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1 Introduction

In 2015, the United Kingdom’s retail sector produced 240,000 tonnes of surplus food (WRAP 2017). Of

this, only 13% was redistributed to people or provided as animal feed, leaving a vast majority to contribute

to the growing problem of food waste. A key issue to arise this century is food wastes contribution to

climate change, with a study by Poore & Nemecek (2018) indicating food production is responsible for

26% of global greenhouse emissions and 24% of this figure is attributed to food waste. While household

and manufacturing are the most responsible sectors for these figures, reduction in food waste for the retail

sector is still an achievable and important goal. Conversely, retailers also need to keep in mind customer

demand and avoid ordering too few products in fear of producing excess food waste, leading to unsatisfied

customers and lost profits.

For this challenge in determining optimal inventory levels, satisfying demand and avoiding such situ-

ations, companies turn to retail analytics and leverage the vast amounts of retail data; harnessing this to

predict trends, outcomes and make informed decisions on demand forecasting and inventory optimisation.

Further, a key consideration within inventory optimisation is the planning horizon. These range from

short, single period models investigating lone purchases, to infinite order-up-to models (Fisher 2009).

Given the vast literature in the field, we restrict ourselves and focus primarily on this first problem, with

models of perishable products over a single selling period and purchases for the product solely being made

before a given selling season.

An area where this situation is prevalent is the Bakery sector. For large Bakery chains, or supermarkets

containing baked sections, we envision a situation in which orders must be placed after the close of business

for the next day. Given the placement of distribution centres, reordering during the day is not viable.

While the shelf life for the majority of products do not last more than one day this leads to potential food

waste, however, not enough food being ordered then leads to out-of-stock scenarios and lost sales for the

day. Such scenario was investigated by Huber et al. (2019) with a large Germany bakery chain.

Comparisons can also be drawn between the issues faced with baked goods retailers, and newspa-

pers. In which daily newspapers, also having the shelf-life of a single day period, need to be ordered by

newsvendors who in turn need to estimate the demand they expect to face, which is almost sure to be

clouded in uncertainty. This newspaper analogy lends itself as inspiration to the most widely used model

in inventory management.

The Newsvendor (alternatively newsboy or single-period) problem has origins attributed to Edgeworth

(1888) and his seminal work “A Mathematical Theory of Banking”. The paper led to the subsequent

establishment of inventory theory, although contemporary literature on the Newsvendor topic commonly

uses the problem statement of Arrow et al. (1951) as a starting point for exploration and implementation.
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The set up for the Newsvendor model leads to a stochastic optimisation problem that is simplistic and

well investigated, making it suitable for a wide array of problem settings within inventory management.

The key underlying assumptions are a company wanting to sell a lone product over a singe period of time

which has uncertain demand, and for orders to be placed before it begins to be sold. A more formal

definition is provided in the following subsection, alongside overviews of its possible solutions.

1.1 Classical Newsvendor Problem

We outline the classical Newsvendor problem under cost minimisation and service level frameworks as

follows: consider the sale of a perishable item with uncertain demand (D) over a single period time frame,

in which we need to determine an order quantity Q = µD + SI. Consisting of mean demand (µD) and a

safety stock level (SI).

Solutions aim to create a balancing act between ordering too much safety stock and preventing out-

of-stock (or stockout) situations, with penalties incurred for causing either scenario. Under a cost min-

imisation framework, the penalties are expressed by an overage cost co per unit if we order too much

product, and an underage cost cu per unit if we fail to meet demand. The goal is to select the optimal

order quantity such that it minimises the total expected costs, which is given by Equation (1).

min
Q≥0

E
[
cu (D −Q)+ + co (Q−D)+

]
, (1)

where (x)+ = max(0, x).

While many models focus on the objective of cost minimisation (e.g. Levi et al. 2007, 2015, Ban &

Rudin 2019, Huber et al. 2019, Ban et al. 2019), the problem can also be formulated under service level

constraints (Beutel & Minner 2012, van der Laan et al. 2019), which are used in inventory management

to measure performances of systems. Under a service level framework, one such performance measure

is the non-stockout probability. Here, let α ∈ (0, 1) denote the probability of a stockout event, it then

follows that (1 − α) yields the non-stockout probability. We simply wish to minimise expected excess

inventory subject to the constraint that - by setting our inventory level Q - stochastic demand D is met

with prescribed probability (1− α) (van der Laan et al. 2019). An objective function for this is given in

the following Equation (2),

min
Q≥0

{
E
[
(Q−D)+

]
: P[Q ≥ D] ≥ 1− α

}
. (2)

In an idealised scenario, the Newsvendor model assumes full knowledge of the demand distribution,

with cumulative distribution function (cdf) F . For cost minimisation, the optimal inventory level Q∗ is

given by,

Q∗
CM = F−1

(
cu

cu + co

)
= min

{
t : F (t) ≥ cu

cu + co

}
, (3)

where F−1 is the inverse cdf. And under a service level framework,

Q∗
SL = F−1 (1− α) . (4)
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For further information on the basic problem, and derivation of the critical fractile under cost minimi-

sation, one can refer to Arikan (2011). Equations (3) and (4) are equivalent, and thus we can set the

values of co and cu based on knowledge of (1− α), with the converse also being true. While the classical

Newsvendor provides satisfying and simply derived results, it has been long accepted that the demand

distribution being known is not realistic in practical settings. Due to these models being too simple and

assumptious to capture the intricacies of real world data (Fisher 2009). There exists a wide range of

potential solutions for when the demand distribution is unknown to help make more appropriate and

reflective real-world decisions, most falling under a class of “data-driven” models.

