
High-dimensional Co-occurrence Modelling with an

Application in Disease Co-morbidity

Cassandra Posthumus

Assignment presented in the partial fulfilment

of the requirement for the degree of

BComHons (Mathematical Statistics)

at the University of Stellenbosch

Supervisor: Dr. D.P. Hofmeyr

Degree of confidentiality: A November 2021



PLAGIARISM DECLARATION

1. Plagiarism is the use of ideas, material and other intellectual property of another’s work and

to present it as my own.

2. I agree that plagiarism is a punishable offence because it constitutes theft.

3. Accordingly, all quotations and contributions from any source whatsoever (including the

internet) have been cited fully. I understand that the reproduction of text without quotation

marks (even when the source is cited) is plagiarism.

4. I also understand that direct translations are plagiarism.

5. I declare that the work contained in this assignment, except otherwise stated, is my original

work and that I have not previously (in its entirety or in part) submitted it for grading in

this assignment or another assignment.

20687842

Student number Signature

C. Posthumus 5 November 2021

Initials and surname Date

Copyright © 2021 Stellenbosch University

All rights reserved

ii



ACKNOWLEDGEMENTS

I would like to acknowledge Insight Actuaries & Consultants for the use of their data which was

instrumental to this study. Additionally I would like to acknowledge and thank my supervisor, Dr

Hofmeyr for his continuous guidance and support throughout this process.

The Department of Statistics and Actuarial Science wishes to acknowledge David Rodwell for

generously creating a template based off the University of Stellenbosch Business School guidelines

which have been adapted for the purposes of the department.

iii



ABSTRACT

The primary focus of this study is to use statistical means to identify groups of chronic conditions

that commonly co-occur from a dataset comprising of a large number of conditions.

In determining the inter-relatedness of conditions, the co-occurrence probabilities of each condition

pair needs to be estimated. The co-occurrence probabilities are estimated in a pairwise manner,

because allowing for higher-order interactions results in a computationally intractable problem

when a large number of conditions are simultaneously considered. To this extent, the multivariate

Bernoulli distribution can be studied.

This study proposes three models which can be used to estimate pairwise co-occurrence

probabilities. The first model, the incomplete maximum likelihood estimation (MLE) model, is

unregularised. The following two models proposed regularise the incomplete MLE model by

means of penalisation and rank reduction.

The estimated co-occurrence probabilities are used to inform a similarity matrix, which is then

used as an input to the spectral clustering algorithm. The normalised mutual information score is

chosen as the similarity metric because it provides a measure of dependency between the conditions

and is therefore appropriate for this problem.

The models are applied to observational data, but also to simulated data. Because clustering is an

unsupervised learning problem, the model performance needs to be validated through simulation

studies whereby the underlying dependence structure of the data are known. This study discusses

and implements the simulation of dependent binary co-occurrence data.

The study found that two of the models showed favourable results, and can be used to cluster

high-dimensional co-occurrence data.
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CHAPTER 1

INTRODUCTION

1.1 INTRODUCTION

Co-occurrence modelling is an instrumental tool in the context of unsupervised learning. There are

many applications where a network structure is to be analysed, and the components grouped. In

this study we construct a network of chronic conditions and investigate the pairwise relationships

between these conditions. The aim of this is to determine the inter-relatedness between the chronic

conditions so that they can be clustered using spectral clustering. In order to characterise the

similarity matrix for clustering, we estimate the co-occurrence probabilities using three techniques,

two of which are regularised estimation approaches.

These methods are applied to both real co-occurrence data and simulated data. The aim of including

a simulation study is to validate the performance of the models on data with a known underlying

distribution.

This study aims to apply clustering to a large number of chronic conditions. The majority of

publicised multi-morbidity studies involve only a small subset of conditions so a goal of this study

is to analyse multi-morbidity patterns across a multitude of conditions. The nature of this data

is that it is inherently sparse and so the proposed models should be computationally efficient and

able to perform adequately when faced with high-dimensional sparse data.

1.2 PROBLEM STATEMENT

The primary focus of this study is to cluster chronic conditions into inter-related groups. The study

thus aims to answer the following question.

In the data, do disease clusters exist, and if so what chronic conditions are inter-related?

The structure of co-occurrence data is high-dimensional, sparse and binary. Manipulating this type

of data to reveal clusters poses many challenges, which this study aims to overcome through the

use of simplified and regularised models.
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1.3 CHAPTER PLAN

In Chapter 2, we provide a justification for the use of multi-morbidity as an application area, and

describe existing co-occurrence models.

In Chapter 3, we propose and discuss three approaches to estimate co-occurrence probabilities and

discuss the importance of regularisation in co-occurrence modeling.

In Chapter 4, we discuss the importance of simulation studies for model validation and describe

two techniques of simulating co-occurrence data that has an underlying dependence structure.

In Chapter 5, we outline the methodology used to cluster inter-related chronic conditions. In this

chapter we also describe how model parameters were tuned.

In Chapter 6, we discuss the results of the analysis on the simulated and real data.

1.4 CLARIFICATION OF KEY CONCEPTS

1.4.1 ICD 10 codes

ICD stands for ‘International Statistical Classification of Diseases and Related Health Problems’,

however it is more commonly known as ‘International Classification of Diseases’. Healthcare

professionals use ICD codes to classify conditions and causes of injury for standardized and

consistent reporting. ICD 10 refers to a specific version of the ICD codes.

In this study we define chronic conditions by their corresponding ICD 10 code.

1.4.2 Chronic condition

The Centers for Disease Control and Prevention (CDC) defines chronic conditions as ‘conditions

that last 1 year or more and require ongoing medical attention or limit activities of daily living or

both’ (Centers for Disease Control and Prevention, 2021).

The way that chronic conditions are defined in the study must be aligned with the data provided

to us. The definition we then use to describe an individual with a chronic condition is as follows,

“An individual is defined as having a chronic condition if they have ever claimed for

medication that was paid out from a chronic benefit by their medical scheme. The

2



beneficiary becomes chronic on the date which they first claimed for chronic medication,

and are not assumed to recover.”

This definition makes use of the simplifying assumption that a chronic condition cannot be cured.

1.4.3 Co-morbidity and multi-morbidity

A disease co-morbidity is the simultaneous existence of two chronic conditions in an individual.

The term ‘multi-morbidity’ is an extension of the term ‘co-morbidity’, in that it also allows for the

presence of more than two chronic conditions co-existing in an individual.

3



CHAPTER 2

LITERATURE REVIEW

2.1 INTRODUCTION

In this chapter we use literature to justify the use of investigating co-morbidities as the application

to a co-occurrence model. Additionally, we investigate existing co-occurrence models such as the

multivariate Bernoulli distribution, the Ising model and a co-clustering approach proposed by Ng

(2015).

2.2 JUSTIFICATION OF DISEASE CO-OCCURRENCE APPLICATION

Co-occurrence modelling has typically been applied in modelling species co-occurrence, or in the

context of natural language processing, where word co-occurrence within documents is analysed.

These applications would be equally acceptable in the context of this research. However, the

application in co-morbidities provides certain advantages.

Firstly, multi-morbidity is a societal problem with far reaching impacts, and through this study we

hope to better understand the inter-relatedness of chronic conditions. Education can be considered

one of the first steps towards policy and societal change. Secondly, model validation with co-

morbidity data is comparatively unchallenging. Lastly, this study is novel in that few studies have

been conducted which model disease co-occurrence of a large number of conditions.

Justification through the Widespread Adverse Impacts of Multi-morbidity

Studies have shown that multi-morbidity results in poor healthcare outcomes, including a reduced

life quality and higher mortality rates (Arokiasamy et al., 2015). Additionally, multi-morbidity

leads to obstacles in working environments. A cross-sectional study in Australia and Japan by

Sum et al. (2020) revealed that multi-morbid individuals have lower work productivity and worse

performance. This is due to the increased number of sick leave days required by multi-morbid

people and the lower odds of a multi-morbid person being employed despite being in the labour

force (Sum et al., 2020).

As well as being a healthcare issue, multi-morbidity comes with substantial economic ramifications
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due to the increased costs associated with disease co-occurrence. Multi-morbid individuals have

an increased healthcare utilization which is compounded by health care costs associated with the

interactions between conditions. The increased healthcare utilization of multi-morbid individuals

results in significant out-of pocket expenditure.

To quantify the cost of multi-morbidity to the healthcare system we need to quantify:

1. What proportion of individuals face multi-morbidity?

2. To what extent does the healthcare system carry the costs associated with multi-morbidity?

Does most of the expenditure come from out-of-pocket payments or healthcare utilisation?

In evaluating the prevalence of multi-morbidity, can review various studies. A South African study

estimated the prevalence of multi-morbidity of the adult population to be 4%, however the authors

acknowledge that this may be an underestimation of the true prevalence because only a few chronic

diseases were included in the analysis (Alaba and Chola, 2013). Another South African study

was conducted to determine the prevalence of chronic multi-morbidity among older adults in rural

South Africa. This study included HIV, which is an important condition to consider in the South

African context. The estimated multi-morbidity prevalence was 69.4% with 95% confidence interval

(68.0%, 70.9%) (Chang et al., 2019). Only 10 conditions were considered in this study. Another

study estimated the prevalence of non-communicable disease multi-morbidity in South Africa as

32% (Agrawal and Agrawal, 2016). This study only analysed nine chronic conditions, and HIV

was not part of the study. A study by Peltzer (2018) was conducted to estimate the prevalence

of non-communicable disease (NCD) multi-morbidity among tuberculosis patients in South Africa.

The prevalence of co-morbidity with one NCD was 26.9% and the prevalence of multi-morbidity

with two or more NCDs was 25.3%.

The above studies show great disparity in their estimation of the prevalence of multi-morbidity

in South Africa with estimates ranging from 4% to 69.4%. It is therefore difficult to surmise the

proportion of South Africans which face multi-morbidity. The study which produced the highest

estimate of multi-morbidity included HIV in the set of diseases considered. Given the large scale of

the HIV-epidemic in Southern Africa, including HIV in the study of multi-morbidity seems intuitive.

However, this study focuses on older adults in rural regions. Lower levels of income and increasing

age are factors which increase the probability of an individual.
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In quantifying the cost of multi-morbidity to the healthcare system, we must consider what

proportion of multi-morbidity related costs are paid out-of-pocket and what proportion is covered

by the healthcare system. Larkin et al. (2020) conducted a systematic review of qualitative

research relating to the financial burden associated with multimorbidity. This section summarises

findings of the review. Many studies have attributed the increased medical expenses associated

with multi-morbidity to poor coordination between healthcare providers. Indirect costs associated

with poor coordination will fall on the multi-morbid individual - i.e. increased travel expenditure

and time off work. The review indicated that whilst most multi-morbid study participants had

supplemental healthcare insurance, few participants reported that the level of coverage was

sufficient, with co-payments forming a large portion of the out-of-pocket expenditure. Cases are

referenced where the high cost of care lead to poorer medical outcomes - the high-cost of medicine

resulted in medicine non-adherence and high consultation costs have resulted in patients not

seeking further care.

According to a publication from the World Health Organisation, multi-morbidity is more common

in disadvantaged groups (World Health Organization, 2016b). This contributes to health inequality

because economically disadvantaged individuals may not be able to afford the high out-of-pocket

costs associated with multi-morbidity.

The healthcare objective of this study is to improve understanding of common co-morbidities. This

endeavor is worthwhile since multi-morbidity is a societal problem. As outlined previously, many

individuals have co-morbidities and this results in significant costs to these individuals as well as

medical schemes and other funding parties. Multi-morbid individuals experience worse mortality

and quality of life. An improved understanding of disease co-occurrence could potentially mitigate

these effects through education of prevention methods on part of medical aid schemes.

Justification through Model Validation

The application in multi-morbidity allows for easy model validation. There is an abundance of

literature available on common co-morbidities, so the model results should mimic the literature.

For example, the connection between diabetes and hypertension is well documented. A medically

reviewed article states that ‘most people with diabetes will eventually have high blood pressure’

(WebMD, 2021). Therefore, if our model is applied to medical data, we expect the model to

6



indicate a strong pairwise connection between diabetes and hypertension. Similarly, our model

should show no connection between antagonistic chronic conditions. Intuitively, individuals will

not be simultaneously affected by high blood pressure (hypertension) and low blood pressure

(hypotension). These known antagonistic diseases should be expressed accordingly in our study.

