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Generalized Linear Modelling 
for Parasitologists 

K. Wilson and B.T. Grenfell 

Typioilly, tile distribution of nlacroparasites over their host 
population is hig!qy a~gregeted aM empirically best 
described by rite negative binomial distribatic:1. For para- 
sitologists, this poses a statistical r, ro~slem, which is often 
tackled by log-transforming the parasite data prior to 
analysis by paralnetric tests. ~qere, Ken Wilson and Bryan 
Grenfell show that this method is particularly prone to 
type [ errors, and highlight a much more powerf:d and 
flexible altei:~ative: generalized linear modelling. 

regress ion  analyses ,  etc. This  p resen t s  the paras i to lo-  
g is t  w i t h  a f u n d a m e n t a l  p roblem.  

O v e r c o m i n g  the p r o b l e m  of  n o n - n o r m a l i t y  
The ntajority of parasi tologists  ei ther  ignore the fact 

that the non-normal i ty  of their  data is a problem and 
use parametric  tests regardless,  or use  non-parametr ic  
tests, such as Mann-Whitney U-tests, Wilcoxon signed 
ranks  tests, Kruskal-Wallis tests, etc. (see E2ox D. While  

A maior  p r o b l e m  facing any  para-  
s i to le~is t  is h o w  bes t  to ana lyse  his  
or  he r  ha rd -ea rned  data .  Wha t  is 
the best  w a y  of de t e rmin ing ,  for 
example ,  wh,other h u m a n  faec,:l 
e g g  coun t s  dec l ine  w i t h  age,  or 
w h e t h e r  ma le  and  female  rabbi t s  
d i f fer  in the i r  w o r m  b u r d e n s ?  The 
p r o b l e m  of correc t ly  iden t i fy ing  the 
bes t  s ta t i s t ica l  test  in pa ra s i t o logy  
is accen tua ted  by  the fact that  para-  
s i tes  t end  to be  a g g r e g a t e d  ove r  
the i r  hos t  popu la t ion :  m o s t  hos ts  
h a v e  just  a few paras i tes ,  or none  at  
all,  w h i l e  o thers  h a v e  m a n y  (for 
r e l evan t  d i scuss ions ,  see Refs ! -5) .  
As  a resul t ,  the pa ras i t e  d i s t r ibu-  
t ion is r i gh t - skewed  wi th  a long  tail, 
and  fails to conform to the normal  
or G a u s s i a n  distr ibu. t ion a s s u m e d  
by  mos t  of the c o m m o n l y  used  
s ta t is t ical  tests, ie. pa rame t r i c  tests, 
such  as  t-tests, ana lyses  of var iance,  
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Box 1. Current Statistical Methods used by Parasitologists 
We surveyed the statistical methods r~porte~i in 50 papers published in tile past 
five yea~ in the jotlrnal Parasitology (K. Wilson, unpublished; and see Table 
below). All of t.hese papers contained data, such as egg counts and worm burdens, 
for which we would expect the untr,msformed distribution to be discrete (rather 
than continuous) and to conform to the negative binomial, or at least to Ihe 
Poisson. Remarkably, in 20r/, of the papers surveyed, no statistical tests were 
applied at all; 46% used standard parametric tests (such as t-tests, analyses of vari- 
ance an(J regression analy~es), of which more than half failed to transform the data 
in any way prior to analysis; 28c/, used non-parametric tests (such as Mann- 
Whi~ey and Kruskal-Walli,a tests); and just three of the N) papers used sophisticated 
non-linear maximum-likelihood methods. Surprisingly, during this pe.'iod, there 
was not one published paper that used generalized linear models. 

Table. Statistical tests used in 50 papers ~ 0ublished in Poras/w/ogy in 1991-1995 

Bo.~ mature 
Nacure Irnmature and immature "rotal No. 

