Theoretical Population Biology 56, 163-181 (1999) ! I IPB
®
Article ID tpbi.1999.1425, available online at http://www.idealibrary.com on ||IE%|. i

Modelling Density-Dependent Resistance in
Insect-Pathogen Interactions

K. A. J. White'
Department of Mathematical Sciences, University of Bath, Bath BA2 7AY, United Kingdom

and

Kenneth Wilson
Institute of Biological Sciences, University of Stirling, Stirling FK9 4L A, United Kingdom

Received May 21, 1998

We consider a mathematical model for a host-pathogen interaction where the host popula-
tion is split into two categories: those susceptible to disease and those resistant to disease.
Since the model was motivated by studies on insect populations, we consider a discrete-time
model to reflect the discrete generations which are common among insect species. Whether an
individual is born susceptible or resistant to disease depends on the local population levels at
the start of each generation. In particular, we are interested in the case where the fraction of
resistant individuals in the population increases as the total population increases. This may be
seen as a positive feedback mechanism since disease is the only population control imposed
upon the system. Moreover, it reflects recent experimental observations from noctuid moth-
baculovirus interactions that pathogen resistance may increase with larval density. We find
that the inclusion of a resistant class can stabilise unstable host-pathogen interactions but
there is greatest regulation when the fraction born resistant is density independent. Nonethe-
less, inclusion of density dependence can still allow intrinsically unstable host-pathogen
dynamics to be stabilised provided that this effect is sufficiently small. Moreover, inclusion of
density-dependent resistance to disease allows the system to give rise to bistable dynamics in
which the final outcome is dictated by the initial conditions for the model system. This has
implications for the management of agricultural pests using biocontrol agents—in particular,
it is suggested that the propensity for density-dependent resistance be determined prior to
such a biocontrol attempt in order to be sure that this will result in the prevention of pest out-
breaks, rather than their facilitation. Finally we consider how the cost of resistance to disease
affects model outcomes and discover that when there is no cost to resistance, the model
predicts stable periodic outbreaks of the insect population. The results are interpreted ecologi-
cally and future avenues for research to address the shortfalls in the present model system are
discussed. © 1999 Academic Press
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1. INTRODUCTION

The majority of models analysing insect host—pathogen
dynamics assume that the infection process is linear (see,
for example, Anderson and May, 1981), in other words,
that the number of new infections is linearly proportional
to the density of susceptible hosts and the density of
infectious agents (free-living pathogen, infectious cadavers,
or infectious individuals). This contrasts with anecdotal,
and some experimental, evidence (e.g., Steinhaus, 1958),
which suggests that the infection process is non-linear,
with the per capita risk of infection increasing at a greater
than linear rate with density, due to undefined “stresses”
associated with crowding. More recently, life-history
theory has led to the opposite prediction, namely, that
for many insect pest species we can expect phenotypic
plasticity to result in a decline in susceptibility to disease
with increasing population density, due to an increased
investment in pathogen resistance mechanisms at high
densities (Wilson and Reeson, 1998; Reeson et al., 1998).
This is because the force of infection, and hence the risk
of becoming infected, is assumed to increase with the
density of conspecifics, thus favouring the investment in
costly resistance mechanisms only at high densities when
they are likely to be called upon. Experimental tests of
this hypothesis come mainly from moth-baculovirus
interactions (see Wilson and Reeson, 1998, and referen-
ces cited therein). For example, Kunimi and Yamada
(1990) found that when larvae of the Oriental armyworm
moth were reared at a range of densities and then
exposed to a known dose of nuclear polyhedrosis virus
(NPV) the level of virus-induced mortality declined as
larval density increased. Similar results have recently
been reported by Reeson et al. (1998), who found that
larvae of the African armyworm moth were up to eight
times more resistant to NPV when reared in crowds than
when reared solitarily.

While these observations stimulated the present theoret-
ical study, we are not concerned with specific biological
details concerning the noctuid moth-NPV interaction.
Our purpose is to develop and analyse a model which
incorporates density-dependent resistance to disease and
determines how this affects the host—pathogen interac-
tions. Moreover, this study may be of more general
ecological interest for the following two reasons. First,
the nature of the density-dependent resistance to disease
observed by Kunimi and Yamada (1990), Reeson et al.
(1998), and others could be considered a positive feed-
back mechanism. If disease is the only population regu-
lator (as we will assume) there will be less direct host
population regulation as population size increases.
Hence we might project that density-dependent resistance
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in this form would be destabilizing. However, this is not
always the case as we demonstrate below. Second, it is
likely that resistance to disease has an associated cost.
Thus, it is interesting to investigate how the cost of host
resistance interacts with the population dynamics to alter
the stability properties of the system. Again, this may
have broader implications beyond our specific modelling
problem.

