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Generalized Lincar Modelling
for Parasitologists

K. Wilson and B.T.

Typically, the distribution of macroparasites over their host
pnpulnnon is highly nagoregeted and empirically best
described by the negative binomial distribiticn. For para-
sitologists, this poses a statistical provlem, wiich is often
tackled by log-transforming the parasite data prior to
analysis by parametric tests. Here, Ken Wilson and Bryan
Grenfell show that this method is particularly prone to
type [ crrors, and highlight a much more powerful and

Grenfell

regression analyses, etc. This presents the parasitolo-
gist with a fundamental problem.

Ov ing the problem of no lity

The majority of parasitologists either ignore the fact
that the non-normality of their data is a problem and
use parametric tests reg O use Non-p tric
tests, such as Mann-Whitney U-tests, Wilcoxon signed

flexible alterssative: generalized linear modelling.

A major problem facing any para-
sitclogist is how best to analyse his
or her hard-earned data. What is
the best way of determining, for
example, whether human faecel
cgg counts decline with age, or
whether male and female rabbits
differ in their worm burdens? The
problem of correctly identifying the
best statistical test in parasitology
is accentuated by the fact that para-
sites tend to be aggregated over
their host population: most hosts
have just a few parasites, or none at
all, while others have many (for
relevant discussions, see refs 1-5).
As a result, the parasite distribu-
tion is right-skewed with a long tail,
and fails to conform to the normal
or Gaussian distribution assumed
by most of the commonly used
statistical tests, ie. parametric tests,
such as t-tests, analyses of variance,
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€82 3E). Tel: +1786 467807, Fax: +44
1786 464994, e-mait: kw2@stir.ac.uk

Parasitology Today, vol. 13, no. 1, 1997

ranks tests, Kruskal-Wallis tests, etc. (see Eox 1). While

Box 1. Current Statistical M ds used by F itologi
We surveyed the statistical methods reported in 50 papers published in the past
five years in the journal Parasi (K. Wilson, unpublist and see Table
below). All of these papers contained data, such as egg counts and worm burdens,
for which we wouid expect the untransformed distribution to be discrete (rather
than continuous) and to conform to the negative binomial, or at least to the
Poisson. Remarkably, in 20% of the papers surveyed, no statistical tests were
applied at all; 46% used standard parametric tests (such as t-tests, analyses of vari-
ance anc regression analyses), of which more than half failed to transform the data
in any way prior to analysis; 28% used non-parametric tests (such as Mann-
Whrne) and Kru:,kal-Wal : tesls), and |u5t three of the 50 papers used sophisticated
lih Sur ly, during this pesiod, there

was nut one published paper that used generalued linear models.

Table. Statistical tests used in 50 papers® published in Parasitology in 1991-1995
Both mature
Mature Immature and immature Total No.

Statistical test parasites parasites  parasites (and %)
None 4 S I ¢ (20}
Parametric (x) 5 4 12 (24)
Parametic (log-x) 3 8 [ 1 (22)
Non-parametric 5 5 4 14 (28)
Maximum-likelihood i 2 0 3 {9
GLMb 0 0 0 0 (0
Totai i8 23 9 50

2 Papers are divided intc those that discussed variation in the burens of mature parasites
(adult worms or ticks), immiature parasites {~ggs. Corysts, gametacytes. Sporozoites, cercariae,
microfilariae, etc.) and combined studies. Paranietric tests are divided iric those that analysed
ounts (x} and chose that anziysed log-transfonmed couats {log-»}.
M refers to generalized finear models and likelihe
fikelihood models.

to non-linear
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Box 2. Leg-transformation often Fails ts Ni lize Paragite Distrik

non-f ic tests make few

A traditional method for normalizing right-skewed dispersed data is to
logy,- or log,-transform it, afier first adding one to avoid zero counts. How-
ever, as illustrated below, this transformation fails when the mean of the dis-
tribution is small (a) or the distribution is highly aggregoted, as indicated
bysraall negative binomial k values (b).
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assumptions about the underlying
statistical distributionsé, and hence are
preferable to parametric tests when
the normaiity assumption is violated,
they generally lack the power of
equivalent parametric tests® and so0 are
not an ideal solution.