Statistical test parasites parasites parasites (and %) 
None 4 5 I I0 (20} 
Parametric (x) 5 3 4 12 (24) 
Paramecic (log-x) 3 8 0 I I (22) 
Non-parametric 5 5 4 14 (28) 
Maximum-likelihood I 2 0 3 (6) 
GLM b 0 0 0 0 (0) 

Total  18 23 9 S0 

a Papers are divided hlrG those that discussed variation in the bu-~ns of mature parasites 
(adult w~rms or Kicks). immature parasites (.-ggs. o~/sts, gametoc~es, sporozoites, cercariae. 
microfilariae, etc.) and combined studies. Paran;eo'Ic tests are divided i,cc those that analysed 
~..:v :ounrs (x) and those chat analysed log-transformed counts (Iog-~). 

GLH refers to generalized linear models and maximum-likelihooa to non.linear maximum- 
likelihood models. 
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Box 2. Log-transformation of ten  Fails t~ Normalize Par,~ite Distributions 
A traditional method for normalizing right-skewed overdispersed data is to 
log m- or lo~-transform it, at;er first adding one to avoid zero counts. How- 
ever, as illustrated below, this transformation fails when the mean of the dis- 
tribution is small (a) or the distfibntion is highly aggregated, as indicated 
bys.mall negative binomial k values (b). 
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Effe'ct ut the mean (a) ar, d the skew (b) of the ~ istributio~ (as determined 
by k ~f the negative binomial) on the efficacy of lo&m-transformation: b~tt (a) 
and (b) show the irequeat%v distribut~,)n of 5000 random samples taken hum 
negative binomial d~L"ibutions (using the rnegbin function in Splus), and th~ 
subsequen_~ di.~tribution after the samples were Iogzo-transform~d. In (a) the 
average k of the distribution is one and the average population mean wries 
betwcen ~000 and 1, and in (b) the average population mean is 100 and 
average k varies between ~.90 and O.1. 

non-parametric tests make few 
assumptio~,s about the underlying 
statistical distributions 6, and hence are 
preferable to parametric tests when 
ti~e norrnafi'. 7 assumption is violated, 
they generally lack the power of 
equivalent parametric tests 6 and so are 
not an ideal solution. 

A common alternative to using 
non-parametric tests is to use standard 
parametric tests after first transform- 
ing the data so that their distribution 
becomes approximately normal. Because 
most macroparasite distributions are 
empirically best described by the 
negative binomial distribution 5,7-9, an 
appropriate trar~formation is gener- 
ally the log m- or log~-transformation 
(~ffter fiizt adding one to the parasite 
count to avoid zeros) m," . However, 
this transformation often fails to nor- 
realize the distribution, especially 
when it is highly skewed (see Box 2). 

General ized l inear mode l s  
A less common alternative to 

non-parametric tests is the family of 
generalized linear raodels (GLMs) 
(see Box 3). These are generaliz- 
ations of classical linear modeis (such 
as linear regression, analyses of vari- 
ance, etc.) in which the error disb-ibu- 
tion is explidtly de['med (see Box 3). 
As emphasized above, classical linear 
models assume that the error distri- 
bution is normal. However, for macro- 
parasite data, the appropriate error 
distribution is often the negative bi- 
n_omial, which is defined by its mean 
(x) and the exponent  k. The variance 
(s 2) of a negative binomial distribu- 
tion is desc~bed as follows: 

x - x  2 
s 2 = (1) 

k 

where x and s 2 are the mean  and 
variance, respectively, of the sample  
and  k is an inverse measure  of the 
degree of aggregation, such that as 
aggregation declines so k increases 
until, as k approaches infinity (or in 
practice, above about 20), the distri- 
bution converges on the Poisson 8. 