Whilst it would be beneficial if the co-occurrence model validates common co-morbidities, it would

also be valuable if the model highlighted statistically significant co-morbidities which are not well-

documented.

Justification through Novelty

To my knowledge, publicised multi-morbidity studies often include very few chronic conditions. In a

South African context, few multi-morbidity studies have been published. Studies of multi-morbidity

in a South African context include papers by Alaba and Chola (2013), Chang et al. (2019), Agrawal

and Agrawal (2016) and Peltzer (2018). A limitation shared by these studies is that only small sets

of chronic conditions were included in the analyses. Co-morbidity data was made available to us

that includes a comprehensive list of chronic disorders. The high-dimensionality of the data used

in this study could result in the study being a valuable addition to existing literature.

Therefore, the multi-morbidity application is justified through the severity of the problem,

unchallenging model validation and the novelty of high-dimensional disease co-occurrence

modelling.

2.3 EXISTING MODELS

2.3.1 Multivariate Bernoulli Distribution

The multivariate Bernoulli distribution provides a comprehensive framework through which a binary

graph structure can be estimated (Dai et al., 2013). Applying this framework to the context of

disease co-occurrence modelling we can define the joint probability density function of a multivariate

Bernoulli distribution.

Denote the D-dimensional vector of potentially correlated Bernoulli random variables by Y such
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that,

Y =


Y1

Y2

...

YD


Suppose we denote a realisation of Yi to be yi, then the set of values which yi can take on is {0, 1}.

Applying this to the application of multi-morbidity modelling, we can interpret each realisation of

Y to be an expression of an individual’s chronic diseases. If an individual presents the ith chronic

condition, then yi = 1, otherwise yi = 0. The number of chronic diseases simultaneously occurring

in an individual is the sum of the elements in y, i.e.
∑D

i=1 yi. The dimension of Y is the number

of chronic diseases considered in the analysis, denoted D.

The joint probability density function of a multivariate Bernoulli distribution is,

P (Y1 = y1, Y2 = y2, . . . , YD = yd)

= P (Y1 = 0, Y2 = 0, . . . , YD = 0)
∏D

i=1(1−yi) × P (Y1 = 1, Y2 = 0, . . . , YD = 0)y1×
∏D

i=2(1−yi)

× P (Y1 = 0, Y2 = 1, . . . , YD = 0)(1−y1)y2×
∏D

i=3(1−yi) × . . .× P (Y1 = 1, Y2 = 1, . . . , YD = 1)
∏D

i=1 yi

The multivariate Bernoulli distribution is clearly incredibly comprehensive, due to all

combinations of diseases being considered. The total number of estimable parameters in the

multivariate Bernoulli distribution is 2D − 1 (Dai et al., 2013). The models we suggest only

consider the pairwise interactions between diseases. The number of unique second interactions in

the multivariate Bernoulli distribution is D(D−1)
2 , which is equivalent to the number of pairwise

co-morbidities (Dai et al., 2013). Figure 2.1 illustrates how quickly the number of parameters in

the multivariate distribution increases as more diseases are considered. The number of parameters

corresponding to second interactions, the pairwise connection between diseases, makes up an

increasingly small proportion of the total number of parameters in the multivariate Bernoulli

distribution. For large values of D, the estimation of parameters in the multivariate Bernoulli

distribution will be computationally infeasible. Allowing higher order interactions provides a more

holistic view of disease interactions. The data utilised in this study comprises of more than 500

conditions. If all pairwise conditions are to be considered simultaneously, the multivariate
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Figure 2.1: The number of parameters associated with the multivariate Bernoulli distribution

Bernoulli model will be unsuitable compared to a simplified model.

2.3.2 Ising Model

The Ising model is a mathematical model which was originally designed to describe magnetic phase

transitions (Singh, 2020). This model has applications in statistics as it can be utilised in estimating

graph structures with binary nodes. In fact, the multivariate Bernoulli distribution described in

the previous section is an extension of the Ising model (Dai et al., 2013). We can show that the

Ising model is a simplified version of the multivariate Bernoulli distribution.

Consider the multivariate Bernoulli distribution defined previously. Under the multivariate
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Bernoulli distribution framework described by Dai et al. (2013), allow

f ci = the probability density function of the ith condition

f ci,cj = the joint probability density function of the ith and jth conditions

...

f{c1,c2,...,cr} = the joint probability density function of the set of conditions {c1, c2, . . . , cr}

τ = the set of all possible superscripts of f

Then we can write,

Sτ =
∑
τ0⊆τ

f τ0

The assumption underlying the Ising model is that Sτ = 0 for any set τ which has a minimum of 3

elements. Additionally, the parameter coefficients of the Ising model can be represented using the

S variables. Continuing with the notation used in Dai et al. (2013), we can write the probability

mass function of Y under the Ising model as follows,

P (Y1, Y2, . . . , YD) =
1

Z(Θ)
exp

 D∑
i=1

θiiYi +
∑

1≤i<i′≤D
θii′YiYi′


where θii′ : ii′ ∈ {1, 2, . . . , D} are a set of parameters and Z(Θ) is a partition function which ensures

that the sum of the probabilities equals one (De Canditiis, 2020). The Ising model parameters and

the S values under the multivariate Bernoulli distribution are linked since,

θii′ = Sii
′ ∀ i, i′ ∈ {1, 2, . . . , D} Daiet al. (2013)

The difference between the two models is the order of the interactions considered and therefore

the number of estimable parameters. Suppose we continue notating the number of diseases in a

model by D. The Ising model considers only pairwise interactions and thus requires the

estimation of D(D+1)
2 parameters, θii′ : ii′ ∈ {1, 2, . . . , D}. In comparison, the multivariate

Bernoulli model includes all possible combinations of chronic conditions leading to a much higher
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number of estimable parameters, 2D − 1 (Dai et al., 2013).

An interesting extension of the Ising model is outlined by Ravikumar et al. (2010). The Ising model

only accounts for pairwise connections, however higher-order interactions can be introduced into

the Ising model through the introduction of auxiliary variables. This will, however, increase the

number of estimable parameters which may not be appropriate when a large number of conditions

are considered.

2.3.3 Co-Clustering

Co-clustering is a method that simultaneously performs clustering on both the rows and the columns

of a matrix. This clustering technique is beneficial when what you are trying to group is dependent

on two separate variables. A common example is co-clustering on user ratings for a set of films. The

user ratings are dependent on user preference and the films’ characteristics; thus, user preference

could form the rows of a matrix, and the columns could represent film characteristics (Reshef,

2015).

A paper by S.K. Ng used co-clustering to identify groups of commonly co-occurring illnesses. Co-

morbidities are identified through the simultaneous clustering of individuals and health conditions

(Ng, 2015). This approach is beneficial because disease clustering would be dependent on both the

nature of the conditions being clustered as well as the demographics of the multi-morbid group

of individuals. Diseases do not affect the whole population identically. For instance, males are

more prone to developing colour blindness (National Eye Institute, 2019), and only females will

experience postnatal depression. Therefore, clustering diseases based only on the expression of

diseases may result in a loss of information because demographical information has the ability to

inform the clustering solution.

This method was applied to data consisting of 24 conditions, of which only 77 pairs of conditions

were found to be significant at a 1% significance level. The data being used in our research consists

of 508 conditions after data cleaning which is exceedingly more conditions than what is utilised in

the study by S.K. Ng. It is not apparent whether this method could be applied to high-dimensional

data.

The paper is summarized by the following algorithm.
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Algorithm 1 Co-Clustering Algorithm by Ng (2015)

1: procedure Clustering Health Conditions(B)

2: Represent the data by an n × p binary matrix B with the rows being individuals (n) and

the columns being the health conditions (p).

3: if Bij = 1 then

4: Individual i presents condition j

5: else if Bij = 0 then

6: Individual i does not present condition j

7: Use the similarity measure Somers’ D statistic to obtain a p× p matrix with entries ranging

between -1 and 1. These entries represent the direction and magnitude of the association

between each pair of conditions.

8: Apply the Benjamini–Hochberg procedure to the p× p matrix to reduce the false discovery

rate. The resulting matrix is a binary, symmetric p× p matrix which is denoted as M .

9: Make use of a clumping clustering method to identify groups of co-morbid health conditions

in the matrix M . This step will result in overlapping clusters of illnesses.

10: Follow an iterative procedure to obtain unique non-overlapping groups of conditions by

maximising the strength of the clusters.

11: procedure Clustering Individuals(B)

12: Convert the data matrix B to an n×q matrix where q denotes the number of non-overlapping

groups of co-morbid health conditions.

13: Allow yj = (y1j , ..., yqj)
′, j = 1, ..., n where

yij =


1, if no conditions in ith group

2, if one condition in ith group

3, if > 1 condition in ith group

14: Use a finite mixture model of multivariate generalized Bernoulli distributions to cluster the

yj .
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CHAPTER 3

CO-OCCURRENCE MODELLING

3.1 INTRODUCTION

In this chapter, we propose three methods that can be used to estimate co-occurrence

probabilities. The first method is called the incomplete maximum likelihood estimation approach

and it is an unregularised model. Two regularised versions of this model are discussed which

perform regularisation by penalisation and by rank reduction.

The purpose of estimating co-occurrence probabilities is to inform the similarity matrix used in

clustering conditions.

3.2 PROBLEM FORMULATION AND NOTATION

The primary focus of this study is to identify groups of chronic conditions which appear to be

inter-related. The similarity metric used in clustering chronic conditions makes use of the pairwise

relationships between conditions to infer dependency between the conditions. This way of grouping

conditions has the potential to expose interactions between multiple conditions due to the weak

transitivity of dependence among random variables.

Suppose condition X is found to be related to condition Y, and condition Y is found to be related

to condition Z. Then by transitive dependency, we can infer that condition X is most likely related

to condition Z. Networks of inter-related conditions can be built using this principle.

In order to inform the similarity matrix, we need to model the dependency between conditions by

identifying pairs of chronic conditions that co-occur at a higher or lower rate than what would be

expected under the assumption that conditions occur independently.

In order to determine whether conditions co-occur at a different rate than under the independence

assumption, we must define what we hereafter refer to as the null model. The null model describes

the occurrence of disease co-morbidities when it is assumed that there is no association between

diseases and co-occurrences of diseases are random.

In describing chronic disease co-occurrence, the estimation of the following two matrices is vital:
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1. The matrix of conditional co-occurrence probabilities, denoted as ΠC .

2. The matrix of joint co-occurrence probabilities, denoted as ΠJ .

The collection of conditions considered in this study is extensive, so regularised forms of the

underlying statistical model will be investigated in order to estimate these matrices. If we assume

that D chronic conditions are considered in the analysis, then allow Xi, i = {1, ..., D} to define

the event that an individual presents chronic condition i. Then, the entries of the conditional and

joint probability matrices take the form,

[ΠC ]ij = P (Xi|Xj)

= the probability that an individual has condition i given that the individual

has condition j

[ΠJ ]ij = P (Xi ∩Xj)

= the probability that an individual has both condition i and condition j

Under the null model it is assumed that,

ΠJ
ij = P (Xi ∩Xj)

.
= P (Xj)P (Xj)

ΠC
ij =

P (Xi ∩Xj)

P (Xj)

.
=
P (Xi)P (Xj)

P (Xj)
= P (Xi)

Because of the large number of conditions under consideration, we estimate these matrices using

only the matrix of co-occurrence counts. This matrix gives an indication of the prevalence of

each condition within the study sample and describes the pairwise co-occurrence of conditions.

Multivariate Bernoulli models take into account higher order interactions between conditions, as

opposed to only the pairwise interactions, however they are found to be computationally intractable

when a large number of conditions are included in the analysis.

We denote the matrix of co-occurrence counts as N such that [N ]ij represents the number of

individuals in the sample with chronic condition i as well as chronic condition j, where

i, j ∈ {1, ..., D}. The diagonal of this matrix, {N11, N22..., NDD}, gives the prevalence of each

chronic condition, or equivalently the number of individuals in the sample with each condition.
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For simplicity, denote Nii ≡ Ni.