A common feature among insect species is that they
exhibit discrete population generations. With this scenario
the use of continuous-time models to describe the popula-
tion dynamics of a species becomes questionable unless, for
example, it incorporates time dependence in appropriate
demographic parameters or uses suitable timescales on
which the population processes can be reasonably repre-
sented as continuous in time. Continuous-time models
are, of course, of use in the cases where insect generations
do overlap.

Extensive modelling carried out by Anderson and May
(1981) provided a starting point for later modelling of
insect populations together with their microparasitic
diseases (Liu et al, 1987; Nisbet and Gurney, 1983;
Hochberg, 1991; Dwyer and Elkington, 1993). One dif-
ficulty arising in modelling insect populations is that they
typically have several life stages (e.g., eggs, different
instar larvae, adults) and added to this stage structure,
there is the additional complication that specific diseases
may attack just one stage (often dictated by the differen-
cesin feeding behaviours). Extending the work of Anderson
and May (1981), Brown (1984) distinguished between
larval and adult insects although there was some non-
zero probability of moving directly from the larval stage
to become an adult in that model. Addressing this lack
of development time, Briggs and Godfray (1995) also
considered adapted models imposing a fixed develop-
ment period between birth and adulthood. Several
versions of the model were considered to determine how
the population dynamics altered depending on the insect
stage infected by disease. They also incorporated seasonal
heterogeneity into host—parasite models again using
delay differential equations (Briggs and Godfray, 1996).

The potential for using discrete-time models in the
ecological sciences and in particular in disease-related
problems has a reasonably lengthy history beginning
with the Nicholson-Bailey model for host—parasitoid
interactions (1935). What distinguishes a parasitoid from
a pathogen is that parasitoid infection and subsequent
reproduction requires the death of the host. Work by May
(for example, May 1974) brought discrete-time models to
the fore in theoretical ecology when he demonstrated the
capacity of an apparently simple model structure (the
discrete-time logistic map) to produce highly complex
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nonlinear patterns including chaos. Since this time,
several discrete-time models have been proposed to
describe host—parasitoid interactions (see, for example,
Hochberg et al., 1990; Beddington et al., 1975; Regniere,
1984; Rohani ef al., 1994).

The discrete generational nature of the noctuid moth
population which motivated the present theoretical
study also motivated the choice of theoretical model as
one with discrete-time structure. It differs from the more
common such approach in that we are not dealing with
a host—parasitoid interaction but a host-microparasite
interaction in which the microparasite (pathogen)
maintainsitselfin a free-living state within the environment.

In the next section we describe the model assumptions
which were made and the actual structure of the model.
We then carry out some analysis including the determin-
ation of steady-state population levels and their stability
and incorporate numerical simulations of the system to
demonstrate its properties. The theoretical results are
interpreted in an ecological context and finally modifica-
tions to the model are described in the Discussion to
address some of the shortfalls of the present model
system.

2. THE MODEL

The simplistic model which we use to study the
phenomenon of density-dependent resistance to disease
makes the following assumptions:

1. To mimic non-overlapping generations observed
in many insect populations, we use a discrete-time popu-
lation model.

2. The model considers only the larval insect stage.
This assumes that no major density-dependent effects
arise at later stages of insect development. In particular,
we define the state variables relating to larval popula-
tions as

S; = density of susceptible larvae at the start of
the ith generation
R, = density of resistant larvae at the start of
the ith generation.
3. Although resistance is determined throughout
larval development in response to cues perceived as

young larvae (Wilson and Reeson, 1998), for simplicity
we assume that individuals are born into resistant or
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TABLE 1

Model Parameter Definitions

Parameter

As  Number of susceptibles born per surviving individual
Agr  Number of resistants born per surviving individual
A Number of pathogen propagules produced per infected
death
f(N) Fraction of surviving individuals giving birth to susceptibles
(density dependent)
os(P) Density-dependent survival of susceptibles
og  Density-independent survival of resistants (g5(0) > o)
op  Density-independent survival of pathogen propagules

susceptible classes and remain within that class through-
out their development. In particular, the fraction of
individuals giving birth to susceptibles, f(N), decreases
with the total density of larvae which have survived the
previous generation to reproduce. Consequently, the
function f(N), defined in Table I, may take the form

_
14N

J(N)

y =constant >0, 0 <o =constant < 1,

(1)

where N is the number of surviving individuals at the end
of a generation.

4. Resistance is assumed to be a phenotypically
plastic response to host density. We assume that the
genes governing density-dependent resistance have gone
to fixation and hence we ignore host genetics here (a sub-
sequent publication will examine the evolution of this
trait).