In order to fit the negative bi- 
nomial distribution, we ,zeed to esti- 
mate  the exponent.  The most  accu- 
rate estimate of k is obtained by 
maximum-likel ihood methods  s, but  
a reasonably accurate moment-  
estimate can be calculated by re- 
ar rangement  of Eqn 1: 

= _ ~ 2  (2) 
S 2 -- ~, 

where ~ is the estimated value of ,L 

Poraslto/ogy Todoy, ~o!. I J. on. i, 1997 
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Box 3. Generalized Linear Models 

Generalized lirear models (GLMs), are generalizations of classical linear models (analyses of variance, t-.~:~s~, linear, 
regression ana~yS~S, etc.) that allow the error stnlcture (the distribution of residuals about the fitted mo~iel) to 
be exp:~citly deigned by one of a series of distributions, usually from the expol~ential family. GLMs also use a link func- 
tion, which maps the expected values of the response variable (eg. faecal egg count) on to the explanatory variables (eg. 
age and sex). For classical linear models, the error structure is defined by the normal distribution and the link function is 
the identity link. For the negative binomial distribution (which is not in the exponential family), the GLM error structure is 
definedby Eqn I (in !he text) and the link function is generally the log or square-root link 12.~3. For an accessible introduc- 
tion to tne uses or GLMs in ecological studies, see Ref. 12. 

The significance of teians in GLMs are generally tested by comparing the deviances of models with and without those 
terms. Deviances are analogous to mean squares in ciassical linear models. For the Poisson and negative binomial 
distributions, deviances are distributed approximately as Chi-square (X2), with degrees of freedom equal to the difference 
in the number of parameters attributable to each of the models. 

A common alternative to explicitly defining a negative binomial error dis~bution is to assume a Poisson distribution 
and to adjust the scale parameter (or disversion parameter) so that the ratio of the residual deviance and its degrees of 
freedom is approximately equal to one (l~efs ~2,17). Th..~ls. instead of asssuming that the variance of the parasite distribu- 
tion is equal to its mean (s 2 = ~2, for the Poisson distribution), we assume that it is proportional to it, ie. s 2 = 4).~, where 
,"p is referred to as the empirical scale or dispersion parameter. When empirical ~cale parameters are used, model 
parameter estimates are not affected but the standard errors are hi~her z2 and in a m-nner imila- t- ~ , . ~ , . ~  ~,  .,, 

• ~ , ~ . l a  ¢ S | - u  . . . . . . . . .  d . a l j -  

ses of variance and re~res~ion models, the scaled deviances for terms in the model are compared usine F-tests instead 
of x2-tests ~2.~7. ~ 

A number  of statistical packages (eg. GLIM, Genstat, 
SAS and Splus) include GLMs and have a range of 
error structures already defined (including Gaussian, 
gamma,  binomial and Poi~son). Negative binomial 
errors are not usually included it,, the available set, 
but  they can be defined by the user o~ obtained from 
sources within the public domain  (for example, Ref. 
12 provides GLIM macros on disk both for estimating 
k by maximum-likelihoo0 methods  and defining nega- 
tive binomial errors, and equivalent Splus functions 
are available by ano~ymous  ftp from StatLib; see also 
Refs 13,14). 

An alternative to defini-tg a negative binomial e~ror 
distribution explicitly is to generate an empirical 
estimate based on Poisson errors. Equation i can be 
simplified to: 

s2 = x (1 - ~ )  = .~r/~ (3) 
k 

Thus,  the negative binomial distribution can be ap- 
proximated by assuming  that qJ is approximately con- 
stant over all values of x.  In practice, we d~fine a 
Poisson error distribution and estimate the value of q) 
empirically (qb is then defined as the empirical disper- 
sion or scale parameter; see Box 2). 

A comparison of methods 
Wilson, Grenfell and Shaw 14 have recently com- 

pared the log-transformation method describeci earlier 
~qth these two GLM methods,  us ing (1) simulated 
data sets (Box 4), anti (2) real parasite data from an 
unmanaged  population of Soay sheep on the Scottish 
island group of St Kilda (Box 5). 

