Automated malignant melanoma detection using supervised contrastive learning

forward together sonke siya phambili saam vorentoe

Engineering | EyobuNjineli | Ingenieurswese

Introduction

Stellenbosch UNIVERSITY IVUNIVESITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

This study investigates supervised contrastive learning and diverse encoder architectures for improving melanoma detection classification results.

- Challenges associated with melanoma detection
- Promise of computer-aided melanoma detection
- Favourable ImageNet classification results from 'Supervised Contrastive Learning' paper by Khosla et al. (2020).
- Encoder architectures explored:
 - Vision transformer
 - ResNet50
 - InceptionV3

Problem statement

forward together sonke siya phambili saam vorentoe

- 1. Does supervised contrastive learning outperform traditional image classification models in detecting melanoma?
 - Hypothesis: Supervised contrastive learning has shown great promise in literature, producing state-of-the-art classification performance.
- 2. Do vision transformers yield superior classification performance over CNNs for the task of melanoma detection?
 - Hypothesis : Vision transformers have an enhanced long-range spatial awareness, resulting in impressive performance in recent literature.

Baseline and Supervised Contrastive Learning Methodology

forward together sonke siya phambili saam vorentoe

Supervised Cross Entropy vs Self-supervised CL vs Supervised CL

Engineering | EyobuNjineli | Ingenieurswese

Supervised contrastive learning & the SupCon Loss

Supervised contrastive loss pushes encodings from the same class closer together in the embedding space while pulling apart encodings from different classes.

Supervised contrastive loss function, SupCon:

Supervised contrastive learning & the SupCon Loss

forward together sonke siya phambili saam vorentoe

Supervised contrastive loss pushes encodings from the same class closer together in the embedding space while pulling apart encodings from different classes.

Supervised contrastive loss function, SupCon:

Negate increasingly large values – small loss values, shrinking as representation space improves.

Increasingly large value divided by shrinking values > Increasingly large values

Methodology

•

٠

•

•

Stellenbosch UNIVERSITY IYUNIVERSITHI UNIVERSITEIT

forward together sonke siya phambili saam vorentoe

Class-weighted Phase 1 batching scheme Load pretext task 25% class 'Melanoma' Data processing & weights Projection SupCon head loss augmentation Encoding Combine. 75% class 'Non-Melanoma' Training shuffle, Encoder Pretext training Phase 2 data rescale & augment **Staged training** Binary method cross-MLP entropy loss F_2 prediction threshold

forward together sonke siya phambili saam vorentoe

Summary

1. SupCon vs Baseline across encoders

- 2. Small vs larger batch size
- 3. Relative SupCon performance as batch size increases

