
OpenCL Task Partitioning in the Presence of
GPU Contention

Dominik Grewe, Zheng Wang, and Michael F.P. O’Boyle

School of Informatics, The University of Edinburgh, UK
dominik.grewe@ed.ac.uk,zh.wang@ed.ac.uk,mob@inf.ed.ac.uk

Abstract. Heterogeneous multi- and many-core systems are increas-
ingly prevalent in the desktop and mobile domains. On these systems
it is common for programs to compete with co-running programs for re-
sources. While multi-task scheduling for CPUs is a well-studied area, how
to partitioning and map computing tasks onto the hetergeneous system
in the presence of GPU contention (i.e. multiple programs compete for
the GPU) remains an outstanding problem.
In this paper we consider the problem of partitioning OpenCL kernels
on a CPU-GPU based system in the presence of contention on the GPU.
We propose a machine learning-based approach that predicts the opti-
mal partitioning of OpenCL kernels, explicitly taking GPU contention
into account. Our predictive model achieves a speed-up of 1.92 over a
scheme that always uses the GPU. When compared to two state-of-the-
art dynamic approaches our model achieves speed-ups of 1.54 and 2.56
respectively.

1 Introduction

Integrated GPUs are becoming ubiquitous for desktop PCs and mobiles. The
integrated GPU utilizes a portion of the system’s RAM rather than dedicated
graphics memory, which shares the same memory space with the CPU. They are
less costly when compared to the dedicated GPUs, while still providing parallel
computing resources for certain classes of applications. There is an increasing
number of applications that make use of the integrated GPU on PCs and mobiles.
On these systems it is typical to have multiple programs running at the same
time, competing for the shared resources including the GPU. Under such settings,
decisions about which computing device (the CPU or the GPU) to use to run
the program and how the work should be partitioned across different devices
have significant impact on the application’s performance.

While multi-task scheduling on the general purpose CPU is a well-studied
area, how to partitioning and map tasks onto the underlying platform in the
presences of GPU contention remains an outstanding problem. Currently the
use of the computing device is statically determine and hard-coded when the
application is built. Given that the availability of resources and the behaviours
of the workload programs vary in a multi-programmed environment and have a
dramatic impact on the correct mapping and scheduling of work, entirely static
approaches are likely to fail. What is needed is an approach that can adjust the



mapping decision according to the dynamic computing environment by taking
into consideration the target program behavior.

Several methods for automatically mapping tasks to devices in a heteroge-
neous system have been proposed. Luk et al. [14] use offline profiling to determine
the best partitioning between the CPU and GPU while Grewe and O’Boyle [6]
apply machine learning techniques to predict the optimal partitioning. Both
approaches deliver good results but only under the assumption that no other
programs are running on the system. Ravi et al. [16] use a dynamic, “task farm”
approach for task mapping. They divide the task into a fixed number of chunks
and send one chunk to each device. When a device finishes processing it requests
a new chunk. As we will show in this paper, this dynamic approach delivers poor
performance in the presence of GPU contention.

In this paper a new task partitioning approach is introduced that explicitly
takes GPU contention (i.e., multiple programs are competing for the GPU) into
account. Unlike most dynamic approaches which require an online searching
phase to determine the best partition of work, it uses a machine learning-based
predictive model to directly predict the best work partition using code features
of the program and runtime information. Unlike previously dynamic approaches,
our scheme avoids the potential expensive online searching overhead by directly
predicting the best partitioning scheme. The other advantage is that our model
is automatically generated off-line at the factory. This avoids the pitfalls of using
a hard-wired heuristic that requires human modification whenever the hardware
changes.

Across a set of 22 benchmarks and 10 different contention scenarios the pre-
dictive model achieves a speed-up of 1.92 over using only the GPU and 1.23 over
using only the CPU. When compared to two dynamic approaches our approach
achieves speed-ups of 1.54 and 2.56 respectively.

2 Motivation

This section demonstrates the importance of explicitly taking GPU contention
into account when mapping programs to heterogeneous systems.