5. Generational time is sufficiently long to allow all
diseased individuals to die during a single generation.

6. When the infected individuals die, they produce
free-living disease pathogen propagules which have some
constant survival probability during any generation.
Hence we include a third state variable

P, =density of free-living pathogen particles at
the start of the ith generation.
7. The fraction of susceptible larvae surviving to
the end of their generation is a decreasing function of the

density of free-living pathogen particles. Defining o ( P;)
as in Table I, we typically use the form

aP;\~*
os(P)=1|1+ B , a, 7, k =constants > 0. (2)
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This form is based on a negative binomial distribution
of pathogen attacks with the parameter & an inverse
measure of the degree of aggregation of such attacks (see,
for example, May, 1978; Hochberg et al., 1990). In our
context the attack—aggregation relation reflects the
distribution of free-living pathogen in the environment
which will tend to be clumped since it will depend on the
location of infected hosts when they die. Such aggregation
tends to stabilise the population dynamics—if, however,
the pathogen is not sufficiently aggregated, the dynamics
are unstable and growing, unbounded oscillations are
produced.

8. Finally we assume that there is some cost
associated with resistance to disease which has the effect
of reducing larval survival for the resistant class in the
absence of disease. The differential survival arising from
costs associated with host resistance to disease is incor-
porated into the model by assuming that

o5(0)=1>04

(see Table I for definition of parameters). Such costs have
been demonstrated in a number of interactions between
insects and their pathogens and parasites (see, for example,
Fuxa and Richter, 1989; Boots and Begon, 1993;
Kraaijveld and Godfray, 1997). Survival of susceptibles
may fall below that of the resistant class at some non-
trivial population density (i.e., og(P;>0) <o) due to
the disease.

These assumptions give rise to the model system
(parameters given in Table I)

Siz1=45f(N;) N; (3a)
Ry 1=7x(1—-f(N}) N, (3b)
Pii1=0pP;+Ac0)—a(P)) S (3¢)

where

N;=(o(P,) S;+0rR;)

z

is the total number of individuals which survive to the
end of the ith generation.

3. MODEL OUTCOMES

We present results in three cases; in the first we assume
no resistance to disease, in the second we assume that
there is no disease but two host compartments, and
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finally we consider the complete model system and
investigate its behaviours. Details of the reduced models,
steady-state levels, and stability criteria in each case are
given in the appendix.

3.1. Case 1: No Resistant Class

With f(N;) =1, we obtain the non-trivial steady state
(S, P) given implicitly by the relations

ol g Pasti-op
as(P)—AS, S—}v(aS(O)As_l), os(0) Ag>1.

(4)

Since g4(0) <1, we must take A¢>1 so that, in the
absence of parasitism, the host population grows in
successive generations without bound.

Stability requires that host survival is a decreasing
function of the pathogen population at the steady state
bounded such that reduction in survival does not alter
too severely from a change in pathogen numbers close to
the steady state.

Considering the specific functional form given in (2)
we obtain the explicit steady state

and the single stability condition

tAg—1

= Ayt = (Ayr) )

=0(k; 7, Ag) (6)

which requires that k < 1 (see Fig. 1). Figure 1 also shows
numerical solutions to the time-dependent problem in
the two cases k<1 and k> 1. In other words, in the
absence of a resistant class, the host—pathogen interac-
tion is stable only if pathogen aggregation is sufficiently
great (k<1).

3.2. Case 2: No Pathogen

If P, =0 then P;=0 for all subsequent generations and
there is a single non-trivial steady state given by

L~ l—ogrdg
SN =2 0) Ay —ondr ™
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FIG. 1. (a) Graphical solution of (6). The solid line is Q(k; t4), and the dash-dotted line is k. For this example we used 74 ¢ =2 but in all cases,
for k <1 the inequality (6) holds, for k=1, Q(1; 744) =1 and for k > 1 the inequality is violated. The inset shows a typical form for g g4(P). In (b)
and (c) we show numerical simulations of the model system (8a) and (8b) using model parameters Ag¢=1.5,1=1.5,6,=0.5,7=0.8, and a =0.1 and
initial conditions S, =1 and P,=2. The solid line gives S, (number of susceptible hosts) and the dashed-dotted line gives P; (number of pathogen
particles). In (b) £ =0.5 and in (c) k = 1.5, demonstrating for an arbitrary set of model parameters that the non-trivial steady state is stable for values
of k less than one and unstable otherwise when f(N) = 1.
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If either f(N) = constant or 6 4(0) A 3= Az, there is no
such steady state and the population will either grow or
decay exponentially. In other words, in the absence of
pathogen, the population dynamics are unstable either
when the fraction of individuals giving birth to suscep-
tibles is density independent or if there is no difference in
survival and fecundities of the susceptible and resistant
classes.