From the s imulated data sets, they conclude that, 
when  sample  sizes are small, the frequency of type I1 
errors, ie. incorrectly accepting the null hypothesis ,  
H 0, is generally slightly higher  when  us ing  s tandard 
parametric tests on log-transformed data thai. when  
usiclg either of the GLM methods.  However,  much  
more  importantly,  they also conclude that, a lmost  
regardless of the sample  sizes, when  the distribu- 
tions being compared differ in their degree of aggre- 
gation (as indicated by their negative binomial k 
estimates), type I errors, ie. incorrectly rejecting t t~,  

Parasitology Today. rot. 13. no. l, /997 

are likely to be extremely common when  us ing  the 
log-transformation method,  but  negligible when  
us ing  either of the GLM methods  (Box 4.). This 
strongly sugges ts  that when  us ing  the log-transfor- 
mation method,  parasitologists are much  more  likely 
to report spur ious  differences in parasite bu~d,ms 
than when  us ing either of the GLM methods.  For- 
tunately, it appears to matter  little which of the 
two GLM methods  is used.  This means  that s tandard 
statistical packages such as GUM,  Genstat,  SAS 
and Splus, can be used without  recourse to Writing 
specific macros  or functions to define the appropriat ~- 
error structure. 

Analyses using real parasite data also indicate that 
the choice of statistical method used is also important 
here 1 ~. For example, an  analysis of the worm burdens  
of Soay sheep dying dur ing one winter on St Kilda 
strongly ~tL.~gests that the log-transformation method 
is capable ~f generating type II errors, and an analysis 
of Augus t  faecal egg counts of the same population of 
sheep suggests  that this method may  also gen~rafe 
type i errors (see Box 5 for details). In both cases, 
these results were confirmed by more sophisticated 
non-linear maximum-likelihood models. This latter 
method is also needed when  analysing patterns in the 
degree of aggregation, such as c h a n g ~  in k with age 4,1s. 

The use of explicit maximum-!ikeliho~O error 
s,~'uctures is not restricted to field data. For example, 
Box 6 shows an analysis of the results of experimental 
infections of cats with filarial worms. In this case, the 
method also allows us  to estimate the death rate of 
adul t  parasites (Box 6). 

Conclusions 
The analyses summarized here clearly indicate that 

classical linear regression models using log- 
transformed data are usually much  more likely to 
generate both type I and type II errors than are gener- 
alizec~ linear models. GLMs are becomingly increas- 
ingly incorporated into modern  statistical packages 
and being used by ec_olog~L~ a ~  social scientists. With 
familiarity, they are only marginally more difficult to 
use and understand than the statistical models oar- 
rently being employed by parasitologists. Obviously, 
they are not the be-all-and-end-all in statistical 

$S 
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Box 4. Simulated Data Sets 

In order to compare the log-transformation method with the GLM approach, Wilson, Grenfell and Shaw 14 used the two 
methods to analyse a ~r ies  of randomly generated data sets from the negative binomial distribution. The data sets com- 
prised 20, 100 or ~ samples from dislributions with means ranging between one and 2000, and with k values ranging 
between 0.5 anti 20. These ranges cover those of most parasite burdens and faecal egg counts. For each of a pair of data sets, 
with either identical means or means differing from each other by 100% (1 vs 2, 5 vs 10,10 vs 20, etc.), the statistical signifi- 
cance of the difference between the means wa~ assessed over 100 trials using three models of increasing sophistication: a 
classical linear model nsing log,ctransformed data (a, ir, Fig. below); a GLM with Poisson errors and an empirical scale 
parameter, using untransformed data (b): and a GI,M with ne~at'..,e binomial errors, ng~n usin~ untransformed data (c). 

T~,~e explanatory, variable of the three models co~tprised a a,,'n~le factor, which crated for each of the pair  of distributions. 
The number of times that the different models detc<ted significant differences between distributions was scored over 100 tri- 
als using F-tests (a and b) or Chi-square tests (c). Thus, by comparing the output  of the three models it was  possible to assess 
ti~u probabilities of each perfornai~g tTpe I err.e, rs, ie. ineorr~:tly rejecting the null hypothesis of no difference between the 
means; and type II errors, ie. incorrectly accepting the null hypothesis. 