Figure 1 shows the running time of the nbody benchmark in three GPU
contention scenarios: no contention, and medium and heavy contention. The
medium and heavy contention scenarios are created by running a separate ap-
plication which uses the GPU alongside the target program to be optimized.
More details on which applications were used is given in section 5.1. Along the x
axis different static partitioning configurations (represented as the percentage of
work mapped to the CPU) are explored. On an idle system (i.e. the no contention
scenario) the running time of using only the GPU (x = 0) is shorter than the
running time of using only the CPU (x = 100). This changes, however, when the
GPU contention is introduced. Similarly, the optimal partitioning between the
devices changes in different contention scenarios. When the system is idle, the
best performance is achieved by a 30−70 split but already in medium contention
more work should be assigned to the CPU, namely 50%. In a heavy contention



tim
e 

(s
ec

on
ds

)

partitioning (% on CPU)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0 10 20 30 40 50 60 70 80 90 100

no contention

medium contention

heavy contention

Fig. 1: Running time of the nbody benchmark in multiple GPU contention sce-
narios for different partitionings. The diamonds indicate the optimal partitioning
for the corresponding contention.

scenario the runtime of the application increases significantly when some of the
work is mapped to the GPU. The best performance is thus achieved when only
the CPU is used. The partitioning that is optimal on an idle system (x = 30)
leads to a 3x slow-down over the optimal partitioning.

This example demonstrates the need for partitioning techniques that can
adapt to contention on the GPU. As the contention information can only be
obtained at runtime, any static schemes will fail to achieve good performance
on systems being shared by multiple co-running applications. What we need is a
dynamic scheme that can adapt to various GPU contention scenarios. The next
section will discuss the challenges to be tackled for designing such a dynamic
scheme in the presence of GPU contention.

3 Challenges in the Presence of GPU Contention

This work targets OpenCL applications because OpenCL is emerging as a
standard for heterogenous computing, which allows the same code to be executed
on different computing devices including CPUs and GPUs.

In OpenCL, kernels are launched through command queues. Each time a
kernel is being executed it passes through multiple phases, i.e. queueing, ready
and execution, as depicted in figure 2. Unlike the general purposed CPU where
multiple programs can run simultaneously by sharing the CPU time, only one
kernel is allowed to execute at a time1 on the GPU. An OpenCL kernel may
therefore have to spend an significant amount of time in the ready phase waiting
for the GPU to become available if the GPU is being used by another program.
Furthermore, GPU tasks are non-preemptive, i. e. once a task gains access to
the GPU no other task can use the GPU until the current task has finished

1 NVIDIA GPUs allow concurrent executions of kernels from the same application but
not from different applications.



queueing ready execution

QUEUED
SUBMIT

START END

Fig. 2: The three pases of launching and executing an OpenCL kernel. The labels
on top correspond to the CL PROFILING COMMAND ∗ parameters passed to
the clGetEventProfilingInfo function of the OpenCL API.

execution. This means that a kernel scheduled to the GPU may have spent a
long time in the ready phase if a different applications has previously launched
a long-running kernel. Therefore, non-careful mappings of kernels onto the GPU
at the presence of other GPU workload can lead to longer waiting time and
result in poor performance. The goal of this work is to determine how the work
of OpenCL kernels should be partitioned across the CPU and the GPU to give
the best performance by taking the GPU contention into consideration.

The OpenCL API provides an interface for querying the starting and finish-
ing time of each of the phases as indicated by the labels in figure 2. This allows
one to get insights into the behavior of OpenCL applications in the presence
of GPU contention. Figure 3 shows the behavior of the nbody benchmark in the
presence of heavy contention. Each bar represents the running time of a kernel
launch, divided into the times spent in each of the three phases. During the first
few kernel executions the system is idle. Only halfway through the contention
is introduced on the respective device. This highlights the difference in behavior
on an idle system and one with resource contention.

When the system is idle the overall running time of each kernel is dominated
by the execution phase which is stable across these runs. Time spent in the queue-
ing and ready phases is minimal (they are not even visible in the graphs) because
no other applications compete for resources. The behaviour of the application
is the same and it takes around 19ms to run on the GPU. When a competing
application is launched, however, the behavior is different. Under such a setting,
time spent in the execution phase on the GPU remains the same at 19ms be-
cause the kernel will always have exclusive access to all GPU resources. However,
time spent waiting for the GPU to became available (the ready phase) shows
dramatic variation. Sometimes it is as low as on the idle system but it can be
as high as 120ms (more than 6 times of the time spent in the execution phase).
The variation is due to other applications blocking the GPU. If a long-running
kernel has been launched before a kernel is submitted it has to wait for the
long-running kernel to finish. If, however, the long-running kernel is just about
to finish when the kernel is launched the wait time is small. The total execution
time of a kernel launch therefore varies significantly even if the contention is
constant, i. e. a fixed co-running applications. In such heavy GPU contention



0

25

50

75

100

125

150
tim

e 
(m

s)

kernel executions

queueing phase ready phase execution phase

Fig. 3: Profiling of kernel launches in the presence of GPU contention. Each bar
shows the total running time of a kernel launch; broken down into queueing,
ready and execution times. During the first half the system is idle, then another
application is launched competing for resources of the GPU.

it is thus better to use the CPU which provides a much quicker running time
(25ms v.s. 120ms). This unpredictable behavior of OpenCL applications in the
presence of GPU contention provides a big challenge to schedulers trying to find
the best partitioning of a kernel across devices. The next section will describe
how we build a dynamic scheme that can adapt to the GPU contention using
predictive modeling.