A common alternative to using
non-parametric tests is to use standard
parametric tests after first transform-
ing the data so that their distribution

approximately normal. Because
most macroparasite distributions are
empirically best described b;r the
negative binomial distribution®-?, an
appropriate trans{ormation is gener-
ally the lugy,- or log transformation
(after fizst adding one to the parasite
count to avoid zeros)!®''. However,
this transformation often fails to nor-
malize the distribution, especially
when it is highly skewed (see Box 2).

Generalized linear models

A less common alternative to
nen-parametric tests is the family of
generalized linear models (GLMs)
(see Box 3). These are generaliz-
ations of classical linear models (such
as linear regression, analyses of vari-
ance, eic.) in which the error distribu-
tion is explicitly defined (see Box 3).
As emphasized above, classical linear
models assume that the error distri-
bution is normal. However, for macro-
parasite data, the appropriate error
distribution is often the negative bi-
nomial, which is defined by its mean
(x) and the exponent k. The variance
(s of a negative binomial distribu-
tion is described as follows:

7-3
k

where x and s? are the mean and
variance, respectively, of the sample
and k is an inverse measure of the
degree of aggregation, such that as
aggregation declines so k increases
until, as k approaches infinity (or in
practice, above about 20), the distri-
bution converges on the Poisson®.

In order to fit the negative bi-
nomial distribution, we reed to esti-
mate the exponent. The most accu-
rate estimate of k is obtained by

s [¢)]

by k of the negative binomial) on the efficacy of log,,-transformation: be.th (2)
and (b) show the frequency distributin of 5000 random samples taken from
negative binomial butions (using the rregbin function in Splus), and the
subsequent distribution after the ples were log,y
average: k of the distribution is one and the average population mean veries
betvicen 1000 and 1, and in (b) the average population mean is 100 and
average k varies between 10 and 0.1.
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3 i -likelihood methods®, but
a reasonably accurate moment-
i can be calculated by re-
arrangement of Eqn 1:
d. In (a) the N 72
k= = 2}
st -x

where R is the estimated value of L.
Parasitology Today, vo. 13, no, i, i997



Techniques

defined by Eqn 1 (in the text) and the link don is g

Box 3. Generalized Linear Models
Generalized litear models (GLMs), are generalizations of classical linear models (analyses of variance, t-t:sts, linear,
Tegrassion: anaiyses, etc) that allow the error structure (the distribution of residuals about the fitted model) to
be explicitly derined by one of a serius of distributions, usuall:

y from the exponiential family. GLMs also use a link func-
tion, which maps the expected values of the response variabl

e (eg. faecal egg count) on to the explanatory variables (eg.

age and sex), For classical linear models, the error structure is defined by the normal distribution and the link function is

the identity link. For the negative binomial distribution (which is not in the exponential fami]?'), the GLM error structure is
3

tion to the uses of GLMs in ecological studies, see Ref. 12.

A common alternative to explicitly defini

ly the log or sq

The significance of terms in GLMs are generally tested by comparing the deviances of models with and without those
terms. Deviances are analogous to mean squares in classical linear models. For the Poisson and negative binomial
distributions, deviances are distributed approximately as Chi-square (x?), with degrees of freedom equal to the difference
in the number of parameters attributable to each cof the models.

t Jink'23, For an accessible introduc-

ial error di

and to adjust the scale (or d

g a nezative bi

of x>-tests'217,

i F ) so that the ratio of the residual deviance and its degrees of
freedom is approximately equal to one (Refs 12, 17). Thass. instead of asssuming that the variance of the parasite distribu-
tion is equal to its mean {s2 = x2, for the Poisson distribution), x
 is referred to as the empirical scale or dispersion parameter. When empirical scale parameters are used, model
parameter estimates are not affected but the standard crrors
ses of variance and regression models, the scaled deviances for terms in the model are compared using F-tests instead

is to assume a Foisson distribution

we assume that it is proportional to it, ie. s2 = ®x, where

are higher’? and, in a marner similar to standard anaiy-

A number of statistical packages (eg. GLIM, Genstat,
SAS and Splus) include GLMs and have a range of
error structures already defined (including Gaussian,
gamma, binomial and Poisson). Negative binomial
errors are not usually included in the available set,
but they can be defined by the user or obtained from
sources within the public domain (for example, Ref.
12 provides GLIM macros on disk both for estimating
k by maximum-likelihood methods and defining nega-
tive binomial errors, and equivalent Splus functions
are available by anorymous ftp from StatLib; see also
Refs 13, 14).