1.2 Data-driven inventory management

Early literature that addressed the issues of not knowing the full demand distribution came from Scarf

(1957) and extensions by Gallego & Moon (1993). They assumed only partial knowledge of the demand

distribution, specifically the mean and standard deviation. They employed a min-max method which

sought to maximise expected profit against the worst possible distribution. Gallego & Moon (1993)

noted its conservative approach and ease of implementation, and offered extensions to scenarios in which

secondary purchasing opportunities could be made; as well as exploring a multi-item case. A min-max

approach is simple, easy to implement, and provides closed form results; however, optimising over the

worst case distributions requires accurate estimation of the mean and variance (Bertsimas & Thiele 2005).

While these parameters can be estimated from the observed data, in real world scenarios the potential

limited set of past observations leads to unlikely and infeasible solutions.

The data-driven literature has since expanded in recent years to include a variety of approaches.

These are usually split into two categories: (1) parametric models, where the distribution family is

known but parameters need to be estimated. We cover this in Section 2.1. (2) Non-parametric models,

which are free from distributional assumptions and encompass a wide array of methods, such as Sample

Average Approximation (Levi et al. 2007, 2015), Robust Optimisation (Scarf 1957, Gallego & Moon 1993,

Bertsimas & Thiele 2005, Wang et al. 2015) and Machine Learning (Huber et al. 2019, Ban & Rudin

2019). These are all discussed in Sections 2.2, 2.3 and 5.1 respectively.

As we move forward, it should be noted data-driven inventory management is interpreted differently

amongst literature in the area. For example, the definition given by Bertsimas & Thiele (2005) says data-

driven models possess the quality that ‘we build directly upon the sample of available data instead of

estimating the probability distributions’, implying models falling under (1) would not be part of the data-

driven paradigm. Alternatively, in a paper focusing on the comparison of parametric and non-parametric

models, Ban et al. (2019) use a more literal sense of data-driven models, encompassing any model in which

a decision maker chooses to base a decision on available historic data, which covers parameter estimation

based on historic data. We use the latter’s definition moving forward.

With regards to the steps taking to solve inventory level models, data-driven approaches are split into

two tasks, demand estimation and inventory optimisation. These can be tackled sequentially or in an

integrated fashion. Huber et al. (2019) and Ban & Rudin (2019) discussed the merits of a two-step and

integrated approach, investigating in what situations one paradigm is better than another.

Another issue regarding the data-driven Newsvendor - heavily influenced by the plethora of new data
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available - are the effects external features have on demand. Particularly in retail settings, given many

influences on the demand, and with access to this data, researchers have aimed to find ways to incorporate

this into the model. The so called feature-based models usually extend from featureless counterparts. We

cover this in detail in Section 3, before comparing these methods to purely demand driven approaches

in a Numerical Study (Section 4). We first investigate the parametric and non-parametric featureless

data-driven frameworks.

2 Data-driven Inventory models

In recent years, focus has primarily been on leveraging historic data to infer on making optimal inventory

decisions. These data-driven models can split into into parametric and non-parametric approaches. Para-

metric models use data to estimate parameter values for what decision makers assume is the underlying

distribution, in practicality these models are often made in misspecification (Ban et al. 2019). In con-

trast, non-parametric empirical models don’t make any parametric assumptions on the demand, and are

completely reliant on the data at hand and empirical estimates. Parallel to these are robust optimisation

methods, which look to incorporate levels of robustness in the model. We explore parametric models

from both a Frequentist and Bayesian setting, before investigating non-parametric empirical and robust

approaches.

2.1 Parametric Models

Decision makers may find themselves in a situation in which the class of the demand distribution is

known, or can be heavily inferred from the observations, but the parameters themselves need to be

estimated. For such scenario, a parametric approach is preferable (also known as model-based), and these

are broadly separated into Frequentist and Bayesian methods. For example, a Frequentist approach would

be using maximum likelihood estimation to attain estimates. While, a Bayesian method assumes unknown

parameters follows a prior distribution, and the posterior derived from this prior using data observations.

The posterior for the demand distribution is then constructed based on the aforementioned posterior. We

reserve the next two subsections to introduce both a Frequentist and Bayesian method, assuming access

to N independent and identically distributed (i.i.d) historic demand observations D(N) = {d1, ..., dN}.

2.1.1 Method of Moments

Assume our sample of historic observations for demand follows some distribution F with density function

fD(x;θ), where the parameters θ = (θ1, ..., θk) are unknown and need to be estimated. Define the true

jth moment of the distribution as a function of the parameters,

mj = E
[
Dj
]
≡ gj(θ1, ..., θk), (5)

and the sample jth sample moment as,

m̂j =
1

N

N∑
i=1

dji . (6)

4



In the method of moments (MM) approach, we assume the true and sample moments match and set

mj = m̂j for j = 1, ..., k. This results in the set of simultaneous equations:

1

N

N∑
i=1

di = g1(θ̂1, ..., θ̂k),

...

1

N

N∑
i=1

dki = gk(θ̂1, ..., θ̂k)

in which the solution, θ̂MM = (θ̂1, ..., θ̂k) gives our parameter estimates. We then solve the inventory

problem (Equation 1) and decide on an optimal decision rule Q̂MM . This is given by Equation (7),

Q̂MM = F−1

(
cu

cu + co

∣∣∣∣ θ̂MM

)
. (7)

Alternatively, instead of MM, maximum likelihood estimation is another widely used frequentist para-

metric approach, or quasi-maximum likelihood estimation if the model is misspecified (Ban et al. 2019).

