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A major debate in ecology concerns the relative importance of
intrinsic factors and extrinsic environmental variations in deter-
mining population size fluctuations1–6. Spatial correlation of
fluctuations in different populations caused by synchronous
environmental shocks2,7,8 is a powerful tool for quantifying the
impact of environmental variations on population dynamics8,9.
However, interpretation of synchrony is often complicated by
migration between populations8,10. Here we address this issue by
using time series from sheep populations on two islands in the St
Kilda archipelago11–13. Fluctuations in the sizes of the two popula-
tions are remarkably synchronized over a 40-year period. A
nonlinear time-series model shows that a high and frequent
degree of environmental correlation is required to achieve this
level of synchrony. The model indicates that if there were less
environmental correlation, population dynamics would be much
less synchronous than is observed. This is because of a threshold
effect that is dependent on population size; the threshold magni-
fies random differences between populations. A refined model
shows that part of the required environmental synchronicity can
be accounted for by large-scale weather variations. These results
underline the importance of understanding the interaction
between intrinsic and extrinsic influences on population
dynamics14.

Much ecological debate has focused on the interaction
between noise and nonlinear dynamics in generating population
cycles5,6,13,15–18 and patterns of spatial synchrony8,10,19. Here we use
the unusual circumstance of long parallel time series from close—
but completely isolated—populations as a tool with which to
explore these issues.

Feral sheep populations on islands in the St Kilda archipelago
have been monitored since 1955 (ref. 11) (Fig. 1). The most detailed
series comprise continuous annual records for Soay sheep on the
main island, Hirta, and 18 years of counts for Blackface sheep on
Boreray; the islands are 3.5 km apart.

Both series show irregular population fluctuations, reflecting
repeated mass mortalities of sheep12,20 (Fig. 1a). Counts of sheep
on the two islands are highly correlated (Fig. 1b) for the logged
series. Pearson’s r ¼ 0:685 (95% bootstrap confidence limits are
0.447–0.838). As the two populations are completely separate, this
synchrony indicates a high correlation in extrinsic environmental
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Figure 1 Feral sheep populations on Hirta and Boreray. a, Time series of total

sheep counts from Hirta (red)10,19 and Boreray (green). Boreray counts were

obtained either on the island itself or from a circumnavigating boat. Both methods

allow most of the island to be observed and produce similar figures. The Boreray

counts are replicated in some years, showing that the estimates are consistent.

b, Scatter plot of the two island time series (logged). To allow easy comparison

with the models, we calculated the correlation coefficient after replacing replicate

Boreray counts for a given year with their maximum.

Figure 2 Modelling the Hirta time series. a, Plot of annual population growth rate,

rt ¼ xtþ1 2 xt, against log population size, xt. b, Fit of univariate SETAR model (see

Table 1a) to the scatter plot of xt+1 against xt. The shaded area shows the regime

above the population threshold, xt ¼ C ¼ 7:066; blue lines show the best-fit

model; and the diagonal black line is at xtþ1 ¼ xt. c, A comparison of the observed

rt versus xt plot (blue, open circles) with 150 iterates of the best-fit model with

added noise (red dots), as defined in Table 1; a transient of 250 years was run off

before recording the points. d, The same comparison as that shown in c, but

plotted as xt+1 against xt.
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influences on population fluctuations7. We studied the causes of
population synchronization using a simple model for the relative
influence on sheep population dynamics of forces dependent on
extrinsic noise and intrinsic density.

We analysed the data as log (population numbers), xt ¼ logðNtÞ
(see Methods). Figure 2a shows the basic pattern of density
dependence in the Hirta population by a standard plot of log
(population growth rate), rt ¼ xtþ1 2 xt , against log (population
numbers), xt (ref. 2). The figure shows that growth rate declines as
population size increases, as a result of intraspecific competition for
food11,20. There is also marked variation around this trend and the
variance is greater at high population density.

The general approach to modelling this interaction between noise
and density dependence is to express xt+1 as a function ( f ) of
previous population sizes, as follows: xtþ1 ¼ f ðxt ; xt 2 1; xt 2 2;…Þþ
etþ1 (refs 21–23), where e represents the additive variation around
the relationship. In some cases, f reflects a nonlinear relationship
between current and past population sizes23. To allow for this
possibility, we fit a nonlinear self-exciting threshold autoregressive
(SETAR) model23–25 to the Hirta time series. This method
approaches the problem of nonlinearity in time-series models by
estimating the optimal piecewise linear model for the function f
(Table 1 and Fig. 2b).