When a non-trivial steady state does exist, the mono-
tonic decreasing nature of the function f(/N) means that
there is a single non-trivial steady state (see Fig.2);
moreover this steady state is stable only if the susceptible
hosts have unbounded growth and the resistant hosts
decay in the absence of interaction between the two sub-
populations.

3.3. Case 3: The Complete System

We investigate the complete model system using
specific forms for the functions f(N) and og(P).

White and Wilson

3.3.1. Case 3a: Density-Independent Resistance; i.e.,
f(N)= Constant. With f(N)=a =constant and taking

as(ﬁ)zr{uaﬂ °

the model gives rise to a single non-trivial steady state

[
al \1—(1—a)ogdxr

provided that

O0<l—(1—a)ogdp<atdg.

The stability criteria derived in Appendix A.3 were
investigated graphically using the coefficients given in
(19a)—(19c¢) evaluated for our particular choice of o 4(P)
and f(N). Pathogen aggregation in host attack is
associated with the stability of host—pathogen interac-
tions (May, 1978; Hochberg ez al., 1990; Hassell and
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FIG. 2. Graphical solution to (7) when e =0.9 and y = 0.05, indicating a single non-trivial steady state. The solid curve is the lhs of (7) and the

dash-dotted line, the rhs of (7).
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FIG. 3. Stability criteria given by the Jury conditions (outlined in Appendix A.3) when f(N)=a = constant as the parameter k, an inverse
measure of parasite aggregation, is varied. In the shaded regions, the steady state is unstable and in all other regions, the steady state is stable. We
show only those criteria which alter the stability of the system when k varies. The other criteria in each case still satisfy their respective inequality
given in A.3. Where it appears, the solid line is the expression A(1)=(1+a, + a,) and the dash-dotted line is @,. Stability requires that A(1)=
(1+a,+a,)>0, —A(—1)=(1—a,+a,)>0,and |a,| < 1. Note that —A4(—1) > 0 was always found to hold for these parameter combinations. The
model parameters common to all calculations were Ag=A,=4=1.5, 6,=05, 1=0.8, and a=0.1. In (a) and (b) 6x=0.5 and in (c) and (d)
ogr=0.75.In (a) and (¢) « = 0.8 and in (b) and (d) « = 0.4. For the parameters used in (d), none of the stability criteria were violated and so the popula-
tion dynamics will settle to a non-trivial stable steady state.
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FIG. 4. Stability criteria given by the Jury conditions (outlined in Appendix A.3) when f(N

°© o o
H O O -

o
™

Coeflicients of dispersion relation

Coefficients of dispersion relation

~_~
(¢]
N—

White and Wilson

N
<
T

Q
=}

]
=]

—_

o
o0}
AN

o (=)
o
T N S

NN NN NESNTRTX

Coefficients of dispersion relation
o
N

(=]

L A |

(@]

0.2 0.4

(d)

1.1 T T

0.6
«

0.8

—_

1.05}

o
[{e]
83}
\

o
©
~

Coefficients of dispersion relation
o
w
~

©
~
(3]

3

OISO

0.7 - :
0 0.2 0.4

0.6

o
o
A

) =a = constant as the parameter o is varied. As above,

the steady state is unstable in shaded regions and otherwise it is stable. We show only those criteria which alter the stability of the system when «
varies. The other criteria in each case still satisfy their respective inequality given in A.3. Where it appears, the solid line is the expression A(1) =
(14a,+a,)>0, —A(—1)=(1—a,;+a,)>0, and |a,| < 1. Note that
—A(—1)> 0 was always found to hold for these parameter combinations. The model parameters common to all calculations were Ag=Axz=4=1.5,
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0.1.In (a) and (b) 6x=0.5 and in (¢) and (d) 6z =0.75. In (a) and (¢) k=0.5 and in (b) and (d), k= 1.5.
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FIG. 5. Numerical model solutions to (3a)—(3c) with f(N)=a = constant. Parameters common to all figures are Ag=A,=1=1.5, 6,=0.5,
7=0.8,a=0.1,and k=1.5.In (a) «=0.6 and 6z =0.75, in (b) a =0.8 and 6z, =0.5, in (c) a =0.4 and 6z =0.5, and in (d) « =0.6 and 6z =0.5. The
solid line gives the susceptible population levels S;, the dotted line gives the resistant population levels R;, and the dash-dotted line gives the parasite

population levels P;.
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May, 1974) and was shown to play an important role
here in the absence of a resistant class (Case 1). Hence in
Fig. 3 we varied the parameter k, an inverse measure of
aggregation, in four cases to see how stability of the non-
trivial steady state depended on aggregation. Two points
arise from this. First, the dynamics are stable for k> 1
which was not the case with no resistant class (see Fig. 1)
and second, there is some non-trivial relation between o
(the density-independent fraction of surviving individuals
giving birth to susceptibles) and k to ensure stability since
decreasing « when o 4 <1 destabilizes the non-trivial
steady state whereas decreasing « when g4 > 1 stabi-
lizes the system.