4 Predictive Modeling

This section describes how a machine learning-based model can be built for
determining a good partitioning for OpenCL tasks in the presence of GPU
contention. The input to the predictive model contains information on both the
OpenCL kernel and the GPU contention. Its output is a ratio describing the
amount of work to map to the CPU and the GPU.

4.1 The Features of the Model

The inputs of model are two sets of numerical values, namely feature sets, that
represent the input program and the runtime contention. The first set of features
describe the OpenCL kernel itself. They are extracted using a static analysis
tool based on clang [12]. The second set of features characterize the contention
on the GPU device. These features are constructed from information readily
available via the OpenCL API.

Program Features The program features contain information about the number
and types of instructions in a kernel. Additionally, the number of coalesced
memory accesses is determined. The benchmarks used for this study, as described
in section 5.1, often contain vector data types because they were targeted towards
both CPUs and GPUs. Another feature is thus the number of vector operations
in the code. The full list of program features is shown in table 1.



Program Features

1: # global memory accesses

2: # compute operations

3: # conditionals and loops

4: communication-to-computation ratio

5: percentage of vector operations

6: percentage of coalesced memory accesses

7: # work-items

Table 1: List of program features used by the predictive model.

Contention Features Contention on the GPU is experienced by increased delays
in the ready phase waiting for the device to become available (see section 3). The
specific GPU kernel causing the contention does not have any other influence
on the remaining programs because access to the GPU is exclusive. The best
way to characterize GPU contention is thus to quantify this delay. Since the
delay exhibits a significant variance a single observation does not carry much
information. Therefore, to characterize the contention the average delay (using
the arithmetic mean) is computed over time.

4.2 Building the Model

Machine learning models are built by fitting a mathematical model to training
data. Training data are observations where both the features (input) and target
(output) are known. In our case the training data comprise a set of benchmarks
and contention scenarios together with the optimal partitioning in each case.
The process of obtaining this data is described in the next section. Once the
model has been built predictions for new programs and contention scenarios can
be made. This process is depicted in figure 4.

In order to model the problem of task partitioning a multi-class classification
model is used. Specifically, the model is based on support vectors machines
(SVMs) [3]. SVMs try to find hyperplanes in the feature space that separate
data points from two different classes. By combining multiple SVMs multi-class
problems can be modeled. In order to better find hyperplanes separating the
data, kernel functions are used to map the input data into a high-dimensional
space. More information on SVMs can be found in [2].

4.3 Collecting Training Data

A set of training programs and “workload” programs are used to collect training
data for the predictive model. The workload programs introduce contention on
the GPU by either using it for graphics or by executing OpenCL kernels on it.
A detailed discussion of which programs were used is given in section 5.1.



ML training ML
model

Training Data

program
 features
contention
 feature

optimal
 partitioning

program
features

offline training feature extraction

contention
feature

prediction at runtime

predicted
partitioning

Fig. 4: Building the machine learning (ML) model.

Each combination of training and workload program is executed with differ-
ent partitionings of the training program. In total eleven different partitionings
are evaluated, ranging from CPU-only to GPU-only execution in steps of 10%
as shown in figure 1. To ensure a constant degree of contention the workload
program is started a few seconds ahead of the training program and input pa-
rameters are chosen so that it only finishes after the training program has finished
execution.

The best partitioning for each scenario is computed by finding the one with
the shortest overall running time. Since some benchmarks contain multiple ker-
nels this computation is done on a per-kernel basis using OpenCL profiling
information. The running time of a kernel that is partitioned across the CPU
and GPU is defined as the maximum running time across the two devices.The
optimal partitions form the targets of the predictive model. The features are col-
lected by performing static analysis on the training program and by recording
the incurred delay using the profiling functions provided by OpenCL.

4.4 Deployment of the Model

The model can only be evaluated at run-time because it partially relies on run-
time information. On the one hand, the number of work-items needs to be known
to compute the program features. This is often only known at run-time. Further-
more, the current GPU contention can obviously only be determined when the
program is actually running.