The biggest differertces among the three models came when comparing data sets that had the same means, but different k 
values (for details of the other comparisons, see Ref. 14). In this series of comparisons, the probability of the log-transfor- 
marion model ~rc~ucing ~,~p,e I errors ranged between between 0 and 75% and increased with sample size (n), sample mean 
x and differen,:e_ between the componen~ k values. By coml~arison, both the GLMs produced many fewer type I errors over 
all values of n, :, and k; and both models failed with a probab!!~y ranging between about 0 and 15% (see Fig.). Thus, the log- 
transfomaation method is much more likely than the GLM method to indicate spurious differences between data sets. 

a Log trnnsformation b GLM-1 c GLM-2 
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A comparison of the rate of tyl~: I error production when the component distributions have ~he s3me mean but  different k 
values: (a), Co) and (c'l er, cti show~ ~he probability of making a ty]~ I error when using each o the three statistical methods 
(see main text and Ref. 14, for a description tff the models and  the simulations). Each point ref,. rs to the probability of incor- 
reztly rejecting the null hypothesis of no difference between the means, and  is based on 100 s~mulations comprisins; 20 data 
points taken from two negative bi~.omial distributions with identical population mea'n~ but  different population k values. 
The six symbols refer to different co~abinations of k values, as indicated in the figure..qimulati~ns ba.,i~d o~ ]rgrger samples 
(100 or 500 data points) produce qualitatively similar trends (see Ref. 14). The results for the log-transformation method, 
shown in (a), indicate that this has a high probability of incorrectly rejecting the null hypothesis over a range at  ~ample 
sizes, sample means and component k values,. The results for the GLM method with an empirical scale parameter is shown 
in (b), and for the GLM with negatiw_' binomial errors in (c). For both (b) and  (c), the probability of type I error is small. 

a n a l y s e s  14, a n d  mer~  soph i s t i ca t ed  m e t h o d s ,  s u c h  as  
non- l inea r  m a × i m u m - t i k e ! ~ , ~ c l  ana lys i s  a n d  boot -  
s t r app ing ,  m a y  be  a p p r o p r i a t e  w h e n  s a m p l e  s izes  a r e  
l a rge  o r  the  stat is t ical  m o d e l s  s i m p l e  leg.  Refs 4, 11, 
16,L H o w e v e r ,  G L M s  a re  a s ign i f ican t  i m p r o v e m e n t  
o n  m o s t  c u r r e n t  m e t h o d s  of  ana lys i s ,  a n d  the i r  u se  b y  
pa ras i to log i s t s  m u s t  b e  e n c o u r a g e d  
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Box 5. Soay Sheer" Tarasite Data I 
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Faecal egg counts  
In the second comparison, Wilson, Grenfell md Shaw 14 examined the factors influencing the faecal egg counts of sheep 
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Box 6. Dea l ing  w i t h  Aggregat ion in  Exper imemal  In fect ions 

Estimating parasite death rates in cats infected with Brugia pahangi. The F~g. 
(below) shows a famous parasitological data set24.!'~: the number  of adult  
worms  recovered after infection of cats with a single dose of the filarial nema- 
tode Brugia pahangi [initial dose = 100 larvae (dots) or 200 larvae (crosses;]. 
After a sharp initial decline in recoveries (reflecting the initial establishment 
of worms26), the proport ion of par:~ites declines gradually,  though variably, 
with time. Given a Poisson~istributed infection rate, we might expect a Poisson 
distribution for parasite numbers~-~; however,  these data are ranch more 
aggregated than that (estimated k -+ SE = 3.29 +- 0.41), probably reflecting 
heterogeneities in parasite demographic, parameters betweeh hosts 24,2~'. This 
aggregation is confi.m, pA bv a good fit of the negaSv¢ binom:,al model (resid- 
ual deviance = 163, degrees of freedom = 150, P = 0.222), which also indi- 
cates no significant difference in proportional recovery between infection 
do~o ~ 
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The it:led !ine i~ the Fig. ',abovc) is for the regression of won.~ burden on 
time for recoveries after 40 days, using a log link function. Comparison with 
earlier burdens  (mean indicated by the triangle) illustrates the initial d rop  in 
parasite load. The regression dso allows us to estimate the adult  parasite 's 
average death rate and iffespan (E. Michael, B.T. Grenfell, D.A. Denham and 
D. Bundy, unpublished). The cleath rate i-~ equal ~u the slope of the regression 
line (= 0.538 per year) and the life, pan equal to l / s lope  (= 1/0.538 = 1.86 
years). 
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Plasmodium cdc2-related Kinases: 
Do they Regulate Stage Differentiation? 