An alternative to definiug a negative binomial ei ror
distribution explicitly is to generate an empirical
estimate based on Poisson errors. Equation 1 can be
simplified to:

x (1-x)
k

Thus, the negative binomial distribution can be ap-
proximated by assuming that & is approximately con-
stant over all values of x. In practice, we define a
Poisson error distribution and estimate the value of ¢
empirically (@ is then defined as th- empirical disper-
sion or scale parameter; see Box 2).

2 .

=X@ 3

)

A comparison of methods

Wilson, Grenfell and Shaw™ have recently com-
pared the log-transformation method described earlier
with these two GLM methods, using (1) simulated
data sets (Box 4), and (2) real parasite data from an
unmanaged populaticn of Soay sheep on the Scottish
island group of St Kilda (Box 5).

From the simulated data sets, they conclude that,
when sample sizes are small, the frequency of type Il
errors, ie. incorrectly accepting the null hypothesis,
Hy, is generally slightly higher when using standard
parametric tests on log-transformed data thax. when
using either of the GLM methods. However, much
more importantly, they also conclude that, almost
regardless of the sample sizes, when the distribu-
tions being compared differ in their degree of aggre-
gation (as indicated by their negative binomia! k
estimates), type I errors, ie. incorrectly rejeciing #,,

Parasitology Teday, vol. 13, no. 1. 1997

are likely to be extremely common when using the
log-transformation method, but negligible when
using either of the GLM methods (Box 4). This
strongly suggests that when using the log-transfor-
mation method, parasitologists are much more likely
to report spurious differences in parasite bu.d:ns
than when using either of the GLM methods. For-
tunately, it appears to matter little whick of the
two GLM methods is used. This means that standard
statistical packages such as GLIM, Genstat, SAS
and Splus, can be used without recourse to writing
specific macros or functions to define the appropriat2
error structure.

Analyses using real parasite data also indicate that
the choice of statistical method used is also important
here!*. For example, an analysis of the worm burdens
of Soay sheep dying during one winter on St Kilda
strongly suggesis that the log-transformation method
is capable of generating type Il errors, and an analysis
of August faecal egg counts of the same population of
sheep suggests that this method may also generate
type 1 errors (see Box 5 for details). In both cases,
these results were confirmed by more sophisticated
non-linear maximume-likelihood models. This latter
method is also needed when analysing patterns in the
degree of aggregation, such as changes in k with aget’.

The use of explicit maximum-likelihood error
structures is not restricted to field data. For example,
Box 6 shows an analysis of the results of experimental
infections of cats with filarial worms. In this case, the
method also allows us to estimate the death rate of
adult parasites (Box 6).

Conclusions

The analyses summarized here clearly indicate that
classical linear regression models  using log-
transformed data are usually much more likely to
generate both type I and type 1l errors than are gener-
alized linear models. GLMs are becomingly increas-
ingly incorporated into modern statistical packages
and being used by ecologists and social scientists. With
familiarity, they are only marginally more difficult to
use and understand than the statistical models cur-
rently being employed by parasitologists. Obviously,
they are not the be-all-and-end-all in s:aiisticjasl
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Box 4. Simulated Data Sets

In order to compare ihie log-transformation method with the GLM approach, Wilson, Grenfell and Shaw' used the two
methods to analyse a series of randomly generated data sets from the negative binomial distribution. The data sets com-
prised 20, 100 or 300 samples from distributions with means ranging between one and 2000, and with k values ranging
between 0.5 and 20. These ranges cover those of most parasite burdens and faecal egg counts. For each of a pair of data sets,
with either identical means or means ditfering from each other by 100% (1 vs 2, 5 vs 10, 10 vs 20, etc.), the statistical signifi-
cance of the difference between the means was assessed over 100 trials using three models of increasing sophistication: a
classical linear medel using log,,-transformed data (s, ir. Fig. below); a GLM with Poisson errors and an empirical scale
parameter, using untransformed data (b): and 2 GLM with negat’ ve hinomial errors, again using uniransformed data (c).

