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Overview

Real world data has long had a tendency to be messy. This is even more so the case when estimating

unknown quantities, even if we know some prior information about the data. For example, say we wish

to figure out the location of a target, whose movement is being governed by factors such as position and

velocity. And then consider our only reading to base a decision on the location being the bearings of the

object. Weave into this noisy, irreverent and nonsense data, commonplace with the real world, and what

remains is a cacophony of disruption. However, we do know the prior locations of the object, as well

as some intuition and knowledge of an underlying system that is governing the movements. The result

of this rather convoluted problem set up is that it could not be solved exactly, lacking what is known

as mathematical tractability. This pertains to the idea that a solution could be reasonably found in a

closed-form, without causing too much hindrance to the solver.

The origins of such a dilemma came from the work of Gordon et al. (1993). They wished to solve

problems like the aforementioned conundrum in which we deal with a large number of different non-linear

variables (high-dimensional) and data that does not follow a process we know has a lot of nice statistical

properties (it was non-Gaussian distributed). In general, they aimed to solve a more general class of

problems, with commonality exhibited in dealing with observations which arrive in an on-line fashion,

where sequential observations are attained and used to dynamically update the state of the system. They

found the state of the art solution at the time, known as the Extended Kalman Filter, to be insufficient at

dealing with highly complex models in general, as they didn’t take into account the intricacies of the data

and its underlying statistical properties. Instead, a heuristic - which is a method that provides “good”

but not perfect results - was presented. Which is undeterred by assumptions of mathematical tractability

and could be applied in the broadest setting to most complex models. Their Particle Filter, which went

under the guise of the Bootstrap Filter, is the main subject of this paper. It allows for inference on

non-linear, non-Gaussian, and high-dimensional problem settings, with a primary focus on solving the

Filtering Problem. The Filtering Problem involves finding the state of the unobserved system (think

position and velocity in the tracking example), when a new point is observed (its location based on its

bearings).

The Particle Filter belongs to a family known as Monte Carlo methods, which are based on solving

problems through random number generation. The Particle Filter also has foundations stemming from

ideas of importance sampling, a method that involves finding information of a probability distribution by

taking information from a different probability distribution. The Particle Filter encompasses a wide array

of methods, too stretched to talk about in this short paper. The primary scope is to view Particle Filters

in the context of generic problems which all share commonality in possessing observed data conditional

on some unobserved states. However it can also be used in solving issues of smoothing (a problem parallel

to filtering) and estimating the key parameters of the system.
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1 Introduction

Working on methods for the tracking of a moving target given only their bearings, which resulted in

observations of the targets location being partial and noisy; Gordon et al. (1993) presented a method

known as the Particle Filter (or Sequential Monte Carlo in some literature) which used recursive Bayesian

estimation to estimate the posterior mean of the tracked target. The author’s proposed “Bootstrap Filter”

could be applied to any state-space model and allowed for online inference on nonlinear models, where

beliefs need to be quickly updated and incorporated into the state of the system as new observations

arrive. The heuristic was found to be far superior to the already existing Extended Kalman Filter (See

Terejanu 2009, for tutorial) and could be applied to any state estimation problem. This then leads to the

method becoming very appealing to a wide range of settings. Since this initial work, other Particle Filter

algorithms have developed, with the review article by Fearnhead & Künsch (2018) exploring both classic

and recent methods. In this paper, the Bootstrap Filter will serve as the primary interest and is formulated

in Section 3, with an implementation and example for a simple random walk model. Before that, we

first consider the underlying model in which Particle Filters are often applied to, and mathematical

formalisation of the problem they are solving in the first place.

2 State-space models and filtering

The state-space model, which can also go by Hidden Markov Model, is a type of probabilistic model

consisting of two parts: (1) observable, noisy data and (2) unobserved, latent states describing the true

state of the underlying system. These latent states (Xt) are modelled as a Markov process, with the

observed data (Yt) assumed conditionally independent to the process. An example of a state-space

model, represented by a directed acyclic graph, is given in Figure 1.

Figure 1: Graphical representation of the state-space model.