2.1.2 Bayesian Parametric

In a Bayesian approach, we begin by reflecting our beliefs in the unknown parameters θ by specifying

a prior distribution, fprior(·). This is selected before any data is seen so it is up to the decision makers

judgement or other factors that can influence a decision. Then, based on the data observations D(N), we

also define a likelihood function L(θ|D(N)) and find a posterior distribution through Bayes rule:

fpost(θ|D(N)) =
fprior(θ)L(θ|D(N))∫

Θ fprior(t)L(t|D(N))dt
, (8)

where Θ ⊆ Rk is the parameter space for the k parameters. The posterior for the demand distribution is

derived from the posterior predictive distribution, i.e.,

f (x|D(N)) =

∫
Θ
L(θ|x)fpost(θ|D(N))dθ. (9)

This Equation (9) then forms the density of the distribution F . And we solve the Newsvendor model and

obtain the optimal order quantity,

Q̂B = F−1

(
cu

cu + co

)
. (10)

Parametric models provide simple, closed form estimates for optimal order quantities in the face of demand

uncertainty. They tackle this in a two stage problem of first forecasting demand through parameter

estimation, and then solving an inventory problem akin to the classical Newsvendor problem. There are

several issues with this approach however. First, obvious caveats are with the need of some input from

the decision maker on distributional assumptions, if a decision maker was faced with total uncertainty on
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how the historical observations came about, the resulting models under these frameworks will likely be

poor fits; they are not truly ‘data-driven’. Frequentist methods like the method of moments can suffer

from significantly higher inventory levels than needed (Beutel & Minner 2012). While Bayesian methods

have proven hard to parsimoniously update prior distributions (Levi et al. 2007).

2.2 Sample Average Approximation

For the reasons discussed at the end of Section 2.1, alongside other scenarios such as the underlying

distribution being too difficult to infer, or we have access to large swathes of data in which we can

construct effective empirical distributions, a non-parametric approach may be preferred. Non-parametric

models can be purely data-driven and require no inference or knowledge of demand distributions, leading

to versatile implementations and utilising powerful modern methods; like those from Machine Learning.

In the last 20 years, there has been a significant rise in non-parametric approaches, with the recent review

article by de Castro Moraes & Yuan (2021) compiling these endeavours.

A simple and widely implemented non-parametric model is Sample Average Approximation (SAA).

The method is used for stochastic optimisation problems and only requires samples from a distribution

either by means of Monte Carlo methods or historical data. For the purpose of the Newsvendor the latter

option is taken, and for a tutorial on the topic, see Kim et al. (2015).

Suppose we do not have knowledge of the underlying demand distribution but we do have access to a

set of N historic demand observations, D = {d1, ..., dN}. We say our historic demand are samples from

the (unknown) true distribution, and each of these samples in D occurs with probability 1
N . Under a

cost minimisation framework, we replace the expectation seen earlier in Equation (1), with its weighted

average across samples and new objective function given as,

min
Q≥0

1

N

N∑
i=1

(
cu (di −Q)+ + co (Q− di)

+) . (11)

Given we are dealing with assumed random samples, the optimal solution to the SAA problem for cost

minimisation is in the form of a random variable Q̂SAA. We can see that each individual sample is

analogous to the deterministic counterpart under a known distribution function, i.e., its solution will be

the cu
cu+co

quantile on the individual sample. Hence, Q̂SAA can be calculated by finding the cu
cu+co

quantile

of the samples (Levi et al. 2007). Specifically,

Q̂SAA = F̂−1

(
cu

cu + co

)
= min

{
t : F̂ (t) ≥ cu

cu + co

}
, (12)

in which F̂ denotes the empirical cdf of the samples and is given by Equation (13),

F̂ (t) =
1

N

N∑
i=1

1(di ≤ t). (13)

The SAA method was studied heavily in the context of the Newsvendor by Levi et al. (2007, 2015).

Several theoretical guarantees were proven including solutions converging to the optimal value as the

number of observations reach infinity. Another important finding were bounds on the observations needed
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to replicate results when the demand is fully realised (using a cumulative regret metric). These were

initially investigated for general demand distributions in Levi et al. (2007), resulting in uninformative

and conservative results. Subsequently, Levi et al. (2015) tightened the bounds by making the problem

distribution specific.

2.3 Robust Optimisation

Robust optimisation is an alternative to the methods covered thus far, and a growing presence in the lit-

erature. Given unpredictability in the demand, decision makers have incentive to turn to robust solutions

to handle problems with uncertain data (Ben-Tal et al. 2009). Robust optimisation, in which we have no

knowledge of the distribution, is a methodology that takes a worst-case approach, leading to conservative

estimates (Huber et al. 2019). While this is often attributed as a criticism, modern methods offer ways in

which we can reduce the conservative estimates - through tolerance parameters - and robust optimisation

remains a popular approach for Newsvendor models. Robust optimisation frameworks are unified in the

construction of an uncertainty set (denoted U) of possible values that can be taken; the goal is then to

optimise. The general form of a robust optimisation problem is given by,

min
q∈Q

max
u∈U

{h(q,u) : g(q,u) ≤ 0, ∀u ∈ U} . (14)

Breaking down the various components of Equation (14): Q denotes the decision space, U ⊂ Rd is the

uncertainty set for parameters u, h(·) and g(·) being the random cost function and the vector of random

functions respectively. The only distributional knowledge we require in this setting is the support of

the random vector u. This contrasts stochastic optimisation problems, such as those seen with SAA in

Equation (11), where the true distribution is based entirely on empirical measurements of the historical

data. Robust models serve as an advantage over SAA type methods which are purely data-driven, as they

can mitigate any adverse effects that can occur when taking the whole data set into account, such as the

potential for misguided decisions (Wang et al. 2015).