3.3 INCOMPLETE MAXIMUM LIKELIHOOD ESTIMATION

As a baseline for further analysis, we consider a simple estimation approach based on pairwise

maximum likelihood. In this approach, we estimate the elements in the conditional and joint

probability matrices by their standard maximum likelihood estimates. This simplistic approach

treats each of the counts in N as independent of the others, which is clearly not a true reflection of

the underlying mechanism generating co-occurrence counts. Modelling the dependence structure

of conditions more accurately whilst adhering to a valid probability model results in an intractable

problem as seen in the Multivariate Bernoulli model. This limitation is acceptable for our objectives

given that our primary interests are in pairwise comparisons with the null model for clustering.

To reflect our acknowledgement that the estimation we perform does not accommodate the full

underlying distribution of conditions, we refer to this model as the “incomplete maximum likelihood

estimation model” and we refer to its objective functions as “incomplete log-likelihood functions”.

The incomplete log-likelihood functions for the conditional and joint probability matrices are

denoted f(ΠC) and f(ΠJ) respectively. These functions form part of the objective functions of

regularised co-occurrence models proposed in later sections. The reason that these log-likelihood

functions are considered ‘incomplete’ is because they only consider the pairwise interactions

between chronic conditions. This is in contrast with the likelihood function associated with the

multivariate Bernoulli distribution which incorporates all combinations of diseases.

We first consider the estimation of the conditional probability matrix. For simplicity, denote

[ΠC ]ij = πCij for i, j ∈ {1, ..., D}. The incomplete log-likelihood function associated with the

conditional probability matrix is,

f(ΠC) =

D∑
i 6=j=1

Nij ln(πCij) + (Nj −Nij) ln(1− πCij)
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or equivalently,

f(ΠC) =
D∑

i 6=j=1

Nij ln

(
πCij

1− πCij

)
+Nj ln(1− πCij)

The maximum likelihood estimates for πCij , i, j ∈ {1, ..., D} can now be derived.

∂f(ΠC)

∂πCij
=

∂

∂πCij

∑
i 6=j

Nij ln(πCij) + (Nj −Nij) ln(1− πCij)


=
Nij

πCij
− Nj −Nij

1− πCij

Setting ∂f(ΠC)

∂πC
ij

= 0 yields,

Nij

π̂Cij
− Nj −Nij

1− π̂Cij
= 0

Nij −Nij π̂
C
ij = Nj π̂

C
ij −Nij π̂

C
ij

π̂Cij =
Nij

Nj

We can show that this estimate maximises the incomplete log-likelihood function.

∂

∂πCij

(
Nij

πCij
− Nj −Nij

1− πCij

)
= −Nij

πCij
2 −

Nj −Nij(
1− πCij

)2

=⇒ ∂2

∂πCij
2 f(ΠC) < 0

Hence, f(ΠC) is maximised by maximum likelihood estimate π̂Cij =
Nij

Nj
.

Similarly we can define the incomplete log-likelihood function associated with the joint probability
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matrix, ΠJ .

f(ΠJ) =
D∑

i,j=1

Nij ln(πJij) + (Nsample −Nij) ln(1− πJij)

=

D∑
i,j=1

Nij ln

(
πJij

1− πJij

)
+Nsample ln(1− πJij)

where πJij = [ΠJ ]ij , and Nsample is the total number of beneficiaries in the study sample. We can

derive the maximum likelihood estimates of πJij in a similar manner to the conditional maximum

likelihood estimates. We find,

π̂Jij =
Nij

Nsample

It can be shown that π̂Jij maximises f(ΠJ), the incomplete log-likelihood function. The maximum

values of the incomplete log-likelihood functions are the matrices of empirical proportions as shown

above. The incomplete log-likelihood functions then reward solutions which align closely with the

data.

Estimating the conditional probability matrix using this method results in the estimation of D ×

(D − 1) probabilities, and estimating the joint probability matrix will result in the estimation of

D(D+1)
2 parameters. The incomplete MLE model is therefore relatively simple in that only D(D+1)

2

parameters are required to describe the pairwise joint distributions of condition occurrences. The

full multivariate Bernoulli model requires considerably more parameters. However, when D is large

the number of parameters underlying the incomplete MLE model is potentially problematic as

the model may have a high estimation variance unless the co-occurrence counts for all pairs of

conditions are large enough. To reduce this variation, and also introduce dependence between the

estimates in the joint and conditional matrices, we consider two regularised forms of the incomplete

MLE model.

3.4 REGULARISATION METHODS

We consider two approaches to regularisation, namely:

1. Regularisation by penalisation

2. Regularisation by rank reduction
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3.5 REGULARISATION BY PENALISATION

In the unregularised, incomplete MLE approach we seek to estimate parameters by solving the

following optimisation function.

arg max
πJ
ij

(
f
(
πJij
))

≡ arg max
πJ
ij

 D∑
i,j=1

Nij ln
(
πJij
)

+ (Nsample −Nij) ln
(
1− πJij

)
Regularisation by penalisation applies a penalty to the optimisation function in order to reduce

estimation variance, and to improve the generalisation ability of the model. By constraining the

optimisation problem, the model will be able to better accommodate unseen data. Suppose we

formulate an appropriate penalty function Q
(
πJij

)
, then the optimisation function becomes,

arg max
πJ
ij

(
f
(
πJij
)
− λQ

(
πJij
))

where λ is a tuning parameter controlling how large the penalty should be. The choice of the penalty

function should depend on the context of the study. In this study we regularised the incomplete

MLE model by applying an L1 penalty which penalises deviations in the co-occurrence probabilities

from the null model. Under the null model, conditions are assumed to occur independently of one

another.

The L1 penalty makes use of the absolute value function which enables it to produce sparse solutions.

This property is specifically advantageous in this study. The co-occurrence model should be able to

detect large deviations from the null model. Equivalently, the model should be able to detect pairs

of conditions that have a higher than random chance of co-occurring, or a lower than random chance

of co-occurring. It would therefore be beneficial if the co-occurrence probabilities corresponding to

effectively independent conditions were to shrink to zero exactly.

This method can be utilised to estimate either the joint probability matrix or the conditional

probability matrix. We first wish to estimate the conditional probability matrix, ΠC . Under

the independence assumption of the null model, πCij = P (Xi) = πi. Since the conditional co-
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occurrence probability πCij under the null model is only dependent on the ith condition, we denote

this probability by π0
i .

To achieve regularisation, we maximise the objective function:

g
(
πCij , π

0
i

)
= f(ΠC)− λ

D∑
i 6=j=1

|πCij − π0
i |

where λ is a tuning parameter and f(ΠC) represents the incomplete log-likelihood function

previously described.

We can also estimate the joint probability matrix, ΠJ using this method. We denote the vector of

marginal probabilities by π where,

ΠJ =


π1 πJ12 . . . πJ1D

πJ21 π2 . . . πJ2D
...

...
. . .

...

πJD1 πJD2 . . . πD

 =


π1 πJ12 . . . πJ1D

πJ12 π2 . . . πJ2D
...

...
. . .

...

πJ1D πJ2D . . . πD

 Symmetry of probabilities

π = diag
(
ΠJ
)

=
[
π1 π2 . . . πD

]′
In the estimation of the conditional probability matrix, we jointly estimate the conditional

probability matrix ΠC and the vector of marginal probabilities π. In the estimation of the joint

probability matrix, however, the vector of marginal probabilities is the diagonal of the joint

probability matrix and so the only object requiring estimation is the joint probability matrix.

Under the assumption that chronic conditions Xi and Xj occur independently of one another,

πJij
.
= πiπj

19



We can use this to construct the following objective function:

g(πJij , πi, πj) = f
(
ΠJ
)
− λ

D∑
i 6=j=1

|πJij − πiπj |

=
D∑

i,j=1

(
Nij ln

(
πJij

1− πJij

)
+Nsample ln

(
1− πJij

))
− λ

D∑
i 6=j=1

|πJij − πiπj |

where Nsample denotes the number of individuals in the study sample, λ is a tuning parameter

and f
(
ΠJ
)

is the incomplete log-likelihood function previously defined. This objective function

penalises deviations from the independence model. The L1 penalty is advantageous because it has

the potential to obtain sparse solutions with respect to the matrix

Π̂J − π̂π̂′

This matrix represents the probability that the ith and jth chronic conditions co-occur over and

above the co-occurrence probability under the assumption that the conditions occur independently

of one another. The larger the ijth element of the matrix is, the more likely the pairwise conditions

form a co-morbidity. Similarly, we can infer that if the ijth element of the matrix is largely

negative, the ith and jth conditions are likely antagonistic. Sparsity in the above matrix is therefore

advantageous because it allows us to infer where the important interactions between conditions

exist.

3.5.1 Maximisation

Where possible the objective functions g
(
πCij , π

0
i

)
and g

(
πJij , πi, πj

)
are maximised by

differentiation. Otherwise the objective functions are maximised using the properties of the L1

penalty. Utilising the L1 penalty as opposed to the L2 penalty is advantageous because it can

produce sparse solutions. However, the L1 penalty makes use of the non-differentiable absolute

value function and so maximisation of the objective function by gradient-based methods is not

always possible.

In Table 3.1, we provide the partial derivatives of the objective functions of the penalised co-

occurrence models. The calculation of the partial derivatives can be found in the Appendix.
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Table 3.1: Partial derivatives of the objective functions for penalised co-occurrence models

Matrix Partial derivative Value

Conditional
Probability
Matrix, ΠC

∂g(πC
ij , π

0
i )

∂πC
ij


Nij−Njπ

C
ij

πC
ij(1−πC

ij)
− λ for πCij > π0

i

Nij−Njπ
C
ij

πC
ij(1−πC

ij)
+ λ for πCij < π0

i

undefined for πCij = π0
i

∂g(πC
ij , π

0
i )

∂π0
i


λ for πCij > π0

i

−λ for πCij < π0
i

undefined for πCij = π0
i

Joint
Probability
Matrix, ΠJ

∂g(πJ
ij ,πi,πj)

∂πJ
ij


Nij−Nsampleπ

J
ij

πJ
ij(1−πJ

ij)
− λ, for πJij > πiπj

Nij−Nsampleπ
J
ij

πJ
ij(1−πJ

ij)
+ λ, for πJij < πiπj

undefined, for πJij = πiπj

∂g(πJ
ij ,πi,πj)

∂πi


λπj , for πJij > πiπj

−λπj , for πJij < πiπj

undefined, for πJij = πiπj

Methods of optimising an objective function containing the L1 penalty must be discussed. One

method includes performing gradient-based optimisation where the L1 penalty is replaced with

a differentiable approximation. Many approximations have been proposed to approximate the

absolute value function and so a few methods will be discussed (Mathematics Stack Exchange

User, 2021).

Figure 3.1 depicts approximations of |x|. This includes functions,

f1(x) =
√
x2 + c, c > 0

f2(x) = ln (exp (2x) + 1)− x

f3(x) =
1

α
ln (cosh (αx)) , α > 0

The dark green line is the line we wish to approximate, and the other lines depict various

approximations. The parameters used to create this plot are α = 9 and c = 0.1. If a differentiable

approximation of the absolute value function is used then gradient-based optimisation can be
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Figure 3.1: Approximations of |x|

utilised to maximise,

gA
(
πCij , π

0
i

)
= f(ΠC)− λ

D∑
i 6=j=1

hA(πCij − π0
i )

gA(πJij , πi, πj) = f
(
ΠJ
)
− λ

D∑
i 6=j=1

hA
(
πJij − πiπj

)

where gA
(
πCij , π

0
i

)
and gA

(
πJij , πi, πj

)
approximate g

(
πCij , π

0
i

)
and g

(
πJij , πi, πj

)
respectfully,

and hA(x) is a differentiable approximation for |x|. Whilst utilising an approximation of the L1

penalty is convenient because it allows for gradient-based optimisation, it loses the advantages that

the L1 penalty provides. The L1 penalty has the potential to produce sparse solutions and this

advantage is lost when an approximation is utilised.

Alternative methods can be utilised to optimise the non-differentiable concave optimisation

functions, g
(
πCij , π

0
i

)
and g

(
πJij , πi, πj

)
. One such method is the proximal gradient method.

Under the proximal gradient method, the estimates can be iteratively updated even when parts of

the objective function are non-differentiable (Parikh and Boyd, 2014).
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3.6 REGULARISATION BY RANK REDUCTION

Using rank reduction as a regulariser is advantageous because it can be interpreted as a mixture

model containing simplified mixture component distributions.