For brevity, a sequence of time steps can be written as x0:t = {x0, x1, .., xt} and y0:t = {y0, y1, .., yt}.
Quantities we are interested in are the transition probability density function (PDF) f and and the

observation PDF g. In Equations (1) and (2), the respective transition and observation functions are

given:

Xt|(Xt−1 = xt−1) ∼ f(xt|xt−1), (1)

Yt|(Xt = xt) ∼ g(yt|xt). (2)

Note, at time t = 0, the initial PDF for the Markov process is X0 ∼ µ(x0). The aim is to calculate an

estimate for the posterior distribution p(x0:t|y1:t), in particular the marginal distribution p(xt|y1:t) which
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goes by the filtering distribution. Using Equations (1) and (2), an expression for the posterior at any

time t is formulated using Bayes’ rule,

p(x0:t|y1:t) =
p(y1:t|x0:t)p(x0:t)

p(y1:t)
=

µ(x0)
∏T

t=1 g(yt|xt)f(xt|xt−1)∫
µ(x0)

[∏T
t=1 g(yt|xt)f(xt|xt−1)

]
dx0:t

. (3)

A recursive expression for the posterior can be recovered and is given by Equation (4):

p(x0:t|y1:t) =
g(yt|xt)f(xt|xt−1)

p(yt|y1:t−1)
p(x0:t−1|y1:t−1), (4)

where,

p(yt|y1:t−1) =

∫∫
g(yt|xt)f(xt|xt−1)p(x0:t−1|y1:t−1)dxt−1xt.

The filtering distribution is expressed in two stages - the prediction and update step - as follows,

Prediction: p(xt|y1:t−1) =

∫
f(xt|xt−1)p(xt−1|y1:t−1)dxt−1, (5)

Update: p(xt|y1:t) =
g(yt|xt)p(xt|y1:t−1)∫
g(yt|xt)p(xt|y1:t−1)dxt

. (6)

Another interest is the expected value of the state-space model,

I = Ep(x0:t|y1:t)[h(x0:t)] =

∫
h(x0:t)p(x0:t|y1:t)dx0:t, (7)

for some arbitrary function we are wanting to evaluate (for example the mean h(x0:t) = x0:t).

Estimating the filtering distribution revolves around tackling the filtering problem. This is the promi-

nent issue amongst literature surrounding the Particle Filter and pertains to tracking the latent states as

a new observation streams in. The filtering distributions are usually difficult to compute, as they require

calculation of high-dimensional integrals. One traditional way to sample from complex distributions is

the use of MCMC methods, which are an iterative class of methods. However, the state-space models’

posterior distributions being expressed recursively makes MCMC an unsuitable method (Doucet et al.

2001). Instead, a variant of Importance Sampling can be applied to the recursive setting to estimate the

posterior and filtering distributions.

3 The Bootstrap Filter

A classical Monte Carlo method for estimating properties of complex, hard to evaluate, distributions is

Importance Sampling (IS). As a motivating illustration of the technique, say we wish to evaluate the

expected value of the state-space model (Equation 7), the fundamental idea is to draw samples from a

proposal distribution (π(x0:t|y1:t)) which has the same support as the target distribution (p(x0:t|y1:t)),

the target being known only up to proportionality. The proposal distribution is deliberately chosen to be

tractable and easy to sample from, and with the use of simple algebra, an expression for the the expected

value is given as follows,

I = Ep(x0:t|y1:t)[h(x0:t)] =

∫
h(x0:t)w̃(x0:t)π(x0:t|y1:t)dx0:t∫

w̃(x0:t)π(x0:t|y1:t)dx0:t
, (8)
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where w̃ = p(x0:t|y1:t)
π(x0:t|y1:t)

are known as the importance weights. Sampling xt N -times, where each sample is

known as a ‘particle’, a Monte Carlo estimate for the expectation is derived,

ĨN =
1
N

∑N
i=1 h(x

(i)
0:t)w̃(x

(i)
0:t)

1
N

∑N
j=1 w̃(x

(j)
0:t )

=
N∑
i=1

h(x
(i)
0:t)w

(i)
t , (9)

with the normalised importance weights w
(i)
t =

w̃(x
(i)
0:t)∑N

j=1 w̃(x
(j)
0:t )

. For some problem settings this formulation is

an adequate technique for estimation, however it is not particularly applicable for a recursive scenario. As

a new data point yt is observed, the entire chain y0:t−1 and importance weights need to be recalculated;

subsequently leading to an increase in computational complexity, as well as issues when taken to higher

dimensions (Robert & Casella 2004).