A modification of the Robust Optimisation, where we have a distribution P that we know lies in a

family of distributions P, provides an ambiguous variation of the model and given as,

min
q∈Q

max
P∈P

{E [h(q, ũ)]} . (15)

In the above, P is regarded as the ambiguity set and is induced by the random vector ũ (Rahimian

& Mehrotra 2019). Special cases of this robust optimisation problem have been implemented in the

literature. The work of Scarf (1957) and the distribution free Newsvendor approach - in which we have

access to or estimate the first two moments - is one such example. The method falls under the category of

distributionally robust optimisation (DRO), with Equation (15) being a generalisation of such optimisation

set up. Non parametric Data-driven models with robustness came into prominence with a paper by

Bertsimas & Thiele (2005), which removed any need to estimate parameters. The method incorporated

techniques such as trimming to reduce the significance of outliers, the trimming factor allowed robustness

in determining how conservative the decision maker wants the estimate to be. The result was a closed form

solution, and an optimal ordering quantity corresponding to an empirical quantile of the data observations.
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More recently, a modified version of DRO, likelihood robust optimisation (LRO), was introduced and

applied to Newsvendor contexts by Wang et al. (2015). The authors modified the set of possible distri-

butions, P, to only contain those which reach a certain level of likelihood with the data available. We

look at both the method of Scarf (also known as the min-max method) and LRO in the reminder of this

sub-section.

2.3.1 Scarf’s min-max method

The DRO approach of Scarf (1957) looked to maximise profit over worst case distributions. Analogously,

under cost minimisation we seek to minimise worst case expected costs by considering worst case distri-

butions. The method also requires the first two moments, but no other distribution assumptions. In a

data-driven scenario, we calculate estimates for the parameters µ̂ and σ̂ from the set of data observations

D. Collectively, we have in Equation (16) an expression for the min-max problem:

min
Q≥0

max
D∈D(µ̂,σ̂)

E
[
cu (D −Q)+ + co (Q−D)+

]
, (16)

where the function D(µ, σ) is the set of distributions with mean µ and standard deviation σ. One should

be able to see Equation (16) is just a simplified case of Equation (15). For this problem, the optimal

order quantity, Q̂SF is given by,

Q̂SF = µ̂+
σ̂

2

(√
cu
co

−
√

co
cu

)
. (17)

This is known as Scarf ’s rule, and for an elegant proof the reader is referred to Gallego & Moon (1993).

2.3.2 Likelihood Robust Optimisation

Unsatisfied with the two moment DRO approach such as Scarf’s method, Wang et al. (2015) raised two

key issues. First, the discarding of important information within the data by simply taking into account

just the mean and variance. Second, taking a worst-case approach caused suffering in the performance

of more likely scenarios due to the methods inherit conservative nature. In response, they proposed to

redefine how a distribution set is selected, using the likelihood function over moment information.

Consider a set of historical demand observations D, where we round each observation to the nearest

integer. The support of the underlying, but unknown, demand distribution is given by S = {1, .., , n}.
We have the opportunity to truncate n if we would like to save computational time or remove possible

anomalous demand data. Denote Ni as the number of observations, from the set D, which is equal to i,

it then follows that the total number of observations, N =
∑n

i=1Ni. We then construct a distribution

set, D, which is much like the family of distributions P seen earlier. This is given by Equation (18),

D(γ) =

{
p = (p1, ..., pn) :

n∑
i=1

Ni log(pi) ≥ γ,
n∑

i=1

pi = 1, pi ≥ 0, ∀i

}
. (18)

The parameter γ governs the threshold for some desired level of likelihood to be reached by a potential

distribution, and the first constraint in the set D(γ) ensures the worst case distribution is selected.
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Regarding selection for γ, Wang et al. (2015) proposed the following heuristic:

γ∗ =
n∑

i=1

Ni log

(
Ni

N

)
− 1

2
χ2
n−1,1−β, (19)

where χ2 is the chi-squared distribution with (n − 1) degrees of freedom, and β selected such that we

cover the true distribution with probability (1− β)%.

For the Newsvendor problem under cost minimisation, by combining Equation (18), with the general

structure of a DRO problem in Equation (15), we have the two-stage deterministic problem as follows,

min
Q≥0

max
p

n∑
i=1

pi
(
cu(di −Q)+ + co(Q− di)

+
)

s.t.
n∑

i=1

Ni log(pi) ≥ γ, (20)

n∑
i=1

pi = 1,

pi ≥ 0, ∀i.

For the objective function, we replace the expectation with a weighted sum governed by the probabilities

from a distribution set. The inner problem maximises the worst case distribution and cost, while the

outer problem calculates the stocking quantity. For implementation, a tractable single stage optimisation

problem can be formed from Equation (20) as,

min
Q,λ1,λ2,y

λ2 + λ1

(
n∑

i=1

Ni logNi −N − γ

)
+Nλ1 log(λ1)−

n∑
i=1

Niλ1 log(yi)

s.t. cu(di −Q) + yi ≤ λ2 ∀i, (21)

co(Q− di) + yi ≤ λ2 ∀i,

λ1 ≥ 0, y ≥ 0.

The model in Equation (21) is then solved to obtain an optimal stocking quantity, Q̂LRO.

We can also modify the problem to make sure all probability distributions selected carry the same

mean and variance and the historical observations. To achieve this, we add two constraints to the model,

namely,

n∑
i=1

pidi = µ̂, (22)

n∑
i=1

pid
2
i = µ̂2 + σ̂2,

for the sample mean µ̂ and sample variance σ̂2. Fixing the mean and variance was shown to perform better

than both the original LRO variant and Scarf’s min-max method in the case of underlying Normal and

Exponential distributions (Wang et al. 2015). They also found in the case of Scarf’s method when looking

at an asymmetrical distribution such as the Exponential, performance issues suffered greatly in comparison
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to LRO methods; the reasoning was with only taking two moments, the skew in distribution could not be

incorporated into the model. Another recent adaptation of DRO is Functionally Robust Optimisation,

introduced by Hu et al. (2019). Here, the uncertainty set consists of non-parametric demand functions

and does not assume that the form of a model function must be predetermined. They allow a decision

maker to modify their risk appetite based on a risk-reward tradeoff by tuning model parameters.