The explanatory variable of the three models comprised a single factor, which u.)ded for each of the pair of distributions.
The number of times that the differert models detccted significant differences between distributions was scored over 100 tri-
als using F-tests (@ and b) or Chi-square tests (¢). Thus, by comparing the output of the three models it was pussnble to assess
the probabilities of each perfuxmmg type I errors, ie. incorrectly g the null b hesis of no di the
means; and type Il errors, ie. incorrectly accepting the null hypothesis.

The biggest differences among the three models came when comparing data sets that had the same means, but different k
values (for details of the other comparisons, see Ref. 14). In this series of comparisons, the probability of the log-transfor-
mation model preducing type [ errors ranged between between 0 and 75% and increased with sample size (11), sample mean
xand differen-e between the component ¥ values. By comparison, both the GLMs produced many fewer type [ errors over
all values of u, X and k; and both models failed with a probabitiry ranging between about 0 and 15% (see Fig.). Thus, the log-
transformation method is much more likely than the GLM method to indicate spurious differences between data sets.

a Log transformation b GLM-1 ¢ GLMm-2
100 100 100
w k= 05vsk= 1.0
e k= 05vsk=10.0
4 k= 05vsk=20.0
geo 80 8o o k= 1.0vsk=100
s ,A><,7‘ o k= 10vsk=20.0
£ a k=10.0vs k=20.0
é 60 / 60 60
k]
Z 40 40 40
! /«%N
8 20 / S - 20 20
g“
E/L/;’A [ SN m’ ___E“ﬁ ﬂkiii
0 . 0
1 10 100 100 1 10 100 1000 0 100 1000
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A comparison of the rate of type | error production when the component distributions have the same mean but different k
values: (a), (b} and (¢} cach shows the probability of making a type I error when using each o' the three statistical methods
{see main text and Ref. 14, for a description of the models and the simulations). Each point ref.rs to the probabi]ity of incor-
rectly rejecting the null hypothesis of no difference between the means, and is based on 100 s;rulations comprising, 20 data
pomts taken from two negative biromial distributions with identical populaucn means but different population I values.
The six symbols refer to different combinations of k values, as indi in the figure. based on larger samples
(100 or 500 data points} produce qualitatively similar trends (see Ref. 14). The resulis for the log-transformation method,
shown in (a), indicate that this has a high probability of incorrectly rejecting the null hypothesis over a range ot sample
sizes, ssmple mieans and component k values. The results for the GLM method with an empirical scale parameter is shown
Ln (b}, and for the GLM with negative binomial errors in (c). For both (b} and (c), the probability of type I error is small.

analyses!d, and mere sophisticated methods, such as  References o .

non-linear maximum-iikelihood analysis and boot- ! ""“"31':::’"‘ & 1971) requency distr of p .
population of three-spine,

strapping, may be appropriate when sample sizes are L, with to the negative bi Victedls

large or the statistical models simple (eg. Refs 4, 11,

16}. However, GLMs are a significant improvement
on raost current methods of analysis, and their use by
parasitologists must be encouraged.
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Box 5. Seay Sheer Carasite Data
The log-"ransformation mcthod was compared the two GLM methods using post-mortem worm counts and faecal
egg counts of an unmanaged population of Sezy sheep on the Scottisi istand group of St Kilda (see Refs 18, 19). This popu-
lation exhibits severe ‘crashes” everv 3-4 years, when up to 70% of the sheep die, due mainly to the population over-
exploiting its winter food supp'-y"“f', although parasites have also been implicated (Refs 18, 22, 23; and K. Wilson ¢t al.
unpublished).

Worm burdzas

In the first comparison, Wiison, Grenfell und Shaw'* analysed the worm burdens of sheep that died during the popu-
iation: crach of 1991-1992. The models included two factors p ially affecting the b of six species or genera of
adult helminth worms: AGECLASS (two iavels: lambs and adults) and SEX (two levels; males and females). This analysis
identificd three qualitative discrepancies between the results of the three models. In two of these (Trichuris ovis ard Dictyo-
caulus filaria), the iwo GLMs identified SEX as a signifi } ity ir worm burdens, when the log transformation
method failed to do so. In the third (Teladorsagia spp), the two GLMs identified a significant AGECLASS-SEX interaction,
whereas the log-transformation method again failed to do so. Thus, it appears that the log-transformation method com-

Faecal egg counts

While all three hods i

mitted type Il errors in these analyses and this was conticined by non-linear maximum-likelihood methods.