3.1 Sequential Importance Sampling

Following on from IS, a method to fix the computational complexity problems arrives with Sequential

Importance Sampling (SIS). Here, the proposal distribution is selected to have the following recursive

structure,

π(x0:t|y1:t) = π(x0:t−1|y1:t−1)π(xt|x0:t−1,y1:t) = π(x0)

t∏
k=1

π(xk|x0:k−1,y1:k), (10)

and the (normalised) importance weights recalculated as,

w
(i)
t ∝ w

(i)
t−1

g(yt|x(i)t )f(x
(i)
t |x(i)t−1)

π(x
(i)
t |x(i)

0:t−1,y1:t)
. (11)

A simple but effective choice of proposal distribution for this scheme is the prior,

π(x0:t|y1:t) = p(x0:t) = µ(x0)
t∏

k=1

f(xk|xk−1). (12)

This allows the weights to satisfy w
(i)
t ∝ w

(i)
t−1g(yt|x

(i)
t ), and the soon to be stated Bootstrap Filter assumes

a prior proposal distribution.

3.2 SIS with Resampling

While SIS appears to be a novel and efficient method to calculate the recursive posterior distributions, it

is also prone from suffering the same problems that occur in Importance Sampling and it can be shown

that Importance Sampling inefficiencies when taken to high dimensions is analogous to SIS when t is

increased (Doucet & Johansen 2009). This results in the weight distribution possessing a heavy skew and

most weights tending towards 0, we call this Weight Degeneracy. To avoid the problem, researchers added

a resampling step to the algorithm.

In this extra phase, we eliminate weights with low importance and reward those with high impor-

tance. One such sampling technique is Multinomial Resampling, where we obtain samples N
(1:N)
t from a

multinomial distribution, with the probability parameter given by the weights w(1:N). The method can

be sampled from efficiently in O(n) operations (Doucet & Johansen 2009). Another popular (and widely
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used) technique is systematic resampling (Kitagawa 1996), however, for the purpose of this paper - and

later example - Multinomial Resampling suffices. Incorporating this resampling step to SIS results in the

Particle Filter method known as the Bootstrap Filter of Gordon et al. (1993). The steps of this algorithm

is given by Algorithm 1.

Algorithm 1: Bootstrap Filter

Input: N particles, T rounds

1. Initialisation: t = 0

for i = 1, ..., N do

Draw sample x
(i)
0 ∼ µ(x0)

end

for t=1,..,T do
2. Importance Sampling:

for i = 1, .., N do

Draw sample x̃
(i)
t ∼ f

(
xt|x(i)t−1

)
and set x̃

(i)
0:t =

(
x
(i)
0:t−1, x̃

(i)
t

)
end

for i = 1, .., N do

Importance weights: w̃
(i)
t = g(yt|x̃(i)t ).

end

Normalise: for each i, w
(i)
t =

w̃
(i)
t∑

i w
(i)
t

3. Resampling: Resample (with replacement) each particle
(
x
(i)
0:t : i = 1, ..., N

)
from(

x̃
(i)
0:t : i = 1, ..., N

)
with probability given by their respective importance weight.

end

Note, the omission of Step 3 is tantamount to simply implementing SIS and, once finished, the al-

gorithm yields the filtering distribution p(xt|y1:t) for each time step. The algorithm can also be used to

calculate the expected value of some given quantity h(x), with the calculation of Equation (9) carried out

just before the resampling step.

3.3 Theoretical Results of Particle Filters

Much effort has been dedicated to deriving convergence properties of the Particle Filter. Chopin (2004)

showed that, for general Particle Filter methods (referring to these as SMC’s in their paper), if Multinomial

Resampling was used at ever step, then a Central Limit Theorem is established for both the expectation

estimation (Equation 9) and normalising constant of the posterior. That is, as the number of particles

N approaches infinity, the Particle Filter follows a Normal Distribution centered on its true value. It has

also been shown in various scenarios that the asymptotic variance in Particle Filter methods are orders

of magnitude smaller than that of IS and SIS (Doucet & Johansen 2009).