orAR < 1

—
[~
-

Population density

G
S

Population density

0 50 100 . 150 200

2
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In Fig. 4 we continued to investigate the linear stability
criteria detailed in A.3 varying « for two values of k
(k=05<1and k=1.5>1). With £k =0.5 (which would
produce stable dynamics in the absence of a resistant
class), the model system is stable provided that « is
sufficiently large in all cases. The picture is somewhat
different when k& = 1.5 (unstable dynamics in the absence
of a resistant class). Here if o4 <1, the non-trivial
steady state is stable for some intermediate values of a
but if 6 Az > 1, the steady state is stable provided that
o is sufficiently small.

Combining the outcomes from Figs. 3 and 4 leads to
the two general observations:

opAr >1
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FIG. 6. Numerical model solutions for the complete model system when f(N) is density dependent. In (a) and (b) we have 64 <1 and in (c)
and (d) we have ¢ x4 > 1. The equation IT( P) = 0 (described in the Appendix) has two solutions, indicating that the system is bistable so that model
behaviours may depend on initial conditions. The particular model parameters common to all figures are Ag=Az=1=1.5,0,=0.5,7=09,a=0.5,
k=15,a=0.8,and y=0.25.In (a) and (b) we have 6 ; = 0.5 and in (c) and (d) we have g, = 0.8. In (a) and (c) initial conditions were S, = 10, Ry =1,
and P, =10 and in (b) and (d) initial conditions were S, =20, R, =1, and P, =40. The solid line gives the susceptible population levels S;, the dotted
line gives the resistant population levels R;, and the dash-dotted line gives the parasite population levels P;.
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1. Inclusion of a resistant class tends to stabilise
host—pathogen interactions (model case 1 is now stable
fork>1).

2. Parasitism can have a non-trivial effect on the
stability of a two-host system (model case 2 requires that
f(N) is not constant in order to obtain a non-trivial
steady state).

Motivated by the linear stability analysis shown in
Figs.3 and 4, the numerical simulations in Fig.5
demonstrate the types of behaviour which the model
system (3a)—(3c) can exhibit. In particular, we see that
both stable non-trivial steady-state solutions (Fig. 5a)
and stable oscillations (Fig. 5b) are possible with
f(N)=a=constant. Comparing parameter values in
these two cases suggests that in Fig. 5a, the host suscep-
tible-resistant dynamics dominate whereas in Fig. 5b, the
susceptible host—pathogen dynamics dominate. Viewed
in this way, the model solutions are to be expected since
the host-pathogen dynamics (with k£ > 1) are unstable
with growing oscillations; inclusion of resistance
stabilises this and hence either stable oscillations arise if
the resistant class is a relatively weak component in the
population dynamics or there is a stable steady state if
the resistant class has a strong influence on the dynamics.
If, however, a large fraction of the population is born
resistant but the resistant population has a relatively
small survival rate, the system collapses either to the
trivial steady state (Fig. 5¢) or to unbounded growth for
the host and decay of the pathogen population (Fig. 5d).
3.3.2. Case b: Density-Dependent Resistance, f(N)=
o/(1+yN). With f(N)=0o/(1+ yN) and taking

—k
os(P)=7 {1+a:}

we see that two non-trivial steady states are possible for
a given set of model parameters (Fig. 6) in both cases
orAg <1 (net decay of the resistant class) and g g Az > 1
(net growth of the resistant class). That is, the existence
of the steady states does not depend on the fecundity
properties of the resistant class. Depending on the initial
conditions, the model system either approaches a non-
trivial steady state or collapses to

1. a non-trivial steady state for S and R with the
pathogen driven to extinction (gz Ag<1) or

2. anon-trivial steady state for S and P but with an
exponentially growing resistant class (gg Ag=>1).
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Both of these outcomes are consistent with the behaviours
of the underlying two-class interactions but what is of
interest is the bistable nature of the model system.