The analysis (Table 1a) shows that only time lags of up to one year
account for sufficient variation to be included in the model. The
best-fit model

xtþ1 ¼ a0 þ b0xt þ e0;tþ1 xt < C

xtþ1 ¼ a1 þ e1;tþ1 xt . C
ð1Þ

displays evidence of nonlinearity, captured by a change in dynamics
at a population threshold, C ðexpðCÞ ¼ 1; 172 individuals); this is
seen in the plot of xt+1 against xt (Fig. 2b). Below C, the dynamics
follow a simple recurrence relationship between xt+1 and xt, modi-
fied by additive normally distributed noise (e0;tþ1,Nð0; j0

2ÞÞ. The
intercept, a0, controls the mean density-independent population
growth rate. The estimated slope, b

0
, is not significantly different

from unity (Table 1a), indicating that there is no evidence of
density-dependent constraints on population growth at low

numbers21. In contrast, above the threshold, xt+1 is independent of
xt and highly variable (Fig. 2b).

The model shows that there is a noisy exponential increase in
population size when numbers are low following a population
crash. At high densities, the population can increase, remain
constant or fall, depending on environmental conditions. Simu-
lation of the model with noise captures the essential features of
both the growth-rate pattern (Fig. 2c) and the map of xt+1 versus xt

(Fig. 2d).
What does this analysis tell us about the high level of observed

correlation between the Hirta and Boreray populations? Assuming
that the Hirta model applies to both islands, we can use it to
estimate the level of correlation in environmental noise required
to generate the observed synchrony in population fluctuations.
Specifically, we assessed how the nonlinear change in dynamics
across the population threshold, C, affects the relationship between
environmental correlation and population synchrony. An appro-
priate null model is provided by the Moran effect7, which applies to
the synchrony of isolated populations described by a common linear
autoregressive regime. Moran’s theorem2 states that the asymptotic
correlation of populations following identical linear autoregressive
models will equal the correlation between random environmental
perturbations. In a single regime with no threshold, the expected
environmental correlation would therefore equal the observed
correlation between populations, r ¼ 0:685, as shown in Fig. 3.

In fact, Fig. 3a shows that much higher levels of noise correlation
(r . 0:9, on average) are needed to generate the observed correla-
tion between sheep populations on the two islands. This is because
of the density-dependent nonlinearity in the system2, which we
capture by the threshold. Fluctuations both above and below the

Table 1 Fits of threshold autoregressivemodels to the Hirta Soaysheep time
series

Estimate Standard error t P
.............................................................................................................................................................................

a Basic threshold model
Regime 0: below-fit threshold, C ¼ 7:066

a0 0.848 1.564 0.542 0.3*
b0 0.912 0.229† 3.98 ,10−5*
j0 0.183

Regime 1: above threshold
A1 7.01 0.069 101 ,10−5

b1 0 — — —
j1 0.293
.............................................................................................................................................................................

b Threshold model with weather covariates
Regime 0: below best-fit threshold, C ¼ 7:17

a0 0.0217 1.66 0.013 0.495
b0 0.811 0.209 3.883 0.0005
c0 −0.0073 0.0004 −1.769 0.05
d0 0.214 0.052 4.08 0.0003
j0 0.149

Regime 1: above threshold
a1 7.174 0.0955 75 ,10−5

b1 0 — — —
c1 −0.00157 0.0007 −2.208 0.024
d1 0 — —
j1 0.246
.............................................................................................................................................................................
Parameter estimates and associated significance levels are shown for the best-fit models;
a zero coefficient indicates that the relevant term is not significant enough to be included.
a, Estimates for the model without weather covariates (equation (1)). b, The model with
weather covariates (equation (2)). We included two significant weather variables g, the
number of hours of March gales, and h, the mean April temperature (precipitation did not
account for any significant variation).
* Probabilities are only approximate levels of significant differences from zero; the AIC is the
criterion used for establishing the minimal model.
†b0 is not significantly different from 1.
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Figure 3 Simulations of the observed correlation in sheep counts between

islands. Results are shown as contour maps of population correlation, as a

function of inter-island correlation in environmental noise below and above the

population threshold. Population correlation is colour coded as shown in the

colour key, which marks the observed population correlation (r ¼ 0:685) as a

black dot. a, Correlations from the basic SETAR model, equation (1); the dashed

lines show the expected environmental correlation ( r ¹ 0:685) required to explain

the island synchrony, based on Moran’s theorem. b, Correlation contours, as in a,

but using the model with added weather covariates (equation (2)). c, Island

correlations for the weather covariatemodel, as inb, but plotted as a (transparent)

surface. The equivalent surface for the basic SETAR model (a) is shown as the

underlying solid surface.
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threshold need to be highly synchronized to generate the observed
population correlation. The asymmetry of Fig. 3a also indicates that
environmental synchrony above the threshold is the more powerful
correlating force.