This section outlines two models within the mixture model framework - a rank regularised model

and an extension of the rank regularised model which includes penalisation.

3.6.1 Rank Regularised Mixture Model

The rank regularised model jointly estimates the conditional probability matrix, ΠC , and the

vector of marginal probabilities, π. This approach achieves regularisation through a simplifying

assumption. Suppose that each individual in the sample is of one of K person types. It is then

assumed that given the person type of an individual, the events of having each of the conditions

are independent. If T represents the person type, where T ∈ {1, ...,K}, then for any two

conditions i and j, we have

P (Xi|Xj , T )
.
= P (Xi|T ).

We can therefore write,

P (Xi|Xj) =
K∑
t=1

P (Xi, T = t|Xj)

=
K∑
t=1

P (Xi|T = t,Xj)P (T = t|Xj)

=

K∑
t=1

P (Xi|T = t)P (T = t|Xj)

= Π
X|T
i: Π

T |X
:j ,

where Π
X|T
ij = P (Xi|T = j) and Π

T |X
ij = P (T = i|Xj).

This is equivalent to modelling X as having a mixture distribution consisting of K components.

The elements of X are independent, conditional on the component of the mixture distribution.

The random variable which identifies the component which gives rise to a realisation of X is T ,
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the ‘person type’ of an individual. Making use of the mixture model framework is advantageous

in that it produces a reduced rank estimator for ΠC , and it is also interpretable. The rank of the

conditional probability matrix ΠC is at most equal to the number of allocated ‘person types’, K.

Suppose we have a set of D chronic diseases and K person types. Then, we can show that the rank

is at most K since,

Π̂C .
= Π̂X|T Π̂T |X

rank
(

Π̂X|T
)
≤ min (D,K)

rank
(

Π̂T |X
)
≤ min (D,K)

rank
(

Π̂C
)
≤ min

(
rank

(
Π̂T |X

)
, rank

(
Π̂X|T

))
≤ min (D,K)

This follows because the rank of an n × p matrix is less than the minimum of n and p (Taboga,

2017b), and the rank of a product of two matrices is bounded by the minimum rank of the two

matrices (Taboga, 2017a). Since it can be assumed that for this application, D > K,

rank
(

Π̂C
)
≤ K < D

It is then shown that the mixture model approach produces a low-rank approximation for the

conditional probability matrix, therefore performing regularisation through rank reduction.

Given that the entries of the ΠX|T and ΠT |X matrices represent probabilities, constraints imposed

on these matrices are such that 0 ≤ Π
X|T
ij ≤ 1, and 0 ≤ Π

T |X
ij ≤ 1. Additionally,

∑
i Π

T |X
ij =∑

i P (T = i|Xj) = 1. To adhere to the above constraints, a convenient parameterisation of the

ΠX|T and ΠT |X matrices is,

Π
X|T
ij =

exp(Zij)

1 + exp(Zij)
{Zij ∈ R}

Π
T |X
ij =

exp(Qij)∑K
k=1 exp(Qkj)

{Qij ∈ R}
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We want to maximise objective function,

f̂ =
∑
i 6=j

Nij log
(

̂P (Xi|Xj)
)

+ (Nj −Nij) log
(

1− ̂P (Xi|Xj)
)

̂P (Xi|Xj) can be rewritten in terms of variables Zij , i = {1, 2, ..., D}, j = {1, 2, ...,K} and Qij , i =

{1, 2, ...,K}, j = {1, 2, ..., D}.

Π
X|T
i: =

[
Π
X|T
i1 , Π

X|T
i2 , . . . ,Π

X|T
iK

]
Π
X|T
i: =

[
exp(Zi1)

1 + exp(Zi1)
,

exp(Zi2)

1 + exp(Zi2)
, . . . ,

exp(ZiK)

1 + exp(ZiK)

]

Π
T |X
:j =


Π
T |X
1j

Π
T |X
2j

...

Π
T |X
Kj

 =
1∑K

t=1 exp(Qtj)


exp(Q1j)

exp(Q2j)
...

exp(QKj)


Therefore we can write,

̂P (Xi|Xj) = Π
X|T
i: Π

T |X
:j

=
1∑K

t=1 exp(Qtj)

(
K∑
t=1

exp(Zit) exp(Qtj)

1 + exp(Zit)

)

=
1∑K

t=1 exp(Qtj)

(
K∑
t=1

exp(Zit +Qtj)

1 + exp(Zit)

)

The objective then becomes to maximise,

f̂ =
∑
i 6=j

Nij ln

(
K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)

+ (Nj −Nij) ln

(
1−

K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)
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Partial Derivative of f̂ with respect to Zit

First we calculate:

∂

∂Zit

(
exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)

=
exp(Qtj)∑K
t=1 exp(Qtj)

∂

∂Zit

(
exp(Zit)(1 + exp(Zit))

−1
)

=
exp(Qtj)∑K
t=1 exp(Qtj)

[
− exp(Zit) (1 + exp(Zit))

−2 exp(Zit) + (1 + exp(Zit))
−1 exp(Zit)

]
=

exp(Qtj)∑K
t=1 exp(Qtj)

[
exp(Zit)

1 + exp(Zit)
− exp(2Zit)

(1 + exp(Zit))2

]
=

exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))

(
1− exp(Zit)

1 + exp(Zit)

)
=

exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))

(
1

1 + exp(Zit)

)
=

exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))2

Therefore,

∂f̂

∂Zit

= Nij

(
K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)−1
exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))2

+ (Nj −Nij)

(
1−

K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)−1
− exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))2

=

(
exp(Zit +Qtj)

(
∑K

t=1 exp(Qtj))(1 + exp(Zit))2

)
× Nij∑K

t=1
exp(Zit+Qtj)

(1+exp(Zit))
∑K

t=1 exp(Qtj)

− Nj −Nij

1−
∑K

t=1
exp(Zit+Qtj)

(1+exp(Zit))
∑K

t=1 exp(Qtj)


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Partial Derivative of f̂ with respect to Qtj

The additional constraint on the ΠT |X matrix whereby,

K∑
i=1

Π
T |X
ij =

K∑
i=1

(
exp(Qij)∑K
k=1 exp(Qkj)

)
= 1

results in the partial derivative of the objective function with respect to Qtj being more complicated

than the previously calculated partial derivative. The calculations are therefore shown in the first

appendix.

The partial derivative of the objective function f̂ with respect to Qtj is given as,

∂f̂

∂Qtj
=
∑
i 6=j

Nij

(
K∑
k=1

exp(Zik +Qkj)

(1 + exp(Zik))
∑K

k=1 exp(Qkj)

)−1
 exp(Zit +Qtj)

(1 + exp(Zit))
(∑K

k=1 exp(Qkj)
)

×

(
1− exp(Qtj)∑K

k=1 exp(Qkj)

)
− exp(Qtj)(∑K

k=1 exp(Qkj)
)2

K∑
k 6=t

(
exp(Zik +Qkj)

1 + exp(Zik)

)
+ (Nj −Nij)

(
1−

K∑
k=1

exp(Zik +Qkj)

(1 + exp(Zik))
∑K

k=1 exp(Qkj)

)−1
− exp(Zit +Qtj)

(1 + exp(Zit))
(∑K

k=1 exp(Qkj)
)

×

(
1− exp(Qtj)∑K

k=1 exp(Qkj)

)
+

exp(Qtj)(∑K
k=1 exp(Qkj)

)2

K∑
k 6=t

(
exp(Zik +Qkj)

1 + exp(Zik)

)

3.6.2 Rank Regularised Mixture Model with Penalisation

An extension of the rank regularised mixture model includes penalisation of deviations from the

independence model. The rank regularised mixture model is enhanced through penalisation

because it adds further regularisation and aids in inference. The conditional matrix and marginal

probabilities are still the focus of the estimation, since the formulation of the conditional

probability matrix Π̂C .
= Π̂X|T Π̂T |X is already restricted, whereas it is not immediately clear

whether the matrix ΠJ − ππ′ will have a regularised form under the mixture model framework.

Previously, the L1 penalty has been selected for penalisation due to its ability to introduce sparsity
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into a system. In the implementation of this model, gradient-based optimisation was used to

determine the elements in the matrices Π̂T |X and Π̂X|T . Given that the L1 penalty uses the non-

differentiable absolute value function, a differentiable approximation of the penalty term is utilised.

Various approximations are discussed in section 3.5.1.

Suppose the function f(x) = 1
α ln (cosh (αx)) is selected to approximate f(x) = |x|. The parameter

α is constrained to positive values, α > 0. The function of the parameter α regulates how closely

1
α ln (cosh (αx)) approximates |x|, with larger values of α resulting in a closer approximation.

Using 1
α ln (cosh (αx)) as the approximation function for the L1 penalty, we have objective function,

f(ΠX|T ,ΠT |X ,π) = fRRMM

(
ΠX|T ,ΠT |X

)
− λ

α

∑
i 6=j

ln
(

cosh
(
α
(
Π
X|T
i: Π

T |X
:j πj − πiπj

)))

which should be maximised with respect to {ΠX|T ,ΠT |X ,π}. The function fRRMM

(
ΠX|T ,ΠT |X)

is the objective function from the rank regularised mixture model,

fRRMM

(
ΠX|T ,ΠT |X

)
=
∑
i 6=j

Nij log
(

̂P (Xi|Xj)
)

+ (Nj −Nij) log
(

1− ̂P (Xi|Xj)
)

=
∑
i 6=j

Nij ln

(
K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)

+ (Nj −Nij) ln

(
1−

K∑
t=1

exp(Zit +Qtj)

(1 + exp(Zit))
∑K

t=1 exp(Qtj)

)

As before, π is the vector of marginal probabilities. Matrices ΠX|T and ΠT |X are as defined

previously and the parameter λ acts as a tuning parameter. The penalty restricts deviations from

the independence model,

Π
X|T
i: Π

T |X
:j πj − πiπj = P (Xi|Xj)P (Xj)− P (Xi)P (Xj)

= P (Xi, Xj)− P (Xi)P (Xj)

For the purpose of this analysis, a large value for α is required since, for the most part, it is

expected that Π
X|T
i: Π

T |X
:j πj − πiπj will produce very small values. This is due to the fact that

when selecting a value for α a trade-off exists between selecting a large enough value that the
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approximation is close enough, and selecting a small enough value that the approximation does

not make the gradient-based optimisation too unstable. Figure 3.2 depicts how the approximation,

Figure 3.2: Effect of α

f(x) = 1
α ln (cosh (αx)), changes with parameter α. The green line depicts |x|, and line ‘a.’ depicts

approximation f(x) = 1
. ln (cosh (.× x)).

We see that when α = 1, the lightest grey line, the approximation is not very close. As the value

for α increases, the function better approximates the absolute value function.
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CHAPTER 4

SIMULATING CO-OCCURRENCES

4.1 INTRODUCTION

In this chapter we discuss the necessity of simulation studies for model validation. A discussion

ensues outlining methods of simulating co-occurrence data that has an underlying dependence

structure.

4.2 MODEL VALIDATION BY SIMULATION STUDIES

In this study, it is imperative that the co-occurrence models should be tested on simulated data. In

order to validate the models, real data cannot be used since the ‘truth’ in the data is not known.

The distribution of chronic diseases in the entire population of individuals may not be accurately

represented through the sample of individuals in the data set which we have. In order to verify that

the co-occurrence models perform adequately, we must apply them to data whereby the underlying

distribution of the data is known through its simulation.

The simulated data can specify the dependence of conditions in such a way that the true underlying

cluster structure is known. The clustering accuracy of each of the models applied to simulated data

can be assessed because the true clustering is known. When we apply the models to real data, we

do not know the truth in the underlying clusters and hence we cannot truly validate the clustering

performance of the models. We can only validate the results by investigating literature on common

multi-morbidities.

Another advantage of applying the models to simulated data is that simulation provides scalability.

The dimension and size of the simulated data set can be altered. As a result, the computational

expense of each of the models can be compared through applying the models to increasingly large

data sets. Investigating how well the various algorithms fare when the dimension of the data

increases is required in the comparison of algorithms.
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4.3 SIMULATION METHODS

In this section we consider techniques of simulating co-occurrence data that has an underlying

dependence structure. This has not proven to be a trivial task due to the complexity of the full

multivariate Bernoulli distribution. Accurately simulated data should incorporate the dependency

between all combinations of conditions, including the dependencies of higher-order interactions as

stipulated in the multivariate Bernoulli distribution.

