplemental material, with
further results associated with the original paper.

A Appendix

In this section we evaluate our results in terms of rewards and
cumulative rewards. First, in Figure 1 we show examples of
reward and cumulative reward graphs for a Gaussian model,
similarly as in Figure 2 of the original paper. We can see a
similar result as in our theoretical study: learning over algo-
rithms outperforms learning over actions for a finite number
of training iterations. Here we will define 7 as the iteration )
where the reward (or cumulative reward) of learning over ac- = Actions
tions meets the reward (or cumulative reward) of learning over Algorithms
algorithms. 0 A : :
As before, we evaluate how 7 changes with problem size

(|A]), number of algorithms (|X]), u and p, but now in terms 0 1500 3000

Reward

of rewards and cumulative rewards (Figures 2 and 3, respec- Iteration
tively). We can observe similar results as when evaluating (a) Reward
the probability of playing the best action: 7 increases with
statistical significance under all parameters considered.
Additionally, we note that 7 tends to converge as algorithm 6000 q — Actions /
Algorithms %

set size (|X]) grows, instead of dropping after |X| > |A
in a similar fashion as when we evaluated the probability of
playing the best action (p,~) in Section 3 of the original paper.
It is interesting to note, however, that 7 seems to be slowly
dropping (when considering the reward or cumulative reward)
for the uniform model, as | X| gets much greater than |A|. This
is expected, since it gets harder for the agent to find the best 0 -
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Figure 1: Example of reward and cumulative reward curves, from the
synthetic experiments.
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(a) Uniform Model
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(b) Gaussian Model

Figure 2: 7 as number of actions, algorithms, v and p grows, in terms

of reward.
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Figure 3: 7 as number of actions, algorithms, u and p grows, in terms

of cumulative reward.