Computing the contention features involves monitoring the waiting times on
the GPU and computing the average waiting time as described in section 4.1.
Only a window of waiting times of the last few kernel executions should be used,
however, to be able to adapt to changes in the contention. This information can
either be obtained through previous kernel executions of the program (assuming
it launches a sequence of kernels) or by sharing this information across programs.



CPU GPU

Model Intel Core i5-3570K Intel HD Graphics 4000

Core Clock 3.40 GHz 1.15 GHz

Core Count 4 16

Peak Performance 108.8 GFLOPS 147.2 GFLOPS

System Memory 8 GB

Operating System Windows 7 Professional SP 1

OpenCL SDK Intel SDK for OpenCL Applications 2013

Table 2: Experimental Setup.

5 Experimental Methodology

This section describes the setup used for evaluating the approach presented in
this paper. It details how and which aspects of the model were evaluated and
describes which other methods it was compared against.

5.1 Experimental Setup

Platform All experiments were carried out on an Intel IvyBridge platform with
a quad-core CPU and an integrated GPU. Full details are shown in table 2. The
aim of this work is to find the best partitionings of OpenCL kernels between the
CPU and the integrated GPU. The system was running on Windows 7 and the
Intel SDK for OpenCL Applications 2013 [10] was used. Each measured run
was repeated 10 times and the average execution time was recorded.

Integrated platforms such as the Intel IvyBridge chip are increasingly com-
mon in the desktop and mobile computing space. The trend is to further integrate
the CPU and GPU in order to allow close cooperation between the two types of
processors.

Benchmarks We used 22 different benchmarks from the Intel SDK [10] and the
AMD SDK [1] to evaluate our approach. These benchmarks were chosen because
they are not specifically tuned for GPUs but for use on both CPUs and GPUs,
e. g. by using vector data types. They thus provide for more interesting parti-
tioning scenarios. In order to increase the set of training points each benchmark
was used with multiple input sizes.

The main computational parts of the benchmarks were executed repeatedly
to ensure a minimum running time of around 500ms. This was done to expose
each benchmark to the fluctuations of GPU contention as shown in section 3. It
further allows the online search method to find a good partitioning.

Contention Scenarios To introduce contention to the system a range of ap-
plications using GPUs was used. These mainly include OpenCL benchmarks
targeting the GPU but also a video player application (VLC). Additionally, the
scenario of the idle system, i. e. without any contention, was evaluated. A list
of all contention scenarios is given in table 3. The entries are ordered by how
disruptive they are in terms of the average waiting caused as described in sec-
tion 4.1.



Name Type Waiting Time (µs)

none no contention 65

vlc video player 68

sobel-512 OpenCL application 759

monte carlo OpenCL application 1,306

sobel-1024 OpenCL application 3,228

aes-512 OpenCL application 8,471

sobel-2048 OpenCL application 12,584

aes-1024 OpenCL application 16,259

aes-2048 OpenCL application 21,944

sort OpenCL application 36,585

Table 3: Contention scenarios. Ordered from lowest to highest contention.

5.2 Comparison

Our approach is compared to three approaches: “oracle”, “task farm” and “online
search”. Unless stated otherwise, performance is shown as the speedup over CPU-
only execution.

Oracle. This is a theoretical scheduler that always picks the best static parti-
tioning. It thus provides an estimate of the upper bound performance available
in each scenario.

Task farm. This is a dynamic approach which splits each task into a fixed
number of chunks. Initially, one chunk is sent to each device and devices request
more work after they have finished processing their chunk. For this evaluation
we specified the number of chunks to be 8, which leads to the best average
performance on the platform we used.

Online search. This dynamic approach finds a good partition over time. For each
kernel the scheme keeps track of what the partitioning between the CPU and
GPU is. The partition is represented by a split value which is the percentage of
work mapped to the CPU. The split value is set to 50% initially, which will be
adjusted over time to balance the running times on the CPU and the GPU.

5.3 Evaluation Methodology

We evaluated our approach using the standard leave-one-out cross-validation
technique. When predicting for a certain benchmark and contention scenario no
data from that benchmark, including data from runs with different input sizes,
or that contention scenario were used in building the model. It was assumed that
information about the GPU contention is available. Section 4.4 provides a brief
discussion on how this information can be obtained.