The data being simulated is stored in a binary matrix wherein the columns represent the chronic

conditions and the rows represent the study sample. A ‘1’ in the (ij)th cell of this matrix implies

that the ith individual has been diagnosed with the jth chronic condition, and a ‘0’ implies the

absence of the condition.

Three simulation methods are presented in this study, two of which are implemented.

4.3.1 Re-sampling from Observational Data

Given that data are available to us for use, the first simulation technique investigated is random

sampling from the data. Accurately modelling the chronic status of a group of individuals is

incredibly complex due to the intricate interactions that exist between conditions. To this extent,

re-sampling from a real dataset frees us from making any distributional assumptions about the

data. However, this comes at a trade-off. Since this approach uses observational data, we do not

know the true underlying cluster structure. This shortcoming somewhat defeats the purpose of

using simulated data for model validation, and hence this technique will not be considered further.

4.3.2 Disease Prototype Simulation Method

This simulation approach entails developing a set of disease prototypes. The assumption underlying

this approach is that sets of diseases commonly co-occur. We then encode these common co-

occurrences in the set of disease prototypes. The prototypes can be designed in such a way that

disease clusters are formed, where diseases within a cluster are dependent, but diseases from different

clusters co-occur independently.
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Mathematical Formulation of the Disease Prototype Simulation Method

Suppose we wish to simulate the chronic status of Nsample individuals across a set of D conditions,

which form K disease clusters. The simulated data is stored in binary matrix B where,

B =


B1,1 . . . B1,D

...
. . .

...

BNsample,1 . . . BNsample,D



[B]i,j =


1 if the ith individual has the jth condition

0 if the ith individual does not have the jth condition

We then construct a set of p disease prototypes that adhere to an underlying cluster structure,

and denote these prototypes by {P1,P2, . . . ,Pp}. We can randomly assign each of the Nsample

observations to a disease prototype. The values in each of the prototypes correspond to a probability

of exhibiting a chronic condition. Mathematically,

Pr =


P (an individual from prototype Pr exhibits condition 1)

P (an individual from prototype Pr exhibits condition 2)
...

P (an individual from prototype Pr exhibits condition D)


Now, suppose that the ith individual expresses diseases in accordance with disease prototype Pr.

Then, Bi,j is a simulated Bernoulli realisation where the probability of success is the jth element

of Pr, the probability of expressing the jth condition under disease prototype Pr.

4.3.3 Gaussian Latent Variable Simulation Method

A latent variable is a variable that is not directly observable, however it produces observable effects

(Salkind, 2010). Latent variable models attempt to portray some hidden structure in the data. In

this instance, the underlying structure is the dependency between diseases.

The Gaussian latent variable simulation method entails simulating a D × D covariance matrix

Σ, which describes the dependency structure between the chronic conditions. In simulating the
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data, Nsample multivariate normal realisations were simulated from the distribution ND (0,Σ).

The multivariate normal realisations were thresholded such that values exceeding a threshold were

assigned a value of ‘1’ and a ‘0’ otherwise. The latent structure should be encapsulated in the

simulated realisations of the multivariate normal distribution, which is in turn used to construct

the binary simulated data.

The simulated covariance matrix can be structured in such a way that disease clusters are formed.

Diseases which have a strong positive dependency on one another should form part of the same

cluster and so the covariance between the conditions will be large and positive. The increased

covariance will induce a higher than random chance of disease co-occurrence. Antagonistic

diseases will have a large negative covariance to reflect the lower than random chance of disease

co-occurrence. Diseases in different clusters are assumed to be independent and will therefore be

assigned a zero covariance.
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CHAPTER 5

CLUSTERING AND PARAMETER TUNING

5.1 INTRODUCTION

In this chapter we outline the methodology followed to cluster co-morbid conditions. In clustering

conditions we used spectral clustering with normalised mutual information scores as a similarity

metric. Metrics to evaluate clustering performance, and parameter tuning, are also discussed.

5.2 CLUSTERING OF CONDITIONS

The main investigation of this study is to distinguish groups of chronic conditions that are

interrelated. The models discussed in Chapter 3 aid us in describing the relationships between

conditions. The output from these models can be used to construct similarity matrices which are

in turn used as the input to a clustering algorithm. In this study, conditions are clustered using

spectral clustering.

The method of clustering conditions is outlined below:

1. The joint or conditional probability matrix is estimated using one of the models discussed in

Chapter 3.

2. A similarity matrix is computed from the estimated probability matrix. In this study,

normalised mutual information was used as a similarity metric. This will be discussed

further.

3. The graph Laplacian of the similarity matrix is then calculated.

4. Spectral clustering is achieved by applying k-means clustering to the normalised eigenvectors

of the graph Laplacian.

An elaboration of these steps follows.

5.2.1 Normalised Mutual Information

Broadly speaking, the normalised mutual information provides a measure of dependency in the sense

that it computes the deviation from the independence assumption. If D denotes the number of
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chronic conditions considered, then the normalised mutual information matrix is a D×D symmetric

matrix. The ijth element of this matrix represents the normalised mutual information between the

ith and jth chronic conditions. Denoting the normalised mutual information matrix by NMI, then

NMIij represents the normalised ‘statistical distance’ between the joint probability P (Xi, Xj) and

the product of the marginal probabilities, P (Xi)×P (Xj) (Kvalseth, 2017). The normalised mutual

information score is a normalisation of the mutual information score, thus the normalised mutual

information score ranges from ‘0’ to ‘1’. A score of ‘0’ implies that there is no mutual information

between variables and a score of ‘1’ implies that variables are perfectly correlated. If there is

no mutual information between chronic conditions, the conditions are said to be independent. A

large normalised mutual information score implies that there is a high level of dependency between

conditions.

Using normalised mutual information as a similarity metric is advantageous since we want to

determine whether diseases co-occur at a rate different to the co-occurrence rate under the

assumption that there is no association between diseases.

5.2.2 Spectral Clustering

Suppose we wish to partition the set of D chronic conditions into K clusters. Denote the D ×D

symmetric similarity matrix by G. In literature this is often referred to as the ‘affinity matrix’.

Define D ×D diagonal matrix F such that,

F = diag

 D∑
j=1

G1j ,

D∑
j=1

G2j , . . . ,

D∑
j=1

GDj


In literature this matrix is often denoted by D, however in our study D is reserved for the number

of chronic diseases. The symmetric normalised Laplacian is defined as,

Lnorm = F−
1
2GF−

1
2

An eigen-decomposition is then performed on Lnorm. Denote the eigenvalues of Lnorm by λ1 ≤

λ2 ≤ . . . ≤ λK ≤ λK+1 ≤ . . . ≤ λD, and the eigenvectors corresponding to these eigenvalues by

{υ1,υ2, . . . ,υK ,υK+1, . . . ,υD}. The graph Laplacian can now be constructed and is denoted by
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V where,

V = [υ2,υ3 . . . ,υK ]

Denote the normalised eigenvectors of the graph Laplacian by Vnorm. Both V and Vnorm are

D × (K − 1) matrices. We normalise V as follows:

R = [R1, R2, . . . , RD]′

=

√√√√k−1∑
j=1

([V ]1j)2,

√√√√k−1∑
j=1

([V ]2j)2, . . . ,

√√√√k−1∑
j=1

([V ]Dj)2

′

[Vnorm]ij =
[V ]ij
Ri

K-means clustering is then performed on the matrix Vnorm, the normalised eigenvectors of the graph

Laplacian. Plotting Vnorm gives us a Laplacian eigenmap. The cluster structure extracted from the

co-occurrence model can be visually represented by a Laplacian eigenmap. Laplacian eigenmaps

perform non-linear dimensionality reduction by representing a high-dimensional structure in a low

dimensional space.

If one were to apply k-means clustering to the similarity matrix or the estimated probability matrix

directly then the dimension of the data being clustered is D × D. Spectral clustering performs

dimensionality reduction since the data being clustered is the D ×K Laplacian eigenmap.

Spectral clustering is unlike centroid-based clustering methods, like k-means clustering, in that it

clusters observations based on connectivity as opposed to compactness (Singh et al., 2010). Spectral

clustering makes use of local ‘neighbourhoods’ in the data thus preserving local information, as

opposed to incorporating the similarity structure between all points (Singh, 2010).

5.2.3 Thresholding the Similarity Matrix

It can be hypothesized that conditions with a low level of dependency on other conditions have no

material impact on the investigation and should be omitted from the analysis. If the sum of the ith

row, and column, of the similarity matrix is very low, then the ith chronic condition has very weak

connections to other conditions and is effectively independent. Conditions with weak associations

can be considered ‘noisy features’.
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We may exclude these conditions from the analysis by applying a threshold to the similarity matrix

which in this study is the normalised mutual information matrix. Suppose we enforce a threshold of

τ . The ith condition is excluded from the analysis if
∑D

j=1Gij ≤ τ , or equivalently,
∑D

j=1Gji ≤ τ .

Thresholding conditions performs dimension reduction through feature selection which may be

advantageous given the high-dimensionality of the data.

A minimum threshold of 0 needs to be applied. This is because spectral clustering cannot be

performed when the similarity matrix has rows, and columns, containing only zero values. If we

have a disconnected similarity graph, G, then some of the diagonal elements in F will be zero, and

the matrix Lnorm = F−
1
2GF−

1
2 will have non-real entries.

Increasing the value of τ will perform more feature selection and the remaining features, or

conditions, will have a higher level of dependency.

5.2.4 Clustering Metric and Cluster Ratio

Evaluating the clustering performance in an unsupervised learning problem is not a trivial task.

In determining whether the model extracted cohesive cluster structures from the data, we may

investigate the normalised total within-cluster sum of squares. Denote:

• K: The number of clusters.

• Ck: The kth cluster where k ∈ {1, 2, . . . ,K}.

• µk: The centroid corresponding to the kth cluster.

• v
(i)
norm: The ith row of Vnorm, the normalised eigenvectors of the graph Laplacian. This

corresponds to the ith chronic condition, i ∈ {1, 2, . . . , D}.

The normalised total within-cluster sum of squares is calculated as,

CM =
Total within-cluster sum of squares

Between-cluster sum of squares

where,

Total within-cluster sum of squares =

K∑
k=1

∑
v
(i)
norm∈Ck

(
v(i)
norm − µk

)2
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and,

Between-cluster sum of squares = Total sum of squares− Total within-cluster sum of squares

We can calculate the total sum of squares as,

Total sum of squares =
D∑
i=1

(
v(i)
norm −

1

D

D∑
i=1

v(i)
norm

)2

The total within-cluster sum of square measures how compact observations are in their clusters

(Boehmke). The between sum of square value measures how compact all the observations are

to each other. Cluster solutions which produce clusters that are compact and well-separated are

preferable. We cannot use the total within-cluster sum of square as a clustering metric because it

provides no indication of how separated the clusters are. In comparing models, we may use the

normalised total within-cluster sum of squares as a clustering metric (CM) to evaluate how well the

model extracts cohesive clusters in the data. The model minimising this clustering metric exhibits

the best ability to produce compact and well-separated clusters from the data.

A limitation of this clustering metric is that it can only be used to compare solutions with the same

number of clusters, k. Additionally, if the number of conditions being clustered is inconsistent under

different models then the clustering metric will also be skewed. A model with fewer conditions may

have an improved clustering performance because there are fewer interactions to consider between

conditions and hence there will likely be less noise in the model.

This presents a challenge as the similarity matrix has a threshold of at least 0 and so the output of

models with potentially differing number of conditions is to be compared. We expect models with

fewer conditions to show a lower clustering metric and so this must be considered when evaluating

clustering performance. As the threshold to the similarity matrix increases, we expect the model

to include fewer conditions and hence the clustering metric will likely decrease.