Reply 
! ca~ only add my support to Kinnaircl a~d 
Mott, am's co'nm~nts (this issue): cu,rently 
avaiiab;e data on Rosmodium cdc2-related 
kinases a,-e ~nde'e~ ~;~suf6cient to ~aefine a 
roie to: these .a~,zymus in the par.~site's life 
cycle (as was cleady stated in our" original 
paper on P~.'rk-l) L Nevertheless, a touch of  
ca~,t.:~us :,oeculation is usefial to define 
working hypotheses whose value can be 
tested expedmentaliy. 

O,Jr hypothesis that PfcA- I may be 
involved in establishment or  maintenar.ce 
Of the different, :ted. nondividing state of  

: g:metocytes was ~c~sec' on the facts: 
( I )  u~at it is mo~t homoiogc,,: to a 
known downr,agulator of  cell i~vohfer~Uon 
(p58GTt'): and (2) that its mRNA can ke 
detected only in gametocytes, Furtherr,~:;re, 
expressic.~, of pSB GTA during mouse 
embryonic development coincides w~th the 
cess3tion of  cell diwsion that accomganies 
diff~'(entiation ~ - a pattern simlrar to tha t. 
e:*; .~ed by Pfc~- I. However" as 
nlentJon'e"-.~.) ?annaird and Nottram. 
pS8 GTA is just one member (namely 
PITSLRE-~ I ) of  the PITSLRE family of  
kJnases, of  which severa! very ciose;y related 
isGf6rms exist: the function of 
~hese isoforms ;; '_,n~ov.,n. but most (the 
exception being PtTSLR~-~,I and -(~2_) 
appear no~ to t-ave deleterious effects on 
cell vlabiltt), when expressed ectopically 
suggesting that they do not act as 
dow,'.mgulators of  cell division s. The 
possibiltt, vxists that Pfc,k-I is a 
gametocyte-specific functional homologue 
of one of these rather than of PI%LRE-~ I 
and plays no roie in the regulation of 
gametocytogenesis. The search for the 
function of  p58 GTA homologues in 
Apicomplexans will banefit from the finding 
that Theileda av;~ulato appears Lo possess 
such a gone, as indicated by Southern blot 
experiments usL'~g Pfcrk-I as a probe; this 
putative homologue has been toned and is 
.~urrently being ch~b'actenzed (G. Langsley, 
pets. commun ). 