Each benchmark run contains multiple iterations of the main computational
phase of the program. This is a common scenario in, for example, linear algebra
applications or video processing. Having multiple iterations allows the online



0.00
0.25
0.50
0.75
1.00
1.25
1.50
1.75
2.00
2.25
2.50

sp
ee

du
p 

(o
ve

r 
C

P
U

)

G
od

 R
ay

s

M
ed

ia
n 

F
ilt

er

To
ne

 M
ap

pi
ng

A
E

S

B
in

om
ia

l O
pt

io
n

B
la

ck
sc

ho
le

s

B
ox

 F
ilt

er
 −

 S
AT

B
ox

 F
ilt

er
 −

 S
ep

ar
ab

le

C
on

vo
lu

tio
n

D
C

T

Fa
st

 W
al

sh
 T

ra
ns

fo
rm

F
lo

yd
 W

ar
sh

al
l

H
is

to
gr

am

M
an

de
lb

ro
t

M
at

rix
 M

ul
tip

lic
at

io
n

M
at

rix
 T

ra
ns

po
se

M
on

te
 C

ar
lo

 A
si

an

N
B

od
y

Q
ua

si
 R

an
do

m
 S

eq
ue

nc
e

R
ec

ur
si

ve
 G

au
ss

ia
n

R
ed

uc
tio

n

S
ob

el
 F

ilt
er

G
E

O
 M

E
A

N

GPU−only oracle predictive model

Fig. 5: Speed-up over CPU-only execution averaged across all ten contention
scenarios. The GPU-only, oracle and predictive model achieve average speed-
ups of 0.61, 1.48 and 1.24 respectively.

search method to find a good partitioning between the CPU and GPU. Further-
more, due to the variable waiting time shown in section 3 it is needed to achieve
consistent results.

6 Results

This section evaluates and analyzes the performance of the proposed approach.
Firstly, we compare our model and a scheme that uses only the GPU to an oracle
scheduler. Then, the performance of the two dynamic schemes is evaluated and
compared to our model.

6.1 Comparison to Oracle

Overall Figure 5 shows the performance of the oracle and the predictive model.
Additionally, the performance of a GPU-only approach, which executes all ker-
nels on the GPU, is shown because OpenCL applications typically target the
GPU. The performance on each benchmark is shown, averaged across all ten
contention scenarios. The numbers are normalized to (parallel) CPU-only exe-
cution.

With the exception of five benchmarks, the GPU-only approach leads to on
average 1.5x slow downs over CPU-only execution. As shown in section 2 GPU
execution can be severely delayed in contention leading to increased running
times. The oracle results demonstrate, however, that when using the GPU in



the right way significant speed-ups can be achieved. An averaged speed-up of
1.43 (up to 2.47) can be observed across all benchmarks and contention scenarios.

Our predictive modeling approach achieves performance close to the oracle
for a number of benchmarks, e. g. DCT or Sobel Filter. For all but three bench-
marks it outperforms the GPU-only approach and in only two cases can slow-
downs over the CPU be observed. On average, the predictive model achieves a
speed-up of 1.23 which translates to 86% of the oracle performance, compared to
45% and 70% for the GPU-only and CPU-only approaches, respectively. These
results demonstrate that the predictive model manages to adjust well to different
contention scenarios.

The overall accuracy of the model is 47.8%, i. e. in almost half of all cases
the model picks the correct partitioning out of the 11 possibilities. A wrong
prediction does not necessarily lead to bad performance though. If the prediction
is only slightly off, the performance is often close to the optimum (figure 1).

Case studies To gain a better understanding of the results figure 6 shows per-
formance results for 3 of the 10 contention scenarios, namely none, monte carlo

and sort, representing no, medium and heavy contention respectively.

No contention. The average performance of the oracle in no contention is a
speed-up of 2.11. The oracle results show, however, that partitioning the work
between the CPU and GPU improves performance for all but one benchmark
(Floyd Warshall) over using only a single device. When there is no contention
on the GPU, the GPU-only approach leads to good performance because the
GPU generally outperforms the CPU. On average it achieves a speed-up of 1.64.
The predictive model outperforms the GPU-only scheme with an average speed-
up of 1.74.

Medium contention. When introducing medium contention on the GPU (fig-
ure 6b) performance of the GPU-only method suffers significantly for some
benchmarks, e. g. God Rays and Median Filter, while staying strong for others,
e. g. Binomial Option or Reduction. On average, it slows the program down
to 0.98 over the CPU execution. By contrast, the predictive modeling approach
leads to an average 1.20 speed-up across the benchmarks, which is not far from
the 1.42 speed-up of the oracle performance.