3 Feature-based Newsvendor

Thus far, the methods discussed are all featureless, and based purely off taking demand observations at

face value. This may not be a realistic assumption to make in certain contexts. For example, within

retail, focusing just on historic demand observations has lead to unsatisfactory analysis when forecasting

demand (Beutel & Minner 2012), this being due to strong dependency on external factors. Recalling

our Bakery motivation from the introduction, we may find ourselves with a higher demand for seasonal

products such as hot-cross buns during the Easter period, surges in general demand during holidays and

weekends, or store location and weather affecting customers willingness to travel in certain conditions.

Thus, some data-driven approaches consider how these exogenous variables can be incorporated into the

decision making process.

The general framework for a feature based Newsvendor readily extends its featureless counterpart.

We define a feature vector x ∈ X ⊂ Rm, where X is the feature space. We assume the decision maker

has obtained a set of historical data, Sn = {(d1,x1), ..., (dN ,xN )}, and the demand decision is now a

function Q(·) : X → R. The cost minimisation formulation of the Newsvendor is modified to optimise the

conditional expected cost function, ie.,

min
Q(·)≥0

E
[
cu (D(x)−Q(x))+ + co (Q(x)−D(x))+ |x

]
. (23)

The decision space Q, in which Q(·) is based in, can be selected in different ways. A linear relationship

(Beutel &Minner 2012, van der Laan et al. 2019, Ban & Rudin 2019) is a popular approach and constructed

as:

Q =

Q : X → R : Q(x) = qTx =
m∑
j=1

qjxj

 . (24)

We then optimise to find these q coefficients. Huber et al. (2019) notes a linearity assumption causes

restrictions on the underlying functional relationships, however, if the relationship is too complex then

this could lead to overfitting. With this being said, non-linear relationships have been constructed in

linear models through incorporating them as additional features (e.g. van der Laan et al. 2019, Ban &

Rudin 2019). While a purely non-linear decision space was suggested by Huber et al. (2019).

We formulate one such feature based approach in the remainder of this section. Motivated by the

inefficiencies of inventory planning within the retail sector, Beutel & Minner (2012) suggested the integra-

tion of causal demand forecasting and inventory optimisation. They focus primarily on the issue of safety

stocks, and use a Econometrics approach based on ordinary least squares (OLS) to model the relationship

between features and demand. We formulate demand in this way as follows: Consider historical demand
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observations within D = {d1, ..., dn} as a linear function of m explanatory variables and an error term

(u). In matrix notation this is given by,

D = Xq+ u, (25)

where q are the coefficients for m explanatory variables, and X a m × n feature matrix of observations.

We set the first row of the matrix, X0,i equal to 1 to allow for an intercept term in the model. For a

specific observation, i, we have,

di = q0 +

m∑
j=1

qjXj,i + ui. (26)

The optimal order quantity, Q, is derived from the feature vector with known value, Xj,0, e.g., the next

days sales price or weather. The order quantity is given in Equation (27).

Q = q0 +

m∑
j=1

qjXj,0. (27)

The feature dependent linear program under cost minimisation seeks to optimise decision variables,

qi for each observation i. Inventory levels (vi) and satisfied demands (si) are also indirectly decision

variables. Historic demand di and feature matrix Xj,i for j = 1, ..,m are known quantities. The resulting

formulation for the linear program is given by Equation set (28) to (32) as follows,

min
q,v,s

n∑
i=1

(covi + cu(di − si)) (28)

s.t. vi ≥
m∑
j=0

qjXji − di, i = 1, ..., n (29)

si ≤ di, i = 1, ..., n (30)

si ≤
m∑
j=0

qjXji i = 1, ..., n (31)

s,v ≥ 0,q ∈ R. (32)

The objective function (28) sums the holding and penalty costs for each demand observation, whether

we have a surplus with leftover inventory vi, or shortage (di − si). The constraint (29), alongside the

objective function, determines excess inventory vi corresponding to demand di. While constraints (30)

and (31) ensure the sales quantity, si, is equal to the minimum of the demand observation, di, and the

supply.

This problem is tractable and can be easily implemented, with the resulting coefficient values substi-

tuted into Equation (27) to obtain the optimal order quantity Q̂FB. In other literature, the formulation

is referred to as Empirical Risk Minimisation (Ban & Rudin 2019), or the hindsight approach when for-

mulating under service level constraints (van der Laan et al. 2019). The method was found to under

perform in comparison to the parametric method of moments, and another method based on ordinary

least squares, when the sample size was small. However under model mis-specification, they found their

approach greatly outperformed comparable methods.
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4 Numerical Study

To compare a selection of featureless methods to a feature method, and computationally analyse the

findings we’ve discussed thus far in the literature, we consider an example in which the demand is expressed

a function of the price. Specifically we base the study off Beutel & Minner (2012) and van der Laan et al.

(2019), quantifying the methods based on achieved service levels and average inventory levels. Elsewhere,

researchers have used a regret metric (Levi et al. 2007, 2015), average cost increases (Huber et al. 2019),

and expected profit/cost (Bertsimas & Thiele 2005, Wang et al. 2015, Ban et al. 2019) to evaluate methods.

We select our metrics in particular as they have relevant applicability to what real world decision makers

are likely looking for in the retail sector. We have generated the data ourselves, with code found in the

Data Availability section.