The correlation analysis shows that the populations are influ-
enced by frequent extrinsic environmental variations at all population
levels. We studied underlying mechanisms by including observed
large-scale meteorological covariates (monthly wind, rain and
temperature) in the model (see Table 1b). The best-fit model:

xtþ1 ¼ a0 þ b0xt þ c0gtþ1 þ d0htþ1 þ e0;tþ1 xt < C

xtþ1 ¼ a1 þ c1gtþ1 þ e1;tþ1 xt . C
ð2Þ

has the same basic structure as equation (1), but now includes two
extra terms. First, it includes a negative effect of March gales (hours
of gales, gt+1) on population growth rate, both above and below the
threshold: gales are likely to increase the death rate of sheep, which
are at their lowest physiological ebb at this time20. Second, a positive
effect of April temperature, ht+1, on population growth rate below
the threshold is included; presumably temperature affects the
timing of rapid grass growth. The parameters c0, c1 and d0; d1

control the strength of gale and temperature effects, respectively
The new model allows us to assess how synchrony in weather

affects the inter-island population correlation. We assume that the
gales and temperature are the same for the two islands. How much
‘extra’ correlation do we need in the remaining unexplained
variability above and below the threshold to generate the observed
level of population correlation? To determine this, we repeated the
correlation analysis of Fig. 3a using the model with added weather
covariates (Fig. 3b, c). The inclusion of common weather effects can
account for part of the inter-island population correlation—the
‘unexplained’ residual environmental correlation required to the
population synchrony is reduced from .0.9 to around 0.7 (Fig. 3b).
The common weather pattern generates an inter-island population
correlation of about 0.3 when the unexplained residual noise is
uncorrelated (that is, at the three-dimensional origin of Fig. 3c).

This analysis underlines that the observed inter-island population
synchrony is remarkably high. We required an average environ-
mental correlation of over 0.9—well above the prediction of the
Moran effect—to achieve the observed population correlation of
,0.7. This is because of the density-dependent nonlinearity in the
system2. Specifically, the two sheep populations must both be
sufficiently entrained by the same environmental conditions to
cross the population threshold, C, in the same year if they are to
remain highly synchronized. This result has general implications for
the application of models for environmental entrainment of spatial
dynamics8,10,19 to systems that exhibit threshold behaviour.

Analysis of the inter-island correlation also provides a powerful
tool for dissecting the internal dynamics of the populations. First,
the SETAR model (equation (1)) extends the conclusions of pre-
vious studies of the Hirta population13,20. There is a threshold sheep
density that is determined by food availability; above this density
the population can undergo spectacular crashes, which are consis-
tent with strong, and sharply focused, overcompensatory density
dependence13. However, populations above the threshold need not
necessarily crash. At high population density, even though the
average density-independent growth rate is negative (Fig. 2a), the
variance in population growth rate is high enough that the popula-
tion size can sometimes increase. Essentially the same dynamical
pattern is apparent in the Boreray series.

Second, the inclusion of meteorological covarites in the model
explains part of the interaction between density-dependent and
-independent forces. The population takes two years after a popu-
lation crash to rise again to high levels20. If this rise above the
threshold coincides with severe spring gales, they increase the chance
of another severe crash. The probability and degree of overcom-
pensatory density dependence therefore depend on the weather.

Finally, the portion of inter-island correlation that remains
unexplained by the available weather covariates (Fig. 3d) shows
that there is a good deal more to understand about the dynamics of
crashes in mechanistic terms. Specifically, it seems likely that some
combination of food shortage12, parasitism26,27 and the timing of
bad weather stresses the sheep enough to precipitate crashes. In
high-density years, the system appears to be exquisitely sensitive to
this combination of density-dependent and -independent factors.