To mitigate this limitation, we may consider viewing the ratio of the clustering metric to the

number of conditions in the model. An optimal clustering solution would minimise this ratio. This

is illustrated with two examples. Suppose we have two models and wish to investigate the effect

that the number of conditions has on this ratio. Model A and Model B both have a clustering
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metric of 0.5, but the number of conditions in Model A is 100 and the number of conditions in

Model B is 300. The cluster ratio for Model A is rA = 0.5
100 = 0.005 and the cluster ratio for Model

B is rB = 0.5
300 = 0.002. We expect the clustering metric to be lower when fewer conditions are

considered, and so by Model B achieving the same clustering metric as Model A despite having

more conditions, Model B is superior. As a result it produces a lower clustering ratio. Now we

investigate the effect of the clustering metric on the cluster ratio. If Model A has a clustering metric

of 0.1 and has 100 conditions then it will produce a cluster ratio of rA = 0.001. If Model B also

has 100 conditions but a clustering metric of 0.5, it will have a cluster ratio of 0.005. Both models

have the same number of conditions and Model A achieved a lower clustering metric rendering it

superior to Model B. Consequently it produces a lower cluster ratio.

5.3 PARAMETER TUNING

In this section we discuss how the model hyper-parameters and parameters were computed. The

models implemented were the L1-penalisation model, the rank regularised mixture model with

penalisation and the incomplete MLE model.

L1-Penalisation Model

The objective function for the regularised model with an L1 penalty is,

g
(
πJij , πi, πj

)
=

D∑
i,j=1

Nij ln
(
πJij
)

+ (Nsample −Nij) ln
(
1− πJij

)
− λ

D∑
i 6=j=1

|πJij − πiπj |

The marginal and joint probabilities form the model parameters and are estimated through

maximising the objective function. The parameter, λ, is a tuning parameter and requires

optimisation. Given that clustering is an unsupervised learning problem we cannot optimise λ by

minimising some error rate. The optimal value for λ was then selected as the value which resulted

in the smallest clustering metric.

Values for the thresholds of the similarity matrix were specified. A set of four thresholds were

proposed, {0, 0.10, 0.15, 0.20}.
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Rank Regularised Mixture Model with Penalisation

The objective function for the rank regularised mixture model with penalisation is,

h
(

ΠX|T ,ΠT |X , πi

)
=

D∑
i 6=j=1

Nij ln
(
π
X|T
i· π

T |X
·j

)
+ (Nj −Nij) ln

(
1− π

X|T
i· π

T |X
·j

)

− λ

α

D∑
i 6=j=1

ln cosh
(
α
(
π
X|T
i· π

T |X
·j πj − πiπj

))

The marginal probabilities and the elements of matrices ΠX|T and ΠT |X form the model parameters

and are estimated through maximising the objective function. The parameter, λ, is a tuning

parameter and is optimised to produce the smallest clustering metric. The parameter α is a hyper-

parameter which controls how accurately the penalty term approximates the L1 penalty and is not

estimated from the data. This parameter was selected as 50 in the implementation of the models.

The value for α was chosen to be relatively large given that most of the joint probabilities will

be very small. The number of person-types is also a hyper-parameter and was selected to be 100.

Under the rank reduced model, the rank of the estimated conditional probability matrix is restricted

to be at most as large as the number of person-types. The simulated data has 200 conditions and

the cleaned data has 508 conditions, thus 100 person-types seemed to be an appropriate choice as

it still allows for some flexibility in the model.

The same set of thresholds were applied to the rank reduced models, however the mean level of

similarity scores under the rank reduction models greatly exceeded the mean level of similarity

scores under the penalisation model and so the thresholds had no effect.

Incomplete MLE Model

The objective function for the incomplete MLE model is,

f
(
πJij
)

=
D∑

i,j=1

Nij ln
(
πJij
)

+ (Nsample −Nij) ln
(
1− πJij

)

The marginal and joint probabilities form the model parameters and are estimated by π̂Jij =
Nij

Nsample

and π̂i = Ni
Nsample

. The same set of thresholds were applied to the incomplete MLE Model.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 INTRODUCTION

In this chapter we discuss the results of the analysis when the various models are applied to both

simulated and real data.

6.2 SIMULATION STUDIES RESULTS

6.2.1 Disease Prototype Simulation

Data were simulated using the disease prototype simulation approach and the models described in

Chapter 3 were applied to the data. This experiment was repeated 50 times to account for random

variation and provide a more consistent comparison between models.

• The set of possible λ values ranged from 0 to 1000, with the optimal value chosen through

validation as described in Chapter 5.

• D = the number of diseases simulated = 200

• Nsample = the number of people simulated = 10, 000

• K = the number of true clusters in the data = 10

• The total number of person-types under the rank reduced model was set to 100.

• The parameter α under the rank reduced model which controls how well the penalty

approximates the L1-penalty was set to 50.

• 20 iterations were performed per model fit

Experiments were only accepted if they didn’t require a threshold to be applied to the similarity

matrix. This was to ensure that the number of conditions considered in each experiment was

consistent. Not thresholding the similarity matrix allows us to use the clustering metric to evaluate

clustering performance, as opposed to computing both the clustering metric and the cluster ratio.

The cluster ratio must be computed if the number of conditions considered differs between models,

and so if no thresholding is applied, no feature selection takes place and the clustering metric is
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sufficient to evaluate cluster performance. This results in fewer necessary computations and speeds

up computational time.

Figure 6.1: Clustering Metrics for the Models Applied to Disease Prototype Simulated Data

Figure 6.1 allows us to compare the variation in the clustering metric between the models applied

to disease prototype simulated data. It is evident that the rank reduction model had the worst

clustering performance. Figure 6.1 illustrates that the penalised model performed similarly to

the incomplete MLE model, however Table 6.1 demonstrates that the L1-penalised model slightly

outperforms its unregularised counterpart. The mean and standard deviation of the clustering

metric under the L1-penalised model is lower than under the incomplete MLE model.
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Table 6.1: Mean and Standard Deviation of Model Outputs Using Disease Prototype Simulated
Data

Model Mean Standard Deviation

Optimal λ
Penalised Model 337.9592 242.6371
Rank Reduced Model 509.3878 320.6721

Clustering metric
Incomplete MLE Model 0.1002 0.0402
Penalised Model 0.0945 0.0332
Rank Reduced Model 1.1943 0.0242

We may wish to investigate how the choice of the penalty parameter, λ, affects the clustering

performance of the regularised models. To this extent, we consider Figure 6.2. As seen previously,

the rank reduced model is shown to perform poorly in comparison to the penalised model.

Interestingly, the linear regression lines applied to the scatter-plots are almost linear for both of

the regularised models, which indicates that the choice of λ does not have a material impact on

the clustering performance of the model. Under the penalised model, the optimised λ values fall

predominantly on the lower half of the set of possible values. There are, however, instances where

a large penalty is selected as optimal under the framework of the penalised model. Under the

rank reduced model, the optimal choice of λ is almost evenly distributed across the range of

possible values.

We may investigate Figures 6.3, 6.4 and 6.5 which represent the Laplacian eigenmaps from the

various models applied to a single set of disease prototype simulated data. The observations are

coloured according to the cluster structure detected by the model. These eigenmaps confirm that

the penalised model and incomplete MLE model have the potential to extract cohesive clusters

from the disease prototype simulated data. The rank reduced model, however, fails in this regard.
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Figure 6.2: The Optimized λ Values and Clustering Metrics for the Regularised Models Applied to
Disease Prototype Simulated Data

Figure 6.3: Laplacian Eigenmap of Conditions under the Penalisation Model Applied to Disease
Prototype Simulated Data
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Figure 6.4: Laplacian Eigenmap of Conditions under the Rank Reduced Model Applied to Disease
Prototype Simulated Data

Figure 6.5: Laplacian Eigenmap of Conditions under the MLE Model Applied to Disease Prototype
Simulated Data

Lastly, we may wish to investigate how correctly the models clustered conditions. Because the

true cluster structure is incorporated into the simulation of the data, we are able to compare the

extracted clusters with the true clusters. To visually assess the clustering accuracy of the models

we consider Figure 6.6.
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Each of the models were applied to a single set of disease prototype simulated data, and for each

model a confusion matrix was constructed which compared the cluster membership of the derived

clusters and the actual clusters. The confusion matrix was reordered for increased interpretability

of the results. Heatmaps of the reordered confusion matrices were constructed and are displayed

in Figure 6.6. Cells with a more yellow hue represent a large overlap in the cluster membership of

the derived and actual clusters. Cells with a more purple hue indicate little to no overlap in cluster

membership.

The heatmaps corresponding to the penalised model and the incomplete MLE model include a

strong diagonal which indicates that the clusters are well identified under these models. The

heatmap for the rank reduced model displays no distinguishable pattern and thus the clusters were

not correctly extracted by the reduced rank method. Because the true number of clusters is quite

small, the clustering accuracy can be determined by visual means. Clustering accuracy can also be

computed through numerical means such as using the adjusted Rand index.
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Figure 6.6: Heatmaps of Reordered Confusion Matrices to Determine Clustering Performance under
Disease Prototype Simulated Data
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The results are in agreement and we can conclude that the penalised model and the incomplete

MLE model perform sufficiently well to data simulated through the disease prototype simulation

approach. Regularising the incomplete MLE model by means of applying the L1-penalty marginally

improves the clustering performance. The rank reduced model fares poorly in comparison.

6.2.2 Gaussian Latent Variable Simulation Method

Gaussian latent variable data were simulated and the models described in Chapter 3 were fit to the

data. As before, this experiment was repeated 50 times to account for any random variation, and

to provide a more consistent comparison between models. The parameters of the estimation are as

follows:

• The set of possible λ values ranged from 0 to 1000, with the optimal value chosen through

validation as described in Chapter 5.

• D = the number of diseases simulated = 200

• Nsample = the number of people simulated = 10, 000

• K = the number of true clusters in the data = 10

• The total number of person-types under the rank reduced model was set to 100.

• The parameter α under the rank reduced model which controls how well the penalty

approximates the L1-penalty was set to 50.

• 20 iterations were performed per model fit

As previously, to ensure a consistent comparison of models, experiments were only accepted if they

didn’t require a threshold to be applied to the similarity matrix.

In comparing the clustering metric across the three models, we can look to Figure 6.7. On average,

the incomplete MLE model had the best clustering performance, followed by the penalised model

and lastly by the rank reduced model. The clustering metric of the rank reduced model varied

the least, and the clustering metric of the incomplete MLE model varied the most. The mean and

standard deviation of the clustering metric under the three models are given in Table 6.2. These

values corroborate the findings illustrated in Figure 6.7.
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Figure 6.7: Clustering Metrics for the Models Applied to Gaussian Latent Variable Simulated Data

Table 6.2 also provides the mean and standard deviation of the optimal penalty parameter, λ, for

each of the regularised models. On average, the penalised model selected slightly larger λ values

than the rank reduced model. Figure 6.8 illustrates the relationship between the optimised λ values

and the clustering metric under the regularised models. A linear regression line has been included

under each model to describe how the clustering metric varies as a function of the optimised λ value.

Under the penalised model, the clustering metric decreases slightly as λ increases. This seems to

indicate that stricter regularisation improves clusterability of the penalised model. However, the

incomplete MLE model achieves the lowest average clustering metric and performs no regularisation.

Under the rank reduced model framework, increasing the penalty parameter marginally increases
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Table 6.2: Mean and Standard Deviation of Model Outputs Using Gaussian Latent Variable
Simulated Data

Model Mean Standard Deviation

Optimal λ
Penalised Model 582.8571 349.8581
Rank Reduced Model 416.3265 288.4383

Clustering metric
Incomplete MLE Model 0.6795 0.1114
Penalised Model 0.9845 0.0733
Rank Reduced Model 1.2888 0.0201

the clustering metric.

Figure 6.8 also indicates that the penalised model produces lower clustering metrics than the rank

reduced model, although the clustering metrics for the penalised model are more volatile than the

clustering metrics under the rank reduced model.

Figure 6.8: The Optimized λ Values and Clustering Metrics for the Regularised Models Applied to
Gaussian Latent Variable Simulated Data

As before, we may wish to investigate how the Laplacian eigenmaps from the three models fare

against each other when applied to a single common set of Gaussian latent variable simulated data.

For this particular dataset, the clustering metric of the incomplete MLE model was 0.7668, the
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metric under the penalisation model was 0.9096 and under the rank reduced model the metric was

1.2860. The optimal λ value under the penalised model was 583.2735 and under the rank reduced

model λ this value was 631.8796.

These Laplacian eigenmaps are shown in Figures 6.9, 6.10 and 6.11. The colour of the points

correspond to the clusters detected by the model.