To investigate further, we compared the model results
in which f(N)=oa=constant to the present density-
dependent scenario. Our findings are shown in Fig. 7 for
an arbitrary set of model parameters and again for the
two cases ogdr<1 and ogrdg=1. With oxgAgz<1, we
consider the effect of density-dependent resistance on
stable oscillatory behaviour (Fig. 7a) and see that for
relatively low levels of density dependence (Fig. 7b) the
oscillations are damped and a stable steady state results
but that as the density dependence increases the non-
trivial steady state collapses (Fig. 7c) to a system for the
host only (pathogen driven to extinction).

When density-dependent resistance was imposed on a
non-trivial steady state (Fig. 7d) with g 4 > 1, stability
was maintained for low levels of density dependence
(Fig. 7e) but again collapsed as the density dependence
was increased (Fig. 7f) to non-trivial susceptible host and
pathogen levels but an exponentially growing resistant
class.

At first these results may seem somewhat counter-
intuitive since the density dependence f(/N) in some
sense represents a positive feedback mechanism reducing
regulation of the host as host population levels increase.
However, this must also be coupled to the underlying
host—pathogen interaction which would exhibit unstable
oscillations in the absence of a resistant class. The inclu-
sion of density dependence in f(N) means that a smaller
fraction of hosts become susceptible to the disease and
hence the oscillatory behaviour will play a less dominant
role and the dynamics can be stabilized. However, if the
strength of the density dependence is too great, then
either the pathogen will not be maintained (Fig. 7c) or
the resistant class will be able to grow without bound
(Fig. 7f). These two alternatives arise for reasons dis-
cussed in the previous section.

Finally we investigated whether imposing a cost to
resistance (og(0) > o) affects the population dynamics.
With a <1, a fraction (1 —a) of surviving individuals
give birth to resistant individuals; if « is sufficiently small,
assuming no cost to resistance (o 4(0) = g ) will destabilise
the non-trivial steady state (Figs. 8a and 8b). However,
with larger a (Fig. 8c), assuming no cost to resistance
does not affect the stability of the non-trivial steady state
(cf. Figs.8a and &c).

When a =1, all insects are born susceptible in the
absence of any density-dependent resistance. In this case,
assuming a cost to resistance in the density-dependent
case can stabilise the dynamics from those with no
density dependence (Figs. 9a and 9b); removing the cost
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of resistance then reduces this stability and gives rise to
stable oscillations (Fig. 9¢c).

Considering the model solutions shown in Figs. 8
and 9, it is apparent that the most stable scenario arises
when there is a cost to resistance and a constant fraction
of individuals are born resistant to disease in the absence
of any density dependence.

4. DISCUSSION

A cornerstone of modern epidemiology is the so-called
mass-action assumption (Anderson and May 1981; de
Jong et al., 1995), which posits that the horizontal trans-
mission of a pathogen is linearly dependent on the
densities of susceptible and infectious hosts. However,
evidence from a number of empirical studies suggests
that although pathogen transmission efficiency usually
does increase with host and pathogen density, it often
appears to do so at a decelerating rate (e.g., Dwyer and
Elkinton, 1993). A number of workers have modelled this
non-linearity in the transmission process in a phenomeno-
logical way, for example, by assuming that transmission
depends on some power of host or pathogen density (e.g.,
Liu et al., 1987; Hochberg, 1991). Others have assumed
that the decline in transmission efficiency is due to
reduced pathogen uptake at high densities as a result of
the spatial clumping of pathogen (Briggs and Godfray,
1995). Only recently have attempts been made to examine
this phenomenon using more mechanistic models. For
example, Dwyer et al. (1997) provide experimental data
and theoretical models which appear to explain the non-
linearity in the transmission process in terms of hetero-
geneities in pathogen resistance. However, this work con-
centrates on processes occurring over a single epidemic
and consequently it is difficult to compare the modelling
and its outcomes with our model structure and analysis.
The other models mentioned here do consider the
dynamics over a longer period of time but assume that
demographic processes occur continuously in time.
Again, this makes direct comparison of results difficult
but we do observe some similar dynamics in our model.
These include bistability (as seen in Liu et al, 1987),
multigenerational host—pathogen cycles (Liu et al., 1987,
Briggs and Godfray, 1995), and single-host generation
cycles (Briggs and Godfray, 1995). In all cases, these
models assume that susceptibility to pathogen attack
varies between individuals but is unrelated to the density
of susceptible hosts.