3.4 Example: Latent Gaussian process

We consider a simple example of a linear Gaussian model. As this is a tractable model, the filtering

distribution can be solved analytically with the well known Kalman Filter (Kalman 1960), in turn this is

5



then used to evaluate the performance of both SIS and the Bootstrap Filter. For an unobserved process

Xt and noisy observations Yt, consider the random walk model,

Xt = Xt−1 + ϵ
(1)
t , Yt = Xt + ϵ

(2)
t , (ϵ(1), ϵ(2)) ∼ N (0, 1). (13)

With the initial distribution X0 ∼ N (0, 1). Converting to a state-space model, Equation (13) can be

simply reformulated as,

Xt|(Xt−1 = xt−1) ∼ N (Xt−1, 1) (transition PDF), (14)

Yt|(Xt = xt) ∼ N (Xt, 1) (observation PDF). (15)

We now apply Algorithm 1 without the resampling stage (SIS) and then with resampling (Bootstrap

Filter) using N = 200 particles. To compare to the Kalman Filter’s exact results for the posterior mean,

the estimated posterior mean - given in Equation (16) - is calculated at each time step:

Ep(xt|y1:t)[x] =

N∑
i=1

w
(i)
t x

(i)
t . (16)

Figure 2 gives the resulting trajectory of the estimated posterior means of SIS and the Bootstrap Filter.

These estimates are both close to the true value, but the Particle Filter clearly performs better even in this

one-dimensional setting, having an almost identical trajectory path to the Kalman Filter. For a slightly

crude quantitative measurement of performance, the mean-squared error for SIS and the Bootstrap Filter

is given by 0.386 and 0.009 respectively.

(a) SIS (b) SIS with resampling (Bootstrap Filter)

Figure 2: Latent Gaussian process with 200 particles.

To see where SIS is failing, Figure 3 gives the weighted value of each particle at various iterations for

the two methods. In Figure 3b the particle weights for the Particle Filter at three time intervals are well

mixed. This is in contrast to the SIS particle weights, where the number of weights with significant values

diminish over time and by t = 100 there are few weights greater than 0. This supports the theoretical

discussion in Section 3 of SIS’s shortcomings with regards to Weight Degeneracy.
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(a) SIS Weights (b) Bootstrap Filter Weights

Figure 3: Each dot gives the weight value on the x-axis, for each individual particle on the y-axis. Colours

represent which time step this is.

4 Conclusions and further research

This paper introduced a popular method used to estimate posterior distributions for complex state-space

models, the Particle Filter. Combining Sequential Importance Sampling with a resampling step, it allows

for Bayesian inference on the estimation of posterior distributions, in particular estimating the filtering

distribution and expected values. The main method reviewed was the Bootstrap Filter, which is easy

to implement and belongs to a family of Particle Filters which all have attractive theoretical properties

and advantages over alternative methods such as the Extended Kalman Filter and Sequential Importance

Sampling.

Regarding applications, Particle Filters are also readily applied beyond the areas covered in this

paper. Montemerlo et al. (2002) proposed a modified variant of the Particle Filter to localise and map a

robots surroundings. While its usage in motion tracking has been implemented to scenarios such as the

movements of football players (Dearden et al. 2006, Kataoka et al. 2011). The fields of Chemometrics1

and mathematical psychology also utilise Particle Filters in a variety of problem settings, with papers by

Oppenheim et al. (2008) and Speekenbrink (2016) delving into the applications to their respective areas.

For future investigations, attention can be turned to a problem closely related to filtering, smoothing.

Here, one is interested in the state of the system at each point once all data has been made available.

Some Particle Filtering resources also look into this problem (e.g. Doucet & Johansen 2009, Fearnhead

& Künsch 2018). They find that while Particle Filter methods can be implemented for smoothing, they

suffer significant performance issues for large time sequences. Investigating why this is, as well as the

particle smoothing algorithms that have proposed thus far, would be a worthwhile endeavour for further

research. Another avenue to investigate which concerns more recent advancements in the field, is Particle

MCMC, which embeds a Particle Filter inside a MCMC algorithm, and can be used for problems such as

Parameter Inference (Andrieu et al. 2010, Dahlin et al. 2014).

1The science of extracting information from chemical systems by data-driven means.
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Data Availability

Code and plots used in this report can be accessed at the following GitHub link: https://github.com/

BenSLowery/MResCode/tree/main/601/RT1.
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