Figure 6.9: Laplacian Eigenmap of Conditions under the Penalisation Model Applied to Gaussian
Latent Variable Simulated Data
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Figure 6.10: Laplacian Eigenmap of Conditions under the Rank Reduced Model Applied to
Gaussian Latent Variable Simulated Data

Figure 6.11: Laplacian Eigenmap of Conditions under the MLE Model Applied to Gaussian Latent
Variable Simulated Data

Whilst none of the models extract specifically cohesive clusters when applied to Gaussian latent

variable simulated data, the penalised model seems to perform much worse when applied to this

data in comparison to its performance when applied to disease prototype simulated data.

Lastly, because the data are simulated we can evaluate the clustering accuracy of the models
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applied. To this extent, we refer to Figure 6.12. These heatmaps are constructed in the same way

as the heatmaps in Figure 6.6. The heatmaps illustrated in Figure 6.12 show no distinguishable

patterns in the cluster membership between the true clusters and the derived clusters. This may

indicate that either all of the models performed poorly on this type of simulated data, or the data

was simulated in such a way that the dependency between conditions was not clearly translated

into the simulated data.

53



Figure 6.12: Heatmaps of Reordered Confusion Matrices to Determine Clustering Performance
under Gaussian Latent Variable Simulated Data
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6.3 DATA RESULTS

6.3.1 Data Cleaning

After data cleaning, 508 chronic conditions remained. The original data set included 1,382

conditions, therefore the data was reduced drastically through data cleaning.

Data cleaning involved removing chronic conditions which fell into an ICD 10 Code category

which was unquestionably unrelated to chronic conditions. This included codes relating to

pregnancy, childbirth, conditions specific to the perinatal period, chromosomal abnormalities,

congenital malformations, injury, poisoning and administrative codes.

Table 6.3 illustrates the ICD 10 code categories that remained in the dataset. Further data cleaning

Table 6.3: ICD 10 Code Categories with Descriptions (World Health Organization, 2016a)

ICD 10 Code Category Description

A, B Infectious and parasitic diseases

C Malignant neoplasms

D Benign and in situ neoplasms, and neoplasms of unknown and
uncertain behaviour. Diseases of the blood and blood-forming
organs and certain disorders involving the immune mechanism.

E Endocrine, nutritional and metabolic diseases

F Mental and behavioural disorders

G Diseases of the nervous system

H Diseases of the eye and adnexa. Diseases of the ear and mastoid
process.

I Diseases of the circulatory system.

J Diseases of the respiratory system.

K Diseases of the digestive system.

L Diseases of the skin and subcutaneous tissue.

M Diseases of the musculoskeletal system and connective tissue.

N Diseases of the genitourinary system.

R Symptoms, signs and abnormal clinical and laboratory findings,
not elsewhere classified.

involved removing codes that didn’t follow the format of the ICD 10 codes. The format of the ICD 10

codes is a character followed by two numbers. Codes which didn’t meet this formatting requirement

were omitted. Additionally, conditions with a prevalence of fewer than 10 study participants were

omitted.
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6.3.2 Results

The model output was extracted when fitting the L1-penalisation model, the rank reduction model

with penalisation and the incomplete MLE model. The regularised models were fitted with 20

iterations per model fit. Under the rank reduced models, the number of person-types was selected

to be 100 and the α parameter which controls how well the penalty approximates the L1 penalty

was chosen to be 50.

These results are summarised in Table 6.4.

Table 6.4: Results of the Models Applied to the Data

K Model

Optimal λ Clustering Metric Conditions

Threshold Threshold Threshold

0.00 0.10 0.15 0.20 0.00 0.10 0.15 0.20 0.00 0.10 0.15 0.20

5

P 300 300 300 300 0.434 0.405 0.393 0.344 508 450 354 273

R 150 0.077 508

M × 0.503 0.436 0.356 0.356 508 434 300 182

10

P 50 50 50 300 0.480 0.454 0.395 0.348 508 450 355 273

R 200 0.710 508

M × 0.500 0.478 0.428 0.323 508 434 300 182

15

P 150 200 200 50 0.515 0.495 0.459 0.403 508 450 354 274

R 50 1.316 508

M × 0.514 0.607 0.481 0.313 508 434 300 182

The model output comprises of the optimal value for λ, the clustering metric and the corresponding

number of chronic conditions considered. The number of clusters is represented by K where K ∈

{5, 10, 15}. Each of the models were run with thresholds {0, 0.1, 0.15, 0.2}. The minimum threshold

applied was τ = 0 and this was to ensure that spectral clustering could take place. In Table 6.4

the models applied are abbreviated such that the L1-penalisation model is denoted ‘P’, the rank

reduction model with penalisation is denoted ‘R’ and the incomplete MLE model is denoted ‘M’.

The tuning parameter λ controls the level of penalisation applied. The values which λ could take

on ranged from 0, where no penalisation was applied, to 300. Both the L1-penalisation model and

56



the rank reduction model with penalisation make use of this parameter, however the incomplete

MLE model does not. Therefore, the table entries corresponding to λ for the incomplete MLE

model are left blank.

The mean level of similarity scores under the rank reduction models greatly exceeded the mean

level of similarity scores under the other two models and hence no conditions were removed with

thresholding. The results of the rank reduction model therefore remained the same when each of

the thresholds were applied.

As described previously, the clustering metric is not entirely suitable for cluster performance

comparison and hence we must consider the cluster ratio. The details of the clustering metric and

cluster ratio are fully described in Chapter 3. The cluster ratios for each of the models are given

in Table 6.5.

Table 6.5: Cluster Ratios of the Models Applied to the Data

Cluster Ratio

ThresholdK Model

0.00 0.10 0.15 0.20

P 0.00085 0.00090 0.00111 0.00126

R 0.000155

M 0.00099 0.00101 0.00119 0.00195

P 0.00095 0.00101 0.00111 0.00127

R 0.0014010

M 0.00098 0.00110 0.00143 0.00178

P 0.00101 0.00110 0.00130 0.00147

R 0.0025915

M 0.00101 0.00140 0.00160 0.00172

To visually compare the clustering ratios, a heatmap has been applied to the values in the table.

The lowest cluster ratios correspond to cells with the most green hue and the highest cluster ratios

correspond to cells with the most red hue. Models with the same K value can be compared.
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Results: K = 5

The rank reduction model produced the lowest cluster ratio out of the three models.

Regularisation improves the clusterability of the model outputs. The penalisation model

outperforms its unregularised counterpart, the incomplete MLE model, for all values of the

threshold, τ . Looking at the clustering metrics of the penalised model with K = 5, we see that

the clustering metric decreases as τ increases for the penalised and incomplete MLE models.

Looking at the corresponding cluster ratios, we can see that the cluster ratios increase as τ

increases. This implies that the feature selection did not reduce the clustering metric enough to

make it worthwhile.

The clusterability of the rank reduced model is reinforced in the model’s Laplacian eigenmap. The

Laplacian eigenmap of the fitted rank reduced model with 5 clusters exhibits a pattern in the data

and the clusters are quite well defined. This is shown in Figure 6.13.

Figure 6.13: Laplacian Eigenmap of Conditions under the Rank Reduced Model with k = 5

We may wish to investigate how well the clusters grouped chronic conditions together. Whilst the

true underlying cluster structure is unknown, we may use the distribution of the clusters across

the ICD Code categories as a proxy for how correctly the conditions are clustered. In doing so we

investigate Figure 6.14.
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Figure 6.14 illustrates the proportion of ICD Code categories in each of the clusters. The matrix

underlying Figure 6.14 tabulates the membership of the ICD Codes across the clusters. Conditions

are defined by their ICD Codes and these codes are categorised as shown in Table 6.3. The matrix

underlying Figure 6.14 modifies the membership matrix by dividing the membership in each cluster

by the total number of conditions classified to the cluster. The rows of the matrix underlying Figure

6.14 sum to 100%. This figure allows us to visualise the composition of each cluster.

In analysing the heat-map, we may notice that it is quite murky. There is no discernible trend in

the membership composition of the clusters. This implies that the conditions from different ICD

Code categories is almost equally distributed across the clusters.

Figure 6.14: Rank Reduced Model: Heatmap of the Percentage of ICD Codes Falling into Each
Cluster when k = 5, by cluster

There is a large body of literature which suggests that mental-health related conditions commonly

co-occur. One study by Plana-Ripoll et al. (2019) analysed a set of mental and behavioural

conditions from ICD Codes F00-F09 and F10-F19. The study analysed the disorders in a pairwise

manner and found that mental-health related co-morbidities are common. We can use the results

of this study, and other studies which support it, as a proxy in determining whether the models

correctly cluster conditions. This study would lead us to believe that mental health conditions in

ICD Code category F should typically fall into the same cluster. Under the rank reduced model

there is no evident clustering of conditions from ICD Code category F. This may suggest that

although the clustering metric and cluster ratio under the rank reduced model with 5 clusters was
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very low, the actual cluster performance may be poor in terms of its accuracy.

There is no evident clustering of the ICD Code categories under the rank reduction model which is

not as one might anticipate. We will also then show output from the L1-penalisation model with

τ = 0 which is the model with the second lowest cluster ratio when K = 5.

The Laplacian eigenmap of the L1-penalisation model with τ = 0 and K = 5 is shown in Figure

6.15. Figure 6.15 illustrates that a cluster structure is discernible under this model.

Figure 6.15: Laplacian Eigenmap of Conditions under the L1-Penalisation Model with τ = 0 and
K = 5

In investigating the membership composition of the clusters we look to Figure 6.16. Under the

L1-penalisation model with τ = 0 and K = 5, we notice a strong clustering of conditions from

ICD Code category C, malignant neoplasms. Additionally, mental and behavioural conditions from

ICD Code category F appear to cluster together. This model was able to extract a cluster of

predominantly mental-health related conditions which is in support of medical literature such as

the study by Plana-Ripoll et al. (2019). Given the nature of cancer, the clustering of malignant

neoplasms is intuitive. A malignant neoplasm is a cancerous tumour. Advanced cancer has the

ability to spread across an individuals organs. It is then medically intuitive that ICD Codes

corresponding to cancerous tumours would form a cluster.
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Figure 6.16: L1-Penalisation Model: Heatmap of the Percentage of ICD Codes Falling into Each
Cluster when τ = 0 and K = 5, by cluster

Results: K = 10

The L1-penalised model with τ = 0 produced the lowest cluster ratio out of the three models.

Again, regularisation notably improves the clusterability of the model outputs. The penalisation

model outperforms its unregularised counterpart, the incomplete MLE model, for all values of the

threshold, τ . As before, as τ increases, the clustering metric of the penalised and incomplete

MLE models decreases and the corresponding cluster ratios increase. This implies that the feature

selection did not reduce the clustering metric enough to make it worthwhile.

We now investigate the Laplacian eigenmap of the L1-penalised model with τ = 0 and K = 10.

Figure 6.17 indicates that segregation of observations is present for some clusters, however there is

a mass of observations whose cluster structure is indistinguishable. This may be due to the fact

that the data is projected to a lower-dimension which results in a loss of information. The input to

the k-means clustering algorithm is the normalised eigenvectors of the graph Laplacian which is a

D× (K − 1) matrix. The column dimension of this matrix increases as we introduce more clusters.

The result of this is an increasing loss of information projected in the Laplacian Eigenmap. It is

also easier to discern a smaller number of clusters.
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Figure 6.17: Laplacian Eigenmap of Conditions under L1-penalised model with τ = 0 and K = 10

As before, we can investigate the membership heat-map to determine whether there is a cluster

structure in ICD Code categories. Figure 6.18 can be used in this regard.

Figure 6.18: L1-penalised model: Heatmap of the Percentage of ICD Codes Falling into Each
Cluster when k = 10 and τ = 0, by cluster

From Figure 6.18 we can deduce,

62



• The mental and behavioural disorders from ICD Code category F make up most of the

composition of cluster 7. This supports a wide body of literature that proposes that mental-

health related conditions form common co-morbidities.

• Cluster 1 predominantly consists of conditions in ICD Code categories C and E. ICD Code

category C is malignant neoplasms and category E includes endocrine, nutritional and

metabolic diseases.

• Cluster 5 predominantly consists of conditions in ICD Code categories A and B. These are

the infectious and parasitic diseases, like bacterial and viral infections.