Heavy contention. In a heavy contention, the waiting time on the GPU increases
significantly. Therefore, in generally, we should avoid to map the program on
the GPU. The oracle approach is only able to achieve speedups on 3 out of 22
benchmarks, with an averaged speedup of 1.03 over the CPU-only scheme. It is
not supervised that in such a scenario the GPU-only approach performs poorly
(figure 6c). For only one benchmark, Monte Carlo Asian, an improvement over
CPU execution can be observed with some benchmarks have 100x slowdown. On
average, the GPU-only method leads to a slow-down of 6 times. Unlike the mas-
sive slow-down performance delivered by the GPU-only scheme, the predictive
model leads to only minor slow-down over the CPU execution, i.e. 3%.



0.00

1.00

2.00

3.00

4.00

5.00

6.00
sp

ee
du

p 
(o

ve
r 

C
P

U
)

G
od

 R
ay

s

M
ed

ia
n 

F
ilt

er

To
ne

 M
ap

pi
ng

A
E

S

B
in

om
ia

l O
pt

io
n

B
la

ck
sc

ho
le

s

B
ox

 F
ilt

er
 −

 S
AT

B
ox

 F
ilt

er
 −

 S
ep

ar
ab

le

C
on

vo
lu

tio
n

D
C

T

Fa
st

 W
al

sh
 T

ra
ns

fo
rm

F
lo

yd
 W

ar
sh

al
l

H
is

to
gr

am

M
an

de
lb

ro
t

M
at

rix
 M

ul
tip

lic
at

io
n

M
at

rix
 T

ra
ns

po
se

M
on

te
 C

ar
lo

 A
si

an

N
B

od
y

Q
ua

si
 R

an
do

m
 S

eq
ue

nc
e

R
ec

ur
si

ve
 G

au
ss

ia
n

R
ed

uc
tio

n

S
ob

el
 F

ilt
er

G
E

O
 M

E
A

N

GPU−only oracle predictive model

(a) none (no contention)

0.00

0.50

1.00

1.50

2.00

2.50

3.00

sp
ee

du
p 

(o
ve

r 
C

P
U

)

G
od

 R
ay

s

M
ed

ia
n 

F
ilt

er

To
ne

 M
ap

pi
ng

A
E

S

B
in

om
ia

l O
pt

io
n

B
la

ck
sc

ho
le

s

B
ox

 F
ilt

er
 −

 S
AT

B
ox

 F
ilt

er
 −

 S
ep

ar
ab

le

C
on

vo
lu

tio
n

D
C

T

Fa
st

 W
al

sh
 T

ra
ns

fo
rm

F
lo

yd
 W

ar
sh

al
l

H
is

to
gr

am

M
an

de
lb

ro
t

M
at

rix
 M

ul
tip

lic
at

io
n

M
at

rix
 T

ra
ns

po
se

M
on

te
 C

ar
lo

 A
si

an

N
B

od
y

Q
ua

si
 R

an
do

m
 S

eq
ue

nc
e

R
ec

ur
si

ve
 G

au
ss

ia
n

R
ed

uc
tio

n

S
ob

el
 F

ilt
er

G
E

O
 M

E
A

N

GPU−only oracle predictive model

(b) monte carlo (medium contention)

0.00

0.25

0.50

0.75

1.00

1.25

sp
ee

du
p 

(o
ve

r 
C

P
U

)

G
od

 R
ay

s

M
ed

ia
n 

F
ilt

er

To
ne

 M
ap

pi
ng

A
E

S

B
in

om
ia

l O
pt

io
n

B
la

ck
sc

ho
le

s

B
ox

 F
ilt

er
 −

 S
AT

B
ox

 F
ilt

er
 −

 S
ep

ar
ab

le

C
on

vo
lu

tio
n

D
C

T

Fa
st

 W
al

sh
 T

ra
ns

fo
rm

F
lo

yd
 W

ar
sh

al
l

H
is

to
gr

am

M
an

de
lb

ro
t

M
at

rix
 M

ul
tip

lic
at

io
n

M
at

rix
 T

ra
ns

po
se

M
on

te
 C

ar
lo

 A
si

an

N
B

od
y

Q
ua

si
 R

an
do

m
 S

eq
ue

nc
e

R
ec

ur
si

ve
 G

au
ss

ia
n

R
ed

uc
tio

n

S
ob

el
 F

ilt
er

G
E

O
 M

E
A

N

GPU−only oracle predictive model

(c) sort (heavy contention)

Fig. 6: Speed-up over CPU-only execution in three different contention scenar-
ios: no contention (a), medium contention with monte carlo as the workload
program (b) and heavy contention with sort as the workload program (c).