In the second comparison, Wilsor, Grenfell and Shaw'*

in the month of August between 1988 and 1993. When male egg counts were considered in isolaticn, the models again had
two factors: AGECLASS (four levels: lambs, yearlings, two-year-olds and adults) and YEAK (six levals).
dicated i 1

d the factors i ing the faecal egg counts of sheep

transformation method id

d signiﬁcarr\t diff

y variation in male faecal egg counts, only the log-
es between

further supported using a 1

transformation method appears to have made a type I errer that is not made by the two GLMs, and this assertion was

the four age-classes (P<0.01). Thus, the standard log-
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Box 6. Dealing with Agg in Exp

Estimating parasite death rates in cats infected with Brugia pahangi. The Fip.
(below) shows a famous parasitological data set™*?" the number of acult
worms recovered after infection of cats with a single dose of the filarial nema-
tode Brugia pahangi linitial dose = 100 larvae (dots) or 200 larvae (crosses)].
After a sharp initial decline in recoveries (reflecting the initial establishment
of worms®), the proportion of parasites declines gradually, though variably,
with time. Given a Poisson-ciistributed infection rate, we might expect a Poisson
distribution for parasite numbers®; however, these data are much more
aggregated than that (estimated k * SE = 3.29 * 0.41), probably reflecting
heterogeneities in parasite demographic parameters betweer: hosts?*2¢. This
aggregation is confined by a good fit of the nega‘ive binomial medel (resid-
ual deviance = 163, degrees of freedom = 150, P = 0.222), which also indi-
cates no significant difference in proportional recovery between infection
dosae

08~ .

Proportior: of initial dose
o
=

0.0 . R M
200 400 500
Days since infection

The fitted kne in the Fig, ‘above} is for the regression of worm burden on
time for recoveries after 40 days, using a log link function. Comparison with
earlier burdens (mean indicated by the triangle) illustrates the initial drop in
parasite load. The regression 1lso allows us to estimate the adult parasite’s
average drath rate and iifespan (E. Michael, B.T. Grenfeli, D.A. Denham and
D. Bundy, unpublished). The aeath rate is equal o the slope of the regression
line (= 0.538 per year) and the lifespan equal to 1/slope (= 1/0.538 = 1.86
years).
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Plasmodium cdc2-related Kinases:
Do they Regulate Stage Differentiation?
Reply

! can only add my suppert to Kinnaird and
Mottram’s comments (this issue): currently
availatie data on Plasmodium cdc2-related
kinases are indeec nsufiicient to define a
roie fo- these «nzymus in the parasite’s life
cycle {as was cleany stated in our onginal
paper an Pfirk-1)". Nevertheiess, a touch of
cautnys <oeculation is useful to define
working hypcitheses whose value can be
tested experimentaliy.

Qur hypothesis that Pferk-1 may be
involved in establishment or mainterar.ce
of the different: -ted. nondividing state of

; gemetocytes was casec on the facts:
(1) nat it is most homoioge . 10 &
known downregulator of cell proliferzuon
{p5957): and (2) that its mRNA can be
detected only in gametocytes. Furthemaare,
expressicn of pSBSTA during mouse
embrycnic development coincides with the
cessatior: of cell division that accompanies
diffeventiation? ~ a pattem simuar to that
e«?.:.\\ed by Pferk-1. However, as
raentione 5y Fannaird and Mottram,
PSEOTA g 1ust cne member (namely
PITSLRE-| Bl of the PITSLRE farmly of
kinases, of whic several very closely elated
iscforms exist; the function of
-these isoforms i3 unknown, but most (the
exception being PITSLRE-BI and -a2)
appear no- to iave deletenous effects on
cell viability: when expressed ectopically
suggesting that they do not act as
dowr.regulators of cell division®. The
possibilit, exists that Pfek-1 is a
garmetocyte-specific functional homologue
of one of these rather than of PITSLRE-B(
ang plays no rofe in the regulation of
gametocytogenesis. The search for the
function of p58GTA hcmologues in
Apicornplexans wili bensfit from the finding
that Theileria arwlata appears io possess
such & gene, a; indicated by Southemn blot
experiments using Pferk-1 as a probe; this
putative hornologue has been cloned and is

“urrently being chiracterized (G. Langsley,

pers. commun ).