Results: K = 15

Table 6.5 reveals that when K = 15 the L1-penalised model with τ = 0 and the incomplete MLE

model with τ = 0 produce the lowest cluster ratios. Increasing the number of decimals reveals

that the incomplete MLE model has the lowest cluster ratio. For τ > 0, the L1-penalised model

outperforms the incomplete MLE model. The rank reduced model produces the highest cluster

ratio. The Laplacian eigenmap of the incomplete MLE model with τ = 0 is given in Figure 6.19

and the membership heat-map in Figure 6.20.

Figure 6.19: Laplacian Eigenmap of Conditions under Incomplete MLE model with τ = 0 and
K = 15
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Figure 6.19 is not wholly interpretable which may be due to the loss of information from data

projection. Increasing the number of clusters reduces the interpretability of the Laplacian eigenmap

visual.

Figure 6.20 allows us to visualise the composition of each cluster.

• Cluster 6 is composed predominantly of conditions from ICD Code category C, malignant

neoplasms.

• Cluster 15 is primary composed of conditions from ICD Code category I, diseases of the

circulatory system.

• Cluster 4 is mostly made up of mental and behavioural disorders, ICD Code category F, as

is cluster 8. One would expect these conditions to form clusters given the extensive body of

literature regarding mental-health related co-morbidities.

• Conditions from ICD Code categories C and D appear to cluster together in cluster 13. ICD

Code category C corresponds to malignant neoplasms and ICD Code category D corresponds

to all other neoplasms as well as immune disorders.

Figure 6.20: Incomplete MLE model: Heatmap of the Percentage of ICD Codes Falling into Each
Cluster when k = 15 and τ = 0, by cluster
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6.4 DISCUSSION

When the models were applied to disease prototype simulated data, both the incomplete MLE

model and the penalised model performed well, with the penalised model slightly outperforming the

incomplete MLE model. The Gaussian latent variable simulation study showed that the incomplete

MLE model produced the most cohesive cluster structure from the data, however none of the models

were able to accurately cluster the data to match the underlying dependency structure. The failure

of the models to determine the clustering structure may be due to poor model performance or it

may be due to how the data was simulated. It is possible that the simulation did not encapsulate a

strong dependency between conditions. Under both simulation studies, the rank reduction model

performed the worst.

When the models were applied to observational data, the penalised model appeared to perform

better than the unregularised incomplete MLE model. The rank reduction model appears to

perform the best when we consider 5 clusters because it produces a very low cluster ratio.

However, when we investigate the membership composition of the rank reduced model, the results

are not intuitive. We expect that mental-health related conditions would form a cluster and that

types of cancers would also cluster together. These clusters were not evident in the rank reduced

model with K = 5, however they were present in the penalised model with K = 5. When K = 10,

the penalised model produced the best cluster ratio and formed a cluster of mental-health related

conditions as expected. When K = 15, the incomplete MLE model performed the best and a

cluster structure was observable across the ICD Code categories. These results should ideally be

verified by a medical practitioner.

Overall, we may conclude that the model performance is dependent on the underlying data, however

the penalised model and incomplete MLE models appear to perform better than the rank reduced

model.
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6.5 LIMITATIONS AND IMPROVEMENTS

Model fitting

The rank reduced model parameters α and the number of person-types were fixed at 50 and 100

respectfully. Exploring the effect that these parameters have on the cluster performance of the

models would be beneficial. In the simulation study, 200 conditions and 10 clusters were simulated.

It would be advantageous to investigate how each of the models fare when the dimensionality of

the problem changes, and when the number of underlying clusters change.

The number of iterations per model fit for the regularised models was selected to be 20. Each

model fit requires the estimation of a large number of parameters and so increasing the number of

iterations per model fit would result in a substantial computational burden. If these models were

to be run on a supercomputer, the number of iterations could be increased which may result in

better model performance.

Different Clustering Techniques

A potential extension of this study is to consider multiple similarity-based clustering methods,

or alternatively probabilistic graphical models. We used spectral clustering that makes use of a

similarity matrix, however other similarity-based clustering methods exist. Because this study

involves constructing a network, the problem can also be addressed from the viewpoint of graph

theory. In graph theory, a graph is constructed from an adjacency matrix which is analogous to

the similarity matrix used in similarity-based clustering methods. Chronic conditions can then be

clustered using a probabilistic graphical model.

Numerical Clustering Performance Metric

We used visual means to determine the clustering accuracy of the models applied to simulated data.

Ideally, a numerical method would also be used to assess how accurately the models detected the

underlying dependency structure. The numerical and visual methods could be used in conjunction

to assess clustering accuracy.
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Medical Expert Input

The results of this study could be assessed by a medical professional to determine the validity of

the extracted clusters from the observational data.
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APPENDIX A

CALCULATIONS

A.1 PARTIAL DERIVATIVES ASSOCIATED WITH THE PENALISED CO-

OCCURRENCE MODELS

A.1.1 Partial Derivative of g
(
πCij , π

0
i

)
with Respect to πCij

∂g
(
πCij , π

0
i

)
∂πCij

=
∂

∂πCij

 D∑
i 6=j=1

(
Nij ln

(
πCij

1− πCij

)
+Nj ln

(
1− πCij

)
− λ|πCij − π0

i |

)
where

∂

∂πCij
ln

(
πCij

1− πCij

)
=

(
1− πCij
πCij

)(1− πCij)− πCij ×−1(
1− πCij

)2

 =
1

πCij(1− πCij)

and
∂

∂πCij
ln(1− πCij) = −1× 1

1− πCij

Using the fact that ∂
∂x |u(x)| = ∂

∂x

√
u2(x) = u(x)

|u(x)|u
′(x),

∂

∂πCij
|πCij − π0

i | =
πCij − π0

i

|πCij − π0
i |

The partial derivative can then be written as,

∂g
(
πCij , π

0
i

)
∂πCij

=
Nij

πCij(1− πCij)
− Nj

1− πCij
− λ

πCij − π0
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|πCij − π0
i |

=
Nij −Njπ

C
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πCij(1− πCij)
− λ

πCij − π0
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|πCij − π0
i |

=



Nij−Njπ
C
ij

πC
ij(1−πij)

− λ for πCij > π0
i

Nij−Njπ
C
ij

πC
ij(1−πC

ij)
+ λ for πCij < π0

i

undefined for πCij = π0
i

71



A.1.2 Partial Derivative of g
(
πCij , π

0
i

)
with Respect to π0

i
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πCij , π

0
i

)
∂π0
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=
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∂π0
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i 6=j=1
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Nij ln
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1− πCij

)
+Nj ln
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− λ|πCij − π0

i |
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∂

∂π0
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(
−λ|πCij − π0

i |
)

= −λ

(
πCij − π0

i

|πCij − π0
i |
× −1

)

= λ
πCij − π0

i

|πCij − π0
i |

=
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λ for πCij > π0

i

−λ for πCij < π0
i

undefined for πCij = π0
i

A.1.3 Partial Derivative of g(πJij , πi, πj) with Respect to πJij

∂g(πJij , πi, πj)

∂πJij
=

∂

∂πJij

 D∑
i,j=1

Nij ln

(
πJij

1− πJij

)
+Nsample ln

(
1− πJij

)− λ D∑
i 6=j=1

∣∣πJij − πiπj∣∣


This can be calculated using a similar approach to the corresponding derivative in the estimation

of the conditional probability model. It can then be calculated that,

∂g(πJij , πi, πj)

∂πJij
=

Nij

πJij [1− πJij ]
−
Nsample

1− πJij
− λ

πJij − πiπj∣∣∣πJij − πiπj∣∣∣
=
Nij −Nsampleπ

J
ij

πJij

(
1− πJij

) − λ
πJij − πiπj∣∣∣πJij − πiπj∣∣∣

=



Nij−Nsampleπ
J
ij

πJ
ij(1−πJ

ij)
− λ, for πJij > πiπj

Nij−Nsampleπ
J
ij

πJ
ij(1−πJ

ij)
+ λ, for πJij < πiπj

undefined, for πJij = πiπj
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A.1.4 Partial Derivative of g(πJij , πi, πj) with Respect to πi

Deriving the penalty term with respect to πi yields,

∂

∂πi

∣∣πJij − πiπj∣∣ =
πJij − πiπj∣∣∣πJij − πiπj∣∣∣

∂

∂πi

(
πJij − πiπj

)
=

πJij − πiπj∣∣∣πJij − πiπj∣∣∣ (−πj)

The partial derivative of the objective function with respect to πi is then written as,

∂g(πJij , πi, πj)

∂πi
=

∂

∂πi

 D∑
i,j=1

Nij ln

(
πJij

1− πJij

)
+Nsample ln

(
1− πJij

)− λ D∑
i 6=j=1

∣∣πJij − πiπj∣∣


=
∂

∂πi

(
−λ
∣∣πJij − πiπj∣∣)

= −λ

 πJij − πiπj∣∣∣πJij − πiπj∣∣∣ (−πj)


= λπj

πJij − πiπj∣∣∣πJij − πiπj∣∣∣
=


λπj , for πJij > πiπj

−λπj , for πJij < πiπj

undefined, for πJij = πiπj

A.2 PARTIAL DERIVATIVES ASSOCIATED WITH THE

RANK-REDUCED CO-OCCURRENCE MODELS

In the section, ‘Regularization by Rank Reduction’ the partial derivative of the objective function, f̂ ,

with respect to Qtj is shown. Here we show the calculations associated with this partial derivative.

The additional constraint on the ΠT |X matrix whereby,

K∑
i=1

Π
T |X
ij =

K∑
i=1

(
exp(Qij)∑K
k=1 exp(Qkj)

)
= 1
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results in the partial derivative of the objective function with respect to Qtj being more complicated

than the previously calculated partial derivative.

We have, for t 6= s

∂

∂Qtj

(
exp(Qsj)∑K
k=1 exp(Qkj)

)
= − exp(Qsj) exp(Qtj)(∑K

k=1 exp(Qkj)
)2

= − exp(Qsj)∑K
k=1 exp(Qkj)

exp(Qtj)∑K
k=1 exp(Qkj)

= −Π
T |X
sj Π

T |X
tj

In order to understand the effect of the case where t 6= s, a simple illustration where K = 3 will be

explored. Suppose K = 3, then the objective function becomes,

f̂3 =
∑
i 6=j

Nij ln

(
exp(Zi1 +Q1j)

(1 + exp(Zi1)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

+
exp(Zi2 +Q2j)

(1 + exp(Zi2)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

+
exp(Zi3 +Q3j)

(1 + exp(Zi3)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

)
+ (Nj −Nij) ln

(
1− exp(Zi1 +Q1j)

(1 + exp(Zi1)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

− exp(Zi2 +Q2j)

(1 + exp(Zi2)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

− exp(Zi3 +Q3j)

(1 + exp(Zi3)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

)

For illustration, we find the maximum of the objective function with respect to Q2j . We denote:

A1 =
exp(Zi1 +Q1j)

(1 + exp(Zi1)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

A2 =
exp(Zi2 +Q2j)

(1 + exp(Zi2)) (exp(Q1j) + exp(Q2j) + exp(Q3j))

A3 =
exp(Zi3 +Q3j)

(1 + exp(Zi3)) (exp(Q1j) + exp(Q2j) + exp(Q3j))
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Taking the partial derivative with respect to Q2j we have that,

∂A1

∂Q2j
=

exp(Zi1 +Q1j)

(1 + exp(Zi1))

∂

∂Q2j

(
1
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2

Similarly,
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= −exp(Zi3 +Q3j)

(1 + exp(Zi3))

exp(Q2j)

(exp(Q1j) + exp(Q2j) + exp(Q3j))
2

Therefore we have for t 6= s,

∂
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(∑K

k=1 exp(Qkj)
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(1 + exp(Zis))
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k=1 exp(Qkj)

)2

When t = s,

∂A2
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=
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(
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2

)

=
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(
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exp(Q1j) + exp(Q2j) + exp(Q3j)

)

Therefore, more generally, when t = s

∂

∂Qtj

exp(Zis +Qsj)

(1 + exp(Zis))
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) =

exp(Zit +Qtj)

(1 + exp(Zit))
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We now maximise the objective function for our simplified example,

∂f̂3

∂Q2j
=
∑
i 6=j

Nij

A1 +A2 +A3

 exp(Zi2 +Q2j)
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1 + exp(Zi3)
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Therefore more generally stated,
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