0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00
sp

ee
du

p 
(o

ve
r 

C
P

U
)

G
od

 R
ay

s

M
ed

ia
n 

F
ilt

er

To
ne

 M
ap

pi
ng

A
E

S

B
in

om
ia

l O
pt

io
n

B
la

ck
sc

ho
le

s

B
ox

 F
ilt

er
 −

 S
AT

B
ox

 F
ilt

er
 −

 S
ep

ar
ab

le

C
on

vo
lu

tio
n

D
C

T

Fa
st

 W
al

sh
 T

ra
ns

fo
rm

F
lo

yd
 W

ar
sh

al
l

H
is

to
gr

am

M
an

de
lb

ro
t

M
at

rix
 M

ul
tip

lic
at

io
n

M
at

rix
 T

ra
ns

po
se

M
on

te
 C

ar
lo

 A
si

an

N
B

od
y

Q
ua

si
 R

an
do

m
 S

eq
ue

nc
e

R
ec

ur
si

ve
 G

au
ss

ia
n

R
ed

uc
tio

n

S
ob

el
 F

ilt
er

G
E

O
 M

E
A

N

task farm online search predictive model

Fig. 7: Speed-up over CPU-only execution averaged across all ten contention sce-
narios. The task farm, online search and predictive modeling approaches achieve
average speed-ups of 0.45, 0.73 and 1.24 respectively.

Summary. The predictive model is able to adapt to contention on the GPU and
outperforms single-device approaches. When there is no contention the GPU typ-
ically outperforms the CPU but this is reversed when contention is introduced.
In all scenarios the predictive model is able to at least match the performance of
the fastest single-device strategy. The next section investigates the performance
compared to two dynamic mapping approaches.

6.2 Comparison to State-of-the-arts

Figure 5 shows the performance of the two dynamic approaches, task farm and
online search, as well as that of the predictive model. The performance of each
benchmark is shown, averaged across all ten contention scenarios. The numbers
are normalized to (parallel) CPU-only execution.

It can be seen immediately that both dynamic approaches fail to achieve
good performance in the presence of GPU contention. With a few exceptions,
e. g. Binomial Option or Mandelbrot, both approaches are not able to outper-
form the CPU-only approach. Especially the task farm mapper leads to slow-
downs in most cases. For all but one benchmark, namely Convolution, the online
search approach beats the task farm mapper. In only 5 of the 22 benchmarks does
either of the dynamic approaches outperform the predictive modeling approach.

On average, the task farm method leads to 2.2x slow-down and the online
search approach leads to 1.36x slow-down. In other words, both dynamic schemes
fail to achieve speedups when there is contention on the GPU. The predictive



model, on the other hand, achieves a speed-up of 1.24, demonstrating that using
the GPU in the right way can be very beneficial.

The benchmarks where the dynamic approaches, especially the online search
method, do well are the ones where GPU execution performs strongly even
in heavy contention scenarios, e. g. Binomial Option or Monte Carlo Asian,
as can be seen in figure 6c. Conversely, benchmarks where a GPU-only ap-
proach performs poorly in heavy contention, e. g. Fast Walsh Transform or
Floyd Warshall, also show huge slow-downs on the dynamic approaches.

7 Related Work

Programming Frameworks for GPUs As GPUs become ubiquitous for com-
puting, many programming models [8, 9, 11] have been proposed for GPU pro-
gramming. These approaches provide APIs to develop GPU applications. All
these approaches implicitly assume the GPU gives the best performance.
Program Mapping for GPUs A number of approaches have been proposed
to partitioning a GPU program kernels across the CPU and the GPU [14, 6].
However, those approaches assume the program runs in isolation and do not
consider the GPU contention.
Dynamic Task Scheduling Previous work investigates hardware and operat-
ing system based approaches to schedule tasks on CPUs. For examples, symbiotic
job scheduling tries to find the best mix of jobs [17, 5] on SMT processors; an
Parcae is a dynamic tuning framework [15] for CPU execution. Ravi et al. [16]
develop a dynamic approach to make task for heterogeneous systems. Their ap-
proach searches for the best partition at runtime. However, the searching can lead
to significant runtime overhead. Our approach, by contrast, avoids this overhead
by directly predicting the portioning setting.
Predictive Modeling In addition to optimizing sequential programs [4, 13],
recent studies have shown that predictive modeling is effective in optimizing
parallel programs [20, 21, 18] or scheduling multiple programs on the CPU [19,
7]. However, none of the previous research addresses the problem of task mapping
in the presence of workload contention on a heterogeneous platform with different
computing devices.