In contrast, the models presented here assume that
pathogen resistance is density dependent, an observation
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for which there is some experimental data (Kunimi and
Yamada, 1990; Goulson and Cory 1995; Reeson et al.,
1998) and which is predicted on theoretical grounds.
Wilson and Reeson (1998) have argued that if resistance
to pathogens is costly to maintain (see Fuxa and Richter,
1989; Boots and Begon, 1993; Kraaijeveld and Godfray,
1997), then we can expect organisms to be under strong
selection to invoke resistance mechanisms only when
they are likely to be required Thus, because individuals
are more likely to encounter pathogens like baculo-
viruses as population density increases, we can expect
insects to invest most resources in pathogen resistance
mechanisms at high population densities. In other words,
the fraction of resistant individuals in the population will
increase with the density of conspecifics, as modelled
here. The purpose of the present paper was not to directly
address issues raised by Wilson and Reeson (1998) but to
investigate how a density-dependent response to disease
resistance in the way suggested by the hypothesis could
affect host—pathogen dynamics. We have not attempted
to include host genetics in these models, but assume that
the genes for density-dependent prophylactic resistance
have gone to fixation. Future work will examine the
evolution of this phenomenon and gene frequency
dynamics. Here we concentrate on the dynamics of a
genetically monomorphic host population.

With f(N) monotonically decreasing, we assume that
there is a decline in susceptibility to disease with increas-
ing population density. This form of density dependence
motivated our study with the alternative form f(N)=
constant providing a baseline model for comparison of
results. However, as we described in the Introduction,
there is evidence from other systems (mainly anecdotal)
suggesting that susceptibility may increase with popula-
tion density. This would lead to a function f(N) which
was monotonic increasing. Based on the model solutions
presented here and the apparently negative feedback
which such a choice of f(N) might represent, we would
speculate that if f(N) was monotonic increasing it would
act, in many cases, as a stabilizing influence on the
host—pathogen dynamics. A further alternative would be
a density-dependent response to disease in which f(N)
decreased for small N (reflecting increased investment
in resistance) but increased for large N as population
stress dominated. The latter is certainly worthy of some
detailed investigation and will contribute to further
exploration of this model system. We envisage that such
a non-monotonic structure could significantly alter the
model behaviours, possibly giving rise to multiple non-
trivial and stable steady states.

The choice of a discrete-time model was a natural one
given the generational nature of many insect species
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including noctuid moths and it follows in the tradition

of many other insect models. Moreover, in a parallel

unpublished study (Gudelj and White, 1998), a conti-

nuous time model produced similar model outcomes.
The main findings of this study are as follows:

1. The inclusion of a resistant class stabilizes host—
pathogen interactions despite disease acting as the popu-
lation regulator. This stabilizing effect arises because
fewer host individuals are born susceptible to disease. In
turn this reduces the impact of disease on the host popu-
lation and hence reduces the effect of an inherently
unstable interaction when parasite aggregation among
the host population is low.

2. The most stable scenario arises when a constant
fraction of newborns are resistant to disease. This
contrasts with the no pathogen scenario (Case 2) when
f(N)=a produces unstable dynamics. Thus the three-
way interaction is crucial to produce and maintain stable
dynamics.

3. With density-dependent resistance to disease,
cost to resistance tends to stabilize population dynamics
if they would otherwise be unstable (oscillatory or
unbounded).

4. Density-dependent resistance to disease gives rise
to a model system in which the final outcome depends on
the initial conditions. This bistability has important conse-
quences, in particular where a pathogen is introduced
into an insect host population to control its growth. Such
introductions may arise if the insect is a crop pest and a
virus is being used as a biocontrol agent. From the model
analysis, it is clear that the final outcome is sensitive to
initial conditions and hence sufficient information must
be available to make the correct decisions about whether
or not to introduce the pathogen.

With the particular model formulation presented here,
insect outbreaks with density-dependent resistance arise
only if there is no cost to disease resistance (Fig.9). In
reality, however, insect outbreaks may be more common,
indicating some shortfalls in the model. One obvious
reason for this is that we consider only the larval insect
population where disease is manifested. This assumes
that no major density or time lag effects occur during the
other insect stages (adult, egg, etc). A second reason may
relate to the lack of spatial component in our model
formulation. In particular, density-dependent relocation
(Dingle, 1996) may explain more local variations in
larval densities. Both of these aspects warrant investiga-
tion and will form a basis from which we will amend the
existing model structure.

White and Wilson

However, even in this simple form, the model provides
important clues as to the consequences of density-
dependent resistance to disease, some of which, at first
sight, seem rather counterintuitive.

APPENDIX

Linear Stability Analysis

A.1. Case 1
With f(N;) =1, the model system (3a)—(3c) reduces to
the simple host—pathogen model
Siv1=4504(P;)S; (8a)
Piv=0pPi+Aa(0)—a(P;)) S, (8b)
variations of which have been well studied elsewhere
(Nicholson and Bailey, 1935; Hochberg et al., 1990).