4.1 Setup

We assume the true demand depends on a single factor, price, and each historic demand observation is

modelled by,

di = a− bpi + η, (33)

for price pi ∼ U [0, 1], market size and slope a and b respectively, with η ∼ N (0, σ). a and b are selected

uniformly on intervals [1000, 2000] and [300, 500] respectively. For each instance of a problem, a and b

stay fixed and are unknown to the decision maker. To select σ, we recover this from the coefficient of

variation formula at mean price p,

CV =
σ

µD
,

for mean demand µD. We fix CV = 0.3 for the majority of the study, before varying this later in Section

4.2.2. For the underage cost cu and overage cost co, recall from Section 1.1 that we can recover these from

setting a desired service level, given by Equation (34),

cu
cu + co

= 1− α. (34)

If say, we fix the service level for the non-stockout probability to (1− α)× 100% = 90% and the overage

cost as co = 1, then we recover cu = 9.

A table of selected methods is given by Table 1. We aim to compare a method from each of the family

of approaches we’ve explored in this report. For the method of moments, we assume an underlying normal

distribution. While for the known true function, we use:

Qtrue = µD + SI. (35)

Here, a − b · 0.5 is the mean demand (given the mean price is 0.5 if picked uniformly on [0, 1]) and

F−1
(

cu
cu+co

)
· σ is the safety stock level. In this scenario, the CDF is standard normal.
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Featureless

Method of Moments (parametric) Section 2.1.1

SAA (non-parametric empirical) Section 2.2

Scarf’s Rule (non-parametric robust) Section 2.3.1

Feature Based
Feature based LP Section 3

Known Equation (35)

Table 1: Methodologies.

Each method is trained on n samples, then the metrics are created by testing on 100,000 out of sample

observations. We calculate the metrics as so,

1. Average service levels: For the non-stockout probability service level, we find the proportion of out

of sample observations that are below the optimal decision rule.

2. Average inventory levels: For each out of sample observation, we observe the demand and find the

difference between the optimal decision rule and the demand, averaging over all the samples.

Given the initial set up, the methodologies are tested on varying training sample sizes and analysing low

and high variance data.

4.2 Results

To add clarification to the numerical study, we run through a simple example of a single instance. For

this run through on n=200 training samples:

a = 1348.217, b = 313.41, cu = 1, co = 9, CV = 0.3, and σ = 357.4536.

Figure 1a graphs each rule from the methods outlined in Table 1, with Figure 1b giving the average

inventory levels after 100 iterations of testing and training on randomly generated demand samples.

From this single instance we see immediately the conservative nature of Scarf’s rule that was discussed

in the literature. In fact, on this instance all (sans the feature based LP method) show conservative

inventory levels, with SAA and Feature based LP performing the best. Method of Moments and Scarf’s

also appear to have tighter bounds on the spread of the inventory levels.
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(a) Q decision rules (b) Average inventory Levels

Figure 1: Single instance

We can now test different situations and aspects a decision maker may be interested in evaluating.

For the following tests, 100 instances are generated and results averaged out for each metric.

4.2.1 Sample size changes

Here, we fix CV = 0.3, cu = 1, co = 9 and range the training sample size n ∈ [10, 200] in intervals of 10.

Results for service levels and average inventory levels are given in Figure 2.

(a) Service Level (b) Average inventory Levels

Figure 2: n ranges

For service levels we again see Scarf’s rule giving conservative results, however this leads to the best

service levels for for low training sample sizes. Conversely, SAA and the Feature based LP are almost

indistinguishable for the service levels, and both perform rather poorly for low training sample sizes.

Note, there is a seemingly anomalous result for n = 110 which is likely as a result of not doing enough

simulations. This could be alleviated with more computational power and time. Turning to average
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inventory levels in Figure 2b, all methods require a relatively low sample size to attain reasonably close

to actual inventory levels (∼ 20) before suffering quite poor results for Scarf and Method of Moments.

The Feature based LP clearly has the best results and is found to be consistently within 1 − 3% of the

actual inventory level for n > 20.

4.2.2 Low and high variance data

We experiment with modifying the coefficient of variation between the values of CV = 0.3 and CV = 0.5

at 0.05 increments, with 200 training samples. Here, we just focus on the Average Inventory Level metric,

as the service level did not change a meaningful amount when varying CV levels. Figure 3 gives plots of

the Average Inventory Level and its standard deviations. In particular, Figure (3a) gives the difference

between the specific method and value for the known function.

We see that the Feature Based LP is definitively better than other methods for all variations in the

spread of the data. The difference is especially stark for low variance data. With this being said, the

standard deviation of the Feature Based LP is the highest. Scarf’s conservative estimates still shine

through in this variation.

(a) difference in Average Inventory Level between

true and each respective method.

(b) Plot of standard deviations of Average Inventory

Level.

Figure 3: CV changes

4.3 Discussion

These results aim to highlight the merits and drawbacks with different approaches to the data-driven

Newsvendor problem. They also highlighted the advantages of using more than one metric to assess

results. As an example, looking at inventory levels, the Feature based LP performed exceptionally, but

lagged behind in service levels, and exhibited issues under small sample sizes. What we did not see however

was a significant advantage of using the Feature based LP over featureless methodology. This could be due

to the simple underlying assumptions of the data being normal. In future, we could consider modifying

these underlying assumptions and investigating performance under model mis-specification. This could
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be especially insightful for the parametric method of moments that requires a family of distribution to

be specified, and Scarf’s rule if we have bimodal data. Some literature has already investigated this issue

with Beutel & Minner (2012) considering the cases of heteroscedasticity (changing variance throughout

the data) and a gamma demand distribution. Further research may also be needed in replicating results

and independently repeating the study. This is due to the peculiarity in the performance between SAA

and Feature Based LP, as they appear rather close to each other. Meanwhile, the method of moments

appear to perform better here than in other computational studies (e.g. Beutel & Minner 2012).

5 Current and Future research areas

The data-driven Newsvendor is an active field, with regular developments in methodological, theoretical

and computational aspects. We explore three active research areas of interest, looking at expansion of

the toolset of data-driven methods, as well as the application of data-driven methods to these specific

Newsvendor cases. Providing the current state of the art, and discussing future research directions in

each respective area.

