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Representation
Learning

 Automatically
discovers feature
patterns in data

 Encodes features into
numerical
representations

* Performance is
measured by
performance on
downstream tasks.




Introduction to Contrastive Learning

Contrastive Learning

* Encoding data to a lower-
dimensional latent space
(embedding space)

* Distinguishing positive
Instances (same class) and
negative instances
(different classes)

* Pushing together similar
encodings and pulling apart
dissimilar encodings
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https://www.v7labs.com/blog/contrastive-learning-guide

Self-supervised contrasting
learning

« Exploits unlabeled data by
creating 'pseudo-labels’ from
input data properties.

Creating positive and negative
iInstances in computer vision

 Positive instances are generated
by applying augmentations to
anchor images or extracting
patches from the same image.

* Negative instances are other
images or patches from different
images.

» We will discuss augmentation
options in other fields later.

Pre-training

« |deal for pre-training as it
leverages abundant unlabeled
data to learn object _
representations; can later be fine-
tuned with smaller labeled
datasets.

Creating positive instances
in computer vision
- augmentation
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Supervised
contrastive
learning

« Addresses limitation of self-
supervised learning where
negatives might belong to
the same class as the
anchor and positive
Instances.

* Introduced by Google
Research and MIT in 2021
as an extension to self-
supervised contrastive
learning.

Key Differences

» Uses class labels to create
embeddings where objects
from the same class are
closely aligned.

* Proposes using multiple
positive and negative
Instances per anchor image
for more effective
representations.
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https://arxiv.org/pdf/2004.11362.pdf

Benefits
Hyperparameter Stability Analysis

« Achieves superior
classification S0 | i
accuracy compared S0 = T
to models trained g e ﬁ ﬁ
with cross-entropy o
IE N
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https://arxiv.org/pdf/2004.11362.pdf

Practical applications of contrastive learning

Already
discussed




Applications > Computer Vision > SimCLR

lllustration of SIMCLR methodology
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https://towardsdatascience.com/paper-explained-a-simple-framework-for-contrastive-learning-of-visual-representations-6a2a63bfa703

Applications > Computer Vision > SIimCLR

Key Consideration

« SIMCLR and Supervised
Contrastive Learning require
large batch sizes for more
discriminative embeddings,
leading to high computational
resource demand.

Impact of batch size and training epochs on the
performance of SimCLR
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https://arxiv.org/pdf/2002.05709.pdf

Applications > Computer Vision > SimCLR

Supervised vs self-supervised
learning

 Self-supervised learning
requires larger models and
longer training periods but
aectluces the need for labeled
ata.

* Achieves comparable
|oerfo_rman_ce to supervised
earning with enough
computational resources.

* Decision between methods
should consider available data
and computational resources.

SImCLR: Accuracy comparison of supervised
(90 epochs) and self-supervised CL (1000
epochs) models as the number of model
parameters increases.
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https://arxiv.org/pdf/2002.05709.pdf

Applications > NLP & CV > CLIP

Contrastive Language-Image Pretraining

CLIP is a multi-modal model developed by OpenAl for
understanding the relationship between images and text.

Pre-training

|t uses contrastive learning as a pretraining objective and
enables zero-shot image classification.

* The model consists of text and image encoders trained on a
large dataset of paired images and text captions.

» Contrastive learning pulls together the encodings of _
corresponding image-text pairs and pushes apart encodings
from different pairs.

Zero-shot classification

« Glven an image, its encoding is obtained using the trained
Image encoder, and text embeddings representing different
classes are generated.

* Prompt engineering is performed to modify the input format for
the text encoder.

* The final classification result is determined by calculating the
similarity scores between the image encoding and text
encodings.

(1) Contrastive pre-training
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https://arxiv.org/pdf/2103.00020.pdf

Self-Supervised Approach

» Uses dropout as data augmentation:
an anchor sentence is modified twice (8) Un sed SIMCSE
with different dropout masks. SUPEIVISE

Different hidden dropout masks
. . in two forward passes
 The modifications are pulled together (" Two dogs are running. _ }-{ |+@0%>
and are pushed apart fromthe === 0 ~Y—-——"—"— N
remaining in-batch sentences. | Aman surfing on the sea. | E [+(@3 |
o /
Supervised Approach | Alid is on a skateboard. < @@

« Trains using a Natural Language g
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Inference (NLI) dataset: each entry ® Encoder
contains an anchor sentence, an .~ Positive Instance
entailment sentence, a contradiction . ™ Negative instance
sentence, and a neutral sentence.
« Entailment sentences are labeled as (b) Supervised SimCSE
'positive instances', contradictions as
‘negative instances’, and neutral Twodogs || |+@Owe—@0+{ |{There are animals outdoors.
sentences are discarded. are running. }‘}\\:\ fabel=cntailment
W\ @O t itti ch.
 Including 'hard negatives', i.e., {‘,‘,‘\ mshﬁfzigm‘gdﬁgna =
. . . FTTTT T T T T T | I L (T TTTTTrT T N
specific contradictions of the anchor, 4 man surfing | @@ ) x@a  There is a man.
. | | ~-label=entailment -~
improves the model performance. . onthesea. | |E R 1 !
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Evaluation JE— N Lo
i Akidisona = P22 \ 2D -— A kid is skateboardiug.j

» Uses Semantic Text Similarity tasks: ,
computes cosine similarity between || N@@+_JA kitis inside the house.
sentence embeddings and compares
to human-annotated similarity.



https://arxiv.org/pdf/2104.08821.pdf

Applications > Recommender Systems

Users Items (e.g. books)

User-item interaction graph (bipartite graph)

Recommender systems

* Model that seeks to predict
the 'rating' or 'preference’ that
a user would give to an item.

* The model attempts to learn
embeddings for each user
and each item.

» Contrastive learning can be
used to enhance the quality
of the learned embeddings.




Applications > Recommender Systems > SGL

Users Items (e.g. books)

User-item interaction graph (bipartite graph)

Self-supervised Graph
Learning (SGL)

* A novel learning paradigm
known for improving the
accuracy and robustness of
Graph Convolutional
Networks (GCNSs) for
recommendation systems.




Applications > Recommender Systems > SGL

Graph Convolutional
Networks (GCNSs)

* Type of neura

network

used to process data that
Is represented as graphs

« Key idea = aggregate
Information from a node's
neighboring nodes and
then use that aggregated
Information to update the

node's.own

representation.

GCNs can be applied to user-item
Interaction graphs to learn user and
item representations, based on
edge connections.
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https://towardsdatascience.com/understanding-graph-convolutional-networks-for-node-classification-a2bfdb7aba7b

Applications > Recommender Systems > SGL

Classic
recommendation
task using the
original graph

I

Multi-task
learning

!

Self-supervised
contrastive
learning task
using augmented
graphs
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https://arxiv.org/pdf/2010.10783.pdf

Applications > Recommender Systems > SGL

Data augmentation process
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Data augmentation * ND: Randomly drop nodes.
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« RW: The process constructs a new
subgraph by performing a random walk
starfing from a given node.


https://arxiv.org/pdf/2010.10783.pdf

Conclusion

e \We've only scratched the tip of the iceberg — there are many other fields and examples to
consider.

e Contrastive learning is a representation learning tool that aims to discover meaning
representations by contrasting encodings from the same class, and from different classes.

e Contrastive learning can be applied in a self-supervised or a supervised context and there are pros
and cons to each approach.

e Data augmentation is an important aspect of self-supervised contrastive learning.

e Contrastive learning can be applied across several domains.
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