8 Conclusion

This paper has investigated the impact of contention for GPU resources on map-
ping OpenCL programs to CPU-GPU systems. Standard mapping techniques
fail to adapt to this type of contention because, unlike on the CPU, kernels have
exclusive access to the GPU and cannot be preempted. It is possible, however, to
adapt mapping decisions to GPU contention by explicitly taking it into account.
We have proposed a machine learning-based approach that uses information of
the contention as well as program characteristics to decide how to partition an
OpenCL kernel across the CPU and GPU. Across a set of 22 benchmarks and
10 different contention scenarios this method achieved a speed-up of 1.23 over



CPU-only execution. This corresponds to 86% of the performance of an ora-
cle approach. Two dynamic mappers, task farm and online search, only achieve
speed-ups of 0.48 and 0.80 respectively, thus actually slowing down the execution
time compared to the CPU-only method.

References

1. AMD. Accelerated parallel processing (APP) sdk, 2013.
2. Christopher M. Bishop. Pattern Recognition and Machine Learning (Information

Science and Statistics). Springer-Verlag New York, Inc., Secaucus, NJ, USA, 2006.
3. Bernhard E. Boser, Isabelle Guyon, and Vladimir Vapnik. A training algorithm

for optimal margin classifiers. In Proceedings of the 5th Annual ACM Conference
on Computational Learning Theory, pages 144–152, 1992.

4. Keith D. Cooper, Philip J. Schielke, and Devika Subramanian. Optimizing for
reduced code space using genetic algorithms. In LCTES ’99, pages 1–9, 1999.

5. Stijn Eyerman and Lieven Eeckhout. Probabilistic job symbiosis modeling for smt
processor scheduling. In ASPLOS ’10, pages 91–102.

6. Dominik Grewe and Michael F.P. O’Boyle. A static task partitioning approach for
heterogeneous systems using opencl. In CC, 2011.

7. Dominik Grewe, Zheng Wang, and Michael F. P. O’Boyle. A workload-aware
mapping approach for data-parallel programs. In HiPEAC ’11, 2011.

8. Tianyi David Han and Tarek S. Abdelrahman. hiCUDA: a high-level directive-
based language for GPU programming. In GPGPU ’09.

9. Amir Hormati, Mehrzad Samadi, Mark Woh, Trevor Mudge, and Scott Mahlke.
Sponge: portable stream programming on graphics engines. In ASPLOS ’11.

10. Intel. Intel SDK for OpenCL applications 2013 — intel developer zone, 2013.
11. Jungwon Kim, Honggyu Kim, Joo Hwan Lee, and Jaejin Lee. Achieving a single

compute device image in opencl for multiple GPUs. In PPoPP ’11.
12. LLVM. Clang: a C language family frontend for LLVM. http://clang.llvm.org/.
13. Shun Long and Michael FP O’Boyle. Adaptive java optimisation using instance-

based learning. In ICS ’04.
14. Chi-Keung Luk, Sunpyo Hong, and Hyesoon Kim. Qilin: exploiting parallelism on

heterogeneous multiprocessors with adaptive mapping. In MICRO 42, 2009.
15. Arun Raman, Ayal Zaks, Jae W. Lee, and David I. August. Parcae: a system for

flexible parallel execution. In PLDI ’12, pages 133–144.
16. Vignesh T. Ravi, Wenjing Ma, David Chiu, and Gagan Agrawal. Compiler and

runtime support for enabling generalized reduction computations on heterogeneous
parallel configurations. In SC, pages 137–146, 2010.

17. Allan Snavely and Dean M. Tullsen. Symbiotic jobscheduling for a simultaneous
multithreaded processor. In ASPLOS-IX, pages 234–244, 2000.

18. Zheng Wang and Michael F. P. O’Boyle. Using machine learning to partition
streaming programs. ACM Trans. Archit. Code Optim., 10(3), 2013.

19. Zheng Wang, Michael F. P. O’Boyle, and Murali Krishna Emani. Smart, adaptive
mapping of parallelism in the presence of external workload. In CGO ’13, 2013.

20. Zheng Wang and Michael F.P. O’Boyle. Mapping parallelism to multi-cores: a
machine learning based approach. In PPoPP ’09, 2008.

21. Zheng Wang and Michael F.P. O’Boyle. Partitioning streaming parallelism for
multi-cores: a machine learning based approach. In PACT ’10, 2010.