5.1 Machine Learning models

Contemporary developments in data-driven models heavily incorporate Machine Learning (ML) aspects,

with a surge in ML approaches in recent years (de Castro Moraes & Yuan 2021). As a result of the

rise in data available to retailers on all different facets of the inventory process, an obvious area of

focus is the feature-based Newsvendor. Oroojlooyjadid et al. (2020) notes some of the state-of-the-art

methodologies employed by decision makers, while themselves suggesting a Deep Neural Network based

approach. One such topic is combining quantile regression (QR) with machine learning approaches such

as neural networks; which have been used previously on predicting rainfall, drug activities and evaluating

value-at-risk. Given the solution to Newsvendor problems often involve selecting a certain quantile of

the cumulative demand distribution, it is natural to employ quantile regression methods, and ML-QR

methods have been implemented by Huber et al. (2019), Ban & Rudin (2019), Oroojlooyjadid et al.

(2020), Cao & Shen (2019) among others. The systematic literature review by de Castro Moraes & Yuan

(2021) notes that their is work still to be done in QR-ML models, specifically in regards to modifying the

loss function when considering various model constraints.

Elsewhere, model paradigms of separated and integrated demand forecasting and inventory optimisa-

tion (recall Section 1.2) have been subject of interest within ML models. Two recent papers to outline

the merits and drawbacks of the approaches were Ban & Rudin (2019) and Huber et al. (2019). Ban

& Rudin (2019) implemented one-step, distribution free machine learning algorithms, and commented

on the reasoning behind not employing a separated approach; citing the problematic nature of demand

model specification in high-dimensions. This has the effect of amplifying errors when moving into an

optimisation stage. Alternatively, Huber et al. (2019) says the situations in which a separated or inte-

grated approach is superior, remains an open problem. The paper considers both separate and integrated

methodology and employs ML approaches in the demand estimation stage such as Neural Networks and

Decision Trees. The also note the equivalence of an integrated approach and QR, and conclude that ML
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methods perform very well as long as sufficiently large datasets are available.

A modern problem with ML models is the lack of interpretability. Since these approaches are black-

box, it is hard for the decision maker to derive how an algorithm achieves a given output from the original

data (Oroojlooyjadid et al. 2020). Consequently this brings up issues of trust and transparency in the

models (Lipton 2016). One argument, highlighted by Huber et al. (2019), posits the idea that if the

metrics used to evaluate methods are good enough, then these should outweigh potential issues with

interpretability. They use an example of forecast accuracy measurements being easy to attain in baked

goods as justification. The issue, as well as being spread out broadly within ML literature, is also likely

problem specific and more research is needed to evaluate the merits of black-box model, or alternatively

develop more intepreatable models.

5.2 Service Level Constraints

In the introduction to the Newsvendor model at the beginning of the report, we briefly formulated the

model under service level constraints. Often retailers are bounded by “Service level agreements” which are

performance based contracts that manage supplier relationships; with some 91% of organisations using

service level agreements of some sort (Liang & Atkins 2013). Therefore, given its wide use in practice,

optimisation with respect to service level constraints should perhaps be more widely considered than it

currently is. Very few models assess the problem under service level constraints, with most preferring

the classical cost minimisation or profit maximisation. In addition to the service level of non-stockout

probability that was used in both the introduction and Section 4, another popular service level is the fill

rate. This pertains to satisfying a fraction of demand, which had been pre-determined.

In the feature based Newsvendor literature, there exists only three current papers on the issue: Beutel

& Minner (2012), van der Laan et al. (2019), Ye & Yang (2021). The first of these is a modification on the

Feature Based LP we introduced in Section 3. While, van der Laan et al. (2019) use similar assumptions

but take a robust optimisation approach. They observe service level constraints are chance constraints, a

special robust case approach of stochastic optimisation (see Rahimian & Mehrotra 2019, for more details).

In the third model, Ye & Yang (2021) highlights the conservative results from the robust optimisation

methods, and themselves produce a Machine Learning approach using K-nearest Neighbours.

Given the lack of papers, an exciting research path would be to further explore and apply methods

to a service level framework. van der Laan et al. (2019) proposes applying their robust approaches to a

fill rate service level, as they solely focused on the non-stockout probability. While SAA and parametric

models could also be applied to the service level constraint problem.

5.3 Censored demand

If a retailer faces a stockout situation, they may not be able to estimate the lost sales faced. This in

turn leads to right-censored data, with the only knowledge of the system being demand exceeded the

inventory. Nahmias (1994) discusses the long history of investigating the censored demand problem, with

parameter estimation of censored data going back to the early 20th century. They suggest a method for

parameter estimation with normally distributed demand, however focusing on order-up-to models rather
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than the Newsvendor. In order-up-to models, the decision maker periodically reviews data and updates

stock back to a desired demand level. Ding et al. (2002) developed a Bayesian Markov decision process

for the multi-period Newsvendor, finding performance improvements over Bayesian methods at the time,

as well as upper bounds on performance. Lau & Hing-Ling Lau (1996) proposed an early non-parametric

approach to the censored demand problem.

Sachs & Minner (2014) extends Beutel & Minner (2012) by considering demand censoring in the feature

based Newsvendor context. They provided a data-driven approach that was found to perform better than

the existing parametric and non-parametric models, including that of Nahmias (1994) and Lau & Hing-

Ling Lau (1996). They suggest extensions to the multi-period case, noting product substitutions in the

event of a stockout leads to artificially inflated sales of other products. Meanwhile, Huber et al. (2019)

attempts to circumvent the issue of lost sales and demand censoring by using intra-day sales patterns

of point-of-sales data. Given the abundance of data available to decision makers, this appears to be a

preferable direction.

