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MOTIVATION

Food Waste in Bakery Sector

- UK retail sector produced 240,000
tonnes of surplus food in 2015 (WRAP,
2017).

- Short shelf life of baked goods and
excess food waste has far reaching
impacts from profits to climate change.

Safety Stock Planning

- Retailers have to keep in mind demand fluctuations and risk of
stockout situations.

- Recent Example: Besins (menopause drug manufacturer) didn't
anticipate spike in demand from increased media coverage.



NEWSVENDOR MODEL

- Setting: for a perishable product, over a single period with
unknown demand (D), select order quantity (Q) that minimises
cost and penalises over (c,) and under (c,) ordering.

Newsvendor Model - Cost Minimisation
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- Solution with known demand distribution and CDF F,
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- Edgeworth (1888) establishment of Inventory Theory and then
Arrow et al. (1951) formulation led to the Newsvendor Model.



ISSUES AND SOLUTIONS

- In practical situations we do not know the demand distribution
and rely on historically observed data.
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- Many data-driven solutions have come about in recent years.
- Family of Distribution known? Parametric!

- Non-parametric approaches:
- Sample Average Approximation (Levi et al., 2007).
- Robust Optimisation (Scarf, 1957).
- Feature based Linear Program (Beutel and Minner, 2012).



SAMPLE AVERAGE APPROXIMATION (SAA)

- Easy to implement and requires only historic demand
observations.

- Assume each demand sample occurs with probability %

SAA - Cost Minimisation
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- Decision rule comes from constructing empirical CDF.
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ROBUST OPTIMISATION

- Scarf (1957) proposed a distributionally robust optimisation
model. Knowledge of first two moments only.

- Seek to minimise worst case expected costs by considering
worst case distributions.

Scarf’s Min-max method
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- D(u, o) is the set of distributions with mean p and standard

deviation o.
- Optimal decision rule:
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BUT WHAT ABOUT FEATURES?

- Focusing just on historic demand observations has lead to
unsatisfactory analysis when forecasting demand (Beutel and
Minner, 2012).

- Bakery sector for example: price, weather, seasonality may play
arole.

- Feature-based Newsvendor models address this, LP approach:
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FEATURELESS VS. FEATURE BASED METHO

- Computational comparison between Feature-based method and
Featureless (SAA and Scarf’s min-max).
- Use artificially created data-set on one feature (price).

di=a—bpj+n

- Metrics: achieved service level and average inventory levels.
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MORE RESULTS...

Achieved Service Level

Average service levels for 200 simulations
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TAKEAWAYS

- Scarf provides overly conservative results.
- Feature-based gets inventory levels very close to actual.

- No big difference between feature based and SAA on service
levels.

- Future work:

- Change underlying assumptions.
- Increase number of features.



FURTHER RESEARCH AREAS 1 - MACHINE LEARNING MODELS

- Seen a recent surge in Machine Learning based approaches
(de Castro Moraes and Yuan, 2021).

- Issues with interpretability of Machine Learning models.

- However, Huber et al. (2019) concludes this may not matter if
results and metrics are good enough.

- Potential future research in leveraging “Big Data” and develop
better Feature based models.



FURTHER RESEARCH AREAS 2

Service Level Constraints

- Often retailers are bounded by “Service level agreements”.
- New objective function:

min {E[(Q—D)*]:P[Q>D]>1-a}.

- Future research in extending existent methodology to this
problem setting.

Censored Demand

- Frequent stockouts might lead to not knowing true demand and
lost sales.

- Parametric methods from Conrad (1976) and Nahmias (1994).

- (non-parametric) data-driven approaches by Huh et al. (2011)
and Sachs and Minner (2014).

- Future and current interest in extending to multi-product and
multi-period settings. -



THANKS FOR LISTENING!
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