Kinnaird arid iVlottrarn s'J~e~ that cell 
cycle arre~ ~uring gametocytogene~is is 
more li~ely to be achieved through Lhe 
action of a CDK inhibitor (CO~} than 
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through that of an additionai kinase activity. 
While them. are cases in which a CDI 
appears to be sufifcient to arrest the cell 
cycle (eg in yeast mating-pheromone 
respon~e'i), the fact that, i,, higi~e~ 
eukaryctes, a,dditional elements (such as 
p58 °TA for" example) appear, in some 
instances, to be r~quired to stop cell 
proliferatior, indicates that inhibiting a cell 
cycle kinase w~h a CD! r~.ay not, by itself, 
be enough to induce or  l~aint;.:in cell cycle 
arrest: this may reflect the relatively higher 
complexity of the cell cycle machinery in 
such organisms. The complexity of 
Plasmodium's life cycle is presumably 
mi.'Tored by an underlying complexity at 
the level of molecular regulation of the 
progression of this cycle. The large number" 
of CRKs ~'.ready identified in o~:;c~ 
protozoan parasite~ with complex life 
cycles s (versus the apparently much simpler 
situation of yeast for examp~e~ is consiste ~t 
with this view. Likewise, the ha~\,est of  
Plasmod~um CDICs has probably only just 
begun, and one can reasonably expect 
more enzymes to be added to the as yet 
short list (indeed, we are presently 
characterizin&; a novel Pfcrk homologue). 
Lack of  success in heterologue mutant 
cr'molementation s~stem (eg. yeast cdc-2) 
does ,,~, ~ ~a#~v mean that the genes 
under investigat ..-, do not have a similar 
(unction to that lackin C in the mutant; 
absence of functional ccmplementation 
may well be due to poor .?xpresslon of  the 
parasite's genes in the hetero!ogous host, 
or  to the inability of the gene p~: duct to 
establish the required interactions w, th the 
host's machiner),. In other words, the bes{ 
way to resolve this question is to ~tudy the 
fiu~;ction of tl~ese genes in the parasites 
themselves. Stable transfection protocols 
for both trypanosumatids and Plasmodium ~ 
are r~ow available, which should make this 
goal attainable. It would, of  course, also be 
of great interest to identify CDIs in 
P"Jsmodium 

Kinnaird and Mottram rightly point out 
that there are several steps in the parasite's 
life cycle that require cell cycle arre.~,t, 
Although there is no reason a pr!pn to 

expect that the same gene prO(!UCT~ are 
involved at different stages (a&er all, if 
Plasmodium uses different se~s of ribosomes 
at different c',eve!opmenta! stages z, it m'Jy 
well use different en=/mes to fulfil simi!ar 
functions at different stages), it is certainly 
worth looking at Pfcrk-I expression during 
the entire life cycle, especialiy in nondividing 
stages (eg. sporozoites). In this respect, 
preliminary data suggest that a P,fcrk- I gene 
product peaks in late gametocycogenesis 
(Day 15) and is still detectable (but 
decreasing rapidly) after gametocyte 
activation has been initiated (M. Kariuki, 
C. Doerig and S. Martin, unpublished). If 
confirmed, such data would be consistent 
with Pfcrk- I expression being correlated 
with the cell-division status of  the parasite. 
The absence of detec~ab!~ prc&-i in asexual 
parasites argues against the idea that this 
enzyme is involved in the development 
comrnitment to gametocytogenesis, since 
this commitment appears to occur in the 
preceding schizont 8 (the possibility cannot 
be excluded teat Prcrk-I is indeed involved 
;n the developmental decision, but i5 
expressed at subdetectable levels or only in 
a small subpopulati0n of  asexual parasites). 
Demonstrating a link between Prc~. i and 
cell surface components (as is the case for 
~mammalian p58 GTA) would lend support to 
• ~.,z)',.ypothesis that it may function in sensing 
and/or transducing environmental changes 
t tat  al'e likely to trigger developmental 
proces~,es such as gametocyte activation: 
clearil, "~uch more work is required before 
a picture of Prrrk- I function and mode of 
action eme ~as. 

All colie~gues ~o,~4d, or, the regulation 
of grov,¢t, and deve!oprr,en: q #!~]~,'noulum 
would pr,.'sumably agree that funcl.,.D!:at 
:har le[el~,zation of candidate regLd~tot" 

genes is the obligate next step towards an 
understano~n& of this phenomenon. This 
endeavour will be greatly facilitated by the 
recent availability of  reverse genetics 
procedures to Pla~modium. In the 
meantime, we wi, still f~vour the working 
hypothesis that Pfcrk- I is an important 
regulator of differentiation: ;f en~pirical 
evidence shows it to b,  the case, so muck,. 
the better, we will have gained some insigh, 
into the mechanLsms of Plosmodium 
development; if not, we will neverthc!ess 
have delighted for a while in the exciter" '~ '. 
of  perhaps uncovenng a fur,damental aspect 
of the parasite's biology, 
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