Setting S,,,=S,=8 and P,,,=P,=P we obtain
steady-state values for the model system (8a) and (8b)

S=P=0
and
~ 1 ~ PAS(I—O'P)
os(P)=—o, S=——"—"-.
s Ag Mog(0) Ag—1)

Linearising about the steady state gives the Jacobian
matrix for the non-trivial case

1 ASE—‘Z)S
J= | d 9)
y) —— —AS—=
<0s(0) AS> Op S AP

with characteristic equation y?— (trJ) y +det J=0.
Jury conditions (see, for example, Murray, 1993; Lewis,
1977) which ensure that |y| < 1 and hence linear stability
of the steady state are

l—trJ+detJ>0 (10a)
l+trJ+detJ>0 (10b)
1 —detJ>0, (10c)
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where

~do ~do
trJ=1 +aP—)de—PS, det J=0p— Ad40o4(0) Sd—lf.

Condition (a) requires that dog/dP < 0 in which case (b)
is always satisfied (g4(0) 45> 1 is required for the non-
trivial steady state to exist). Condition (¢) imposes a
lower bound on the derivative, namely

1 —A505(0) dog|

= . 11
Aéas(O)P <dP|(§,1'5) ( )

A.2. Case2

In this case, the model system reduces to the one-
dimensional non-linear map

Niy1=05(0) Ag f(N;) N;+ o g Ag(1—f(N;)) N;
= G(N,), (12)

where
N;,=04(0) S;+ xR,

This has steady-state values given by N = G(N) which are
stable provided that |G'(N)| < 1. In this case we have

l—ogAg
05(0) Ag—0og Ag

N=0 or f(N)=

and then the non-trivial steady state is stable provided
that

1+ Nf(N)(05(0) As—0r AR)| <1
or equivalently
—2<Nf'(N)o5(0) Ag—0g Ag) <O. (13)

Due to the monotonic decreasing nature of f(N), this
leads to the conditions:

. Ifog(0) Ag>=1and oxdx <1, the steady state is
stable provided that

-2
05(0) Ag—0or AR

Nf(N)>

and otherwise stability is lost via a pitchfork bifurcation
(oscillations).
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2. Ifog(0) Ag<1andogzAg> 1, the steady state is
never stable.

A.3. Case 3

The complete model system has non-trivial steady
states obtained from the implicit relation

2P 5
7| 2| - aupr=o (142)
~ l—0ogr AR
QI(P):ARUS(F)_JRAR (146)
Qy(F)=— Pd=0r) (l4c)

" A Ag(05(0)—as(P))

only if 0 < Q,(P) < 1 (see (14a)). This requires that either

P
. Agog(P)>1andagdg<1or
2. Agog(P)<land ogdg>1.

Since 0 < f(N) < 1, the non-trivial steady state will arise
)

The values for the susceptible, resistant, and total host
levels at steady state are then calculated to be

S—A,0,(P) (15a)
i oyP
R=A[1-0,(P)] QTEF; (15b)
QP

- _ 1
N=a,7 (15¢)

all of which can be found once P is known.
If f(N) = a = constant, (14a)—(14c) collapses to give

I —(1—a)ogrdg

JS(F): o
s

and since 0 < g 4(P) < 1, we require that
O0<l—ogrdg+acgdg<adg

for the non-trivial steady state to exist.

If f(N)=o/(1+yN), the non-trivial steady state
(14a)—(14c) collapses to the non-linear implicit relation
for o g(P)

II(P)= — A 4(a5(0) —as(P))
X[adgos(P)+ (1 —a) ogAdg—1]
+7P(1 —0p)(A505(P)—0gdg)=0. (16)
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The Jacobian for the non-trivial steady state is given as

op—205(P)S Uas(0)—a5(P)) 0
J=|  Asa5(P) Sy(N) Asa5(P)n(N) Asorn(N) |,
Aro's(P)S(1=n(N)) Agog(P)1—7(N)) Agog(l—y(N))

(17)
where

n(N) = f(N)+ Nf'(N).

The characteristic equation is a cubic function of the
form

A =1 +a ) +asy +as =0, (18)
where the coefficients a; are given by the relations

a,=—0p+ A0's(P) S— Agag(l —n(N))
—Aso5(P)n(N) (19a)
ay= —Mas(0) —as(P)) Aga's(P) Sn(N)
+(0p— 405(P) S)(Ago (1 —7(N))
+A505(P) n(N)) (19b)
ay;=0. (19¢)
Since a;=0, the Jury conditions for linear stability
(lx] <1) are given by
Al)=1+a,+a,>0
—A(-1)=1—-a,+a,>0

1> |a,.
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