Kinnaird and Mottrarn suggest that cell
¢ycle arest during gametacytogenesis is
more fixely to be a 24 through the
action of a CDK inhibitor (CUi than

3

through that of an additionat kinase activity.
While ther are cases in whicn a COt
appears to te sufficient to arrest the cell
<ycle (eg in yeast mating-pheromone
response™). the fact that, i highe:
eukaryctes, additional elements (such as
PS8STA for example) appear, in some
instances, to be required to stop cell
proliferation indicates that inhibiting a celt
cycle kinase with @ CL! rr.ay not, by itself,
be enough to induce or aintuin cell cycle
arrest: this may reflect the relatively higher
complexity of the cell cycle machinery in
such organisms. The complexity of
Plasmodium’s life Cycle is presumably
mirrored by an underlying complexity at
the level of molecular regulation of the
progression of this cycle. The large number
of CRKs already identified in oue
protezean parasites with complex life
cycles® (versus the apparently much simpler
situation of yeast for exampiz; is consistet
with tnis view. Likewise, the harvest of
Plasmedium CDKs has probably only just
begun. and one can reasonably expect
more enzymes to be added to the as yet
short list (indeed, we are presently
characterizing a novel Pfcrk homologue).
Lack of success in heterologue mutant
<cmplementation: system (eg. yeast cdc-2)
does i1 2imanty mean that the genes
under investigar. .7 <3 not have a similar
function to that lacking in the mutant;
absence of functional ccmplementation
may well be due to poor expressic of the
parasite’s genes in the heterciogous host,
or (o the inability of the gene prcduct to
establish the required interactions with the
host's machinery. In other words, the bes:
way to resoive this question is to study the
furiction of these genes in the parasites
themselves. Stable transfection protocols
for beth trypanoscmatids and Plasmodium®
are niow available, which should make this
goal attainable. It would, of course, also be
of great interest to identify CDIs in
Prasmodium.

Kinnaird and Mottram rightly point out
that there are several steps in thz parasite’s
life cycle that require cell cycle a
Although there is no reason a provito

%

expect that the same gene pros
involved at different stages (after all, if
Plasmodium uses different seis of ribosomes
at different developraental stages’, it miy
well use different enzmes to fulfil simitar
functions at different stages), it is certainly
worth lookirg at Pferk-| expression during
the entire life cycle, especialiy in nondividing
stages (eg. sporozoites). In this respect,
preliminary data suggest that a Pferk-/ gene
product peaks in late 2amatocyiogenesis
(Day 15) and is still detectable (but
decreasing rapidly) after gametocyte
activation has been initiated (M. Kariuki,

C. Doerig and S. Martin, unpublished). If
confirmed, such data would be consistent
with Pfcrk-1 expression being correlated
with the cell-division status of the parasite.
The absence of deteciable Pfcrk-1 in asexual
parasites argues against the idea that this
enzyme is involved in the development
commitment to gametocytogenesis, since
this commitment appears to occur in the
preceding schizont? (the possibility cannot
be excluded that Pferk-1 is indeed involved
in the developmental decision, but is
expressed at subdetectable levels or only in
a small subpopulation of asexual parasites).
Demonstrating a link between Pferk-1 and
cell surface components (as is the case for
mammalian Pp58STA) would lend support to
k" 22 bypothesis that it may function in sensing
zndfor transducing environmental changes
that are likely to trigger developmental
processes such as gametocyte activation:
cleany, much more work is required before
a picture of Ffcrk-1 function and mode of
action eme-gas.

All colieagues weti. ar the regulation
of grewtl: and developmer: .« Plasmodium
would pr-sumably agree that funcional

‘harcienzation of candidate regulator -
genes is the obligate next step towards an
understanaing of this phenomencn. This
endeavour will Le greatly facilitated by the
recent availability of reverse genetics
procedures to Plesmodium. In the
meantime, we wa, still favour the working
hypnthesis that Pferk-1 is an important
regulator of differentiation: if ernpirical
evidence shows it to b the case, so much -
the better, we will have gained some insigh.
into the mechanisms of Plasmodium
development; if not, we wiii nevertheless
have delighted for a while in the exciter-:: ©
of perhaps uncovering a furdamental aspoct
of the parasite’s biology.
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