In general, much like service-level constraints, the data-driven literature is rather sparse on the issue

of demand censoring. Further research outside of that mentioned so far would likely be extending current

Newsvendor approaches to a censored demand setting; much in the same vein of Sachs & Minner (2014).

6 Conclusion

This paper introduced a framework to select the inventory quantity of perishable products under uncertain

demand, with specific focus on developing methods leveraging purely historical data observations. By

drawing comparisons between perishable items and the issues faced by Newsstands, the Newsvendor

model was introduced. The classical method utilised a known demand distribution, which is an impractical

assumption. Thus an array of data-driven methodologies were discussed and compared, as well as the

current state of the art in the field and contemporary research area. The primary application - and

focus of this paper - was in the retail sector, however due to the generality of the framework, researchers

have extended the model beyond this context. Arikan (2011) cites fast fashion, consumer electronics,

and revenue management. The methods developed for the Newsvendor setting have also been adapted

to other contexts. For example, Wang et al. (2015) applied their LRO method to the portfolio Selection

Problem in addition to the Newsvendor.

Although we introduced methods with emphasis on the practical and real world situations, some liber-

ties have still been taken that prevents fully realistic scenarios. One direction with pertinent applications

to the real situations faced by retailers is multi-period and multi-item settings. The literature provide

many instances of having a desire in their conclusions to extend the work to such situations. Future work

could discuss and investigate these methods in both theoretical and computational studies.

Another extension of this report is further analysis into where each approach is most relevant. It is

not yet known if non-parametric data-driven methods outperform their parametric counterparts (de Cas-

tro Moraes & Yuan 2021). Thus, more computational and theoretical studies will be required to offer

more insights into this question.
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Data Availability

Code used in this report can be accessed at the following GitHub link: https://github.com/BenSLowery/

MResCode/tree/main/601/RT2.

References

Arikan, E. (2011), A Review of the Newsvendor Model, Peter Lang AG, pp. 21–32.

Arrow, K. J., Harris, T. & Marschak, J. (1951), ‘Optimal inventory policy’, Econometrica 19(3), 250–272.

Ban, G., Gao, Z. & Taigel, F. (2019), ‘Model mis-specification in newsvendor decisions: A comparison of frequentist

parametric, bayesian parametric and nonparametric approaches’, SSRN Electronic Journal .

Ban, G.-Y. & Rudin, C. (2019), ‘The big data newsvendor: Practical insights from machine learning’, Operations

Research 67(1), 90–108.

Ben-Tal, A., El Ghaoui, L. & Nemirovski, A. S. (2009), Robust optimization, Princeton series in applied mathematics,

Princeton University Press, Princeton. OCLC: ocn318672208.

Bertsimas, D. & Thiele, A. (2005), A data-driven approach to newsvendor problems, Technical report, Operations

Research Center, MIT.

Beutel, A.-L. & Minner, S. (2012), ‘Safety stock planning under causal demand forecasting’, International Jour-

nal of Production Economics 140(2), 637–645. Sixteenth internationalworkingseminaronproductioneconomics,

Innsbruck, 2010.

Cao, Y. & Shen, Z.-J. M. (2019), ‘Quantile forecasting and data-driven inventory management under nonstationary

demand’, Operations Research Letters 47(6), 465–472.

de Castro Moraes, T. & Yuan, X.-M. (2021), Data-driven solutions for the newsvendor problem: A systematic

literature review, in ‘Advances in Production Management Systems. Artificial Intelligence for Sustainable and

Resilient Production Systems’, Springer International Publishing, pp. 149–158.

Ding, X., Puterman, M. L. & Bisi, A. (2002), ‘The censored newsvendor and the optimal acquisition of information’,

Operations Research 50(3), 517–527.

Edgeworth, F. Y. (1888), ‘The mathematical theory of banking’, Journal of the Royal Statistical Society 51(1), 113–

127.

Fisher, M. (2009), ‘Rocket science retailing: The 2006 philip mccord morse lecture’, Operations Research 57(3), 527–

540.

Gallego, G. & Moon, I. (1993), ‘The distribution free newsboy problem: Review and extensions’, The Journal of

the Operational Research Society 44(8), 825–834.

Hu, J., Li, J. & Mehrotra, S. (2019), ‘A data-driven functionally robust approach for simultaneous pricing and order

quantity decisions with unknown demand function’, Operations Research 67(6), 1564–1585.

Huber, J., Müller, S., Fleischmann, M. & Stuckenschmidt, H. (2019), ‘A data-driven newsvendor problem: From

data to decision’, European Journal of Operational Research 278(3), 904–915.

19

https://github.com/BenSLowery/MResCode/tree/main/601/RT2
https://github.com/BenSLowery/MResCode/tree/main/601/RT2


Kim, S., Pasupathy, R. & Henderson, S. G. (2015), A Guide to Sample Average Approximation, Springer New York,

New York, NY, pp. 207–243.

Lau, H.-S. & Hing-Ling Lau, A. (1996), ‘Estimating the demand distributions of single-period items having frequent

stockouts’, European Journal of Operational Research 92(2), 254–265.

Levi, R., Perakis, G. & Uichanco, J. (2015), ‘The data-driven newsvendor problem: New bounds and insights’,

Operations Research 63(6), 1294–1306.

Levi, R., Roundy, R. O. & Shmoys, D. B. (2007), ‘Provably near-optimal sampling-based policies for stochastic

inventory control models’, Mathematics of Operations Research 32(4), 821–839.

Liang, L. & Atkins, D. (2013), ‘Designing service level agreements for inventory management’, Production and

Operations Management 22(5), 1103–1117.

Lipton, Z. C. (2016), ‘The mythos of model interpretability’.

Nahmias, S. (1994), ‘Demand estimation in lost sales inventory systems’, Naval Research Logistics (NRL) 41(6), 739–

757.
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