Our results underline the importance of detailed long-term
studies for teasing out the interaction of deterministic and stochas-
tic influences on population fluctuations14. Threshold models with
meteorological covariates24 provide a useful method with which to
analyse these issues. M
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods

Fitting the threshold autoregressive models. This general approach to
modelling nonlinearity in time series24 partitions the process into regimes that
follow linear autoregressive models. Estimation is relatively straightforward, as
the linear theory applies to the subregimes25. The method is particularly useful
for the sheep series as it allows, first, for changes in noise variance with
population size (by permitting different noise levels for each regime) and,
second, the straightforward addition of weather covariates (Table 1). We based
the model on log (population number), as this allows naturally for the
possibility of density dependence within each regime, as indicated by a previous
model of the system13, which showed threshold-like behaviour for the 1985–91
data. In fact, a threshold model based on absolute population abundance (Nt)
generates similar qualitative results to the models used here.

An important issue in model selection is the order (maximum number of
lags) in each regime. We estimated this up to a lag of five years, by minimizing
the Akaike information criterion (AIC)24,28. We also used the AIC to identify the
best-fit threshold model, allowing for degrees of freedom. The best-fit
SETAR model is of order 1, with five parameters (AIC ¼ 2 109:97, compared
to −107.57 for the best linear autoregressive (0) model with one parameter).
The fit indicates a significant discontinuity in the observed dynamics across the
threshold (captured by the break in the blue lines in Fig. 2b). Forcing a
continuous unimodal deterministic skeleton (either a broken line model, or a
low-order polynomial) gives qualitatively the same island correlation results as
those shown in Fig. 3. However, such models (not shown) do not capture the
observed threshold in both noise and determinism as well as does equation (1).
Weather covariates. We tested a range of weather variables for inclusion in
the model. On Hirta most mortality occurs at the end of winter in March and
April when many animals can die of starvation11,12. Research on other breeds of
sheep has shown that extreme weather conditions at times close to lambing can
cause perinatal mortality29 and that poor weather can decrease the proportion
of time an individual spends feeding30. Consequently we considered mean
monthly temperature, mean monthly precipitation and the total number of
hours with wind speeds of over 34 knots during the months of March and April
as possible causes of the observed correlations between islands. Weather data
were provided by the UK Meteorological Office and come from the closest
meteorological station, on the island of Benbecula (Outer Hebrides), 80 km
east of St Kilda.
Simulations of the island correlation. We calculated each point in the
40 3 40 contour maps (Fig. 3) from replicate pairs of simulations of the
specified model. The second simulation had a different series of random shocks
from the first, adjusted to give the correlation between the two noise series
above and below the threshold, C, specified by the axes of the plot. Correlations
between the (logged) series were calculated for 800 years, after a transient of
250 years. We calculated the simulated weather covariates shown in Fig. 3c by
bootstrapping (resampling with replacement) the observed series, to generate
long, simulated time series of March gales and April temperatures. We sampled
the weather data as annual (gale, temperature) pairs.
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Stereopsis is the perception of depth based on small positional
differences between images formed on the two retinae (known as
binocular disparity). Neurons that respond selectively to binocu-
lar disparity were first described three decades ago1,2, and have
since been observed in many visual areas of the primate brain,
including V1, V2, V3, MT and MST3–8. Although disparity-selec-
tive neurons are thought to form the neural substrate for stereop-
sis, the mere existence of disparity-selective neurons does not

guarantee that they contribute to stereoscopic depth perception.
Some disparity-selective neurons may play other roles, such as
guiding vergence eye movements9,10. Thus, the roles of different
visual areas in stereopsis remain poorly defined. Here we show
that visual area MT is important in stereoscopic vision: electrical
stimulation of clusters of disparity-selective MT neurons can bias
perceptual judgements of depth, and the bias is predictable from
the disparity preference of neurons at the stimulation site. These
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Figure 1 MT neurons are clustered according to disparity selectivity. a, Filled

circles show multiunit (MU) responses to a drifting random-dot pattern; each

datum is the mean of four responses 61 s.e. The solid curve is a cubic spline

interpolation. Filled circles labelled ‘L’ and ‘R’ denote multiunit responses to the

same visual stimulus presented monocularly to either the left or the right eye,

respectively. The solid horizontal line gives the multiunit response in the absence

of a visual stimulus (spontaneous activity). Open circles and the dashed curve

show responses of an isolated single unit (SU) recorded simultaneously. The

dashed horizontal line gives the spontaneous activity level of the single unit. b,

Sequence of disparity-tuning curves recorded at 100 mm intervals along an

electrode penetration through MT in monkey S. Standard error bars are generally

hidden by the data points. Curves are cubic spline interpolations, and dashed

lines represent the spontaneous activity level. Height of scale bar is 400 events

per second. Multiunit responses from site 5 (marked by an asterisk) are the same

data shown in a.