Encoder Encoder parameters		VIT 34,276,288			ResNet50 23,564,800		INCEF 21,8	INCEPTIONV3 $21,802,784$	
TRAINING METHOD		BASE	SUPCON	В	ASE	SupCor	N BASE	SUPCON	
Batch size: 16	Threshold AUC Accuracy Recall <i>F</i> 2	$\begin{array}{c} 0.2455 \\ 0.8829 \\ 0.7109 \\ 0.9277 \\ 0.6210 \end{array}$	$\begin{array}{c} 0.2859 \\ 0.8759 \\ 0.7482 \\ 0.8735 \\ 0.6218 \end{array}$	0.3 0.8 0.7 0.8	$2131 \\ 8589 \\ 7728 \\ 8072 \\ 6052$	$\begin{array}{c} 0.2212 \\ 0.8889 \\ 0.7655 \\ 0.8916 \\ 0.6457 \end{array}$	$\begin{array}{c} 0.2212 \\ 0.8792 \\ 0.7568 \\ 0.8735 \\ 0.6288 \end{array}$	$0.2455 \\ 0.8740 \\ 0.6969 \\ 0.9398 \\ 0.6166$	
	Best score Mean score	$\begin{array}{c}2\\0.7856\end{array}$	$\begin{array}{c}2\\0.7798\end{array}$	0.'	1 7610	3 0.7979	$\frac{3}{0.7846}$	$\frac{1}{0.7818}$	
Batch size: 64	THRESHOLD AUC ACCURACY RECALL F_2	$\begin{array}{c} 0.2939 \\ 0.8646 \\ 0.7295 \\ 0.8675 \\ 0.6040 \end{array}$	$\begin{array}{c} 0.1646 \\ 0.7604 \\ 0.5396 \\ 0.9458 \\ 0.5223 \end{array}$	0.2 0.8 0.7 0.7	2455 8681 7688 7952 5951	$\begin{array}{c} 0.2374 \\ 0.8750 \\ 0.6969 \\ 0.9277 \\ 0.6106 \end{array}$	$\begin{array}{c} 0.1889 \\ 0.8703 \\ 0.7022 \\ 0.9036 \\ 0.6024 \end{array}$	$\begin{array}{c} 0.3101 \\ 0.8741 \\ 0.7722 \\ 0.8373 \\ 0.6216 \end{array}$	
	Best score Mean score	$\frac{3}{0.7664}$	$\begin{array}{c}1\\0.6920\end{array}$	0.'	1 7568	$\frac{3}{0.7776}$	$\frac{1}{0.7696}$	$\frac{3}{0.7763}$	

forward together sonke siya phambili saam vorentoe

Summary

SupCon vs Baseline across encoders

- 2. Small vs larger batch size
- 3. Relative SupCon performance as batch size increases

Encoder		VIT			ResNet50		INCEPTIONV3		
Encoder parameters		$34,\!276,\!288$			$23,\!564,\!800$		21	$21,\!802,\!784$	
TRAINING METHOD		BASE	SupCon	В	BASE	SUPCON	BASE	e Sup	Con
BATCH SIZE:	Threshold	0.2455	0.2859	0.	2131	0.2212	0.221	2 0.2	455
16	AUC	0.8829	0.8759	0.	8589	0.8889	0.879	0.8	740
	ACCURACY	0.7109	0.7482	0.	7728	0.7655	0.756	0.6	969
	Recall	0.9277	0.8735	0.	8072	0.8916	0.873	0.9	398
	F_2	0.6210	0.6218	0.	6052	0.6457	0.628	.6 0.6	166
	Best score	2	2		1	3	3	-	1
	MEAN SCORE	0.7856	0.7798	0.	7610	0.7979	0.784	6 0.7	818
BATCH SIZE:	Threshold	0.2939	0.1646	0.	2455	0.2374	0.188	.3 0.3	101
64	AUC	0.8646	0.7604	0.	8681	0.8750	0.870	0.8	741
	ACCURACY	0.7295	0.5396	0.	7688	0.6969	0.702	22 - 0.7	722
	RECALL	0.8675	0.9458	0.	7952	0.9277	0.903	0.8	373
	F_2	0.6040	0.5223	0.	5951	0.6106	0.602	24 0.6	216
	Best score	3	1		1	3	1	ę	3
	MEAN SCORE	0.7664	0.6920	0.	7568	0.7776	0.769	06 0.7	763

forward together sonke siya phambili saam vorentoe

Summary

1. SupCon vs Baseline across encoders

- 2. Small vs larger batch size
- 3. Relative SupCon performance as batch size increases

Encoder Encoder parameters		VIT 34.276.288		$\begin{array}{c} \text{ResNet50} \\ \text{23.564.800} \end{array}$		INCEPTIONV3 21.802.784	
TRAINING METHOD		BASE	SUPCON	BASE	SUPCON	BASE	SUPCON
Batch size: 16	Threshold AUC Accuracy Recall E-	$\begin{array}{c} 0.2455 \\ 0.8829 \\ 0.7109 \\ 0.9277 \\ 0.6210 \end{array}$	$\begin{array}{c} 0.2859 \\ 0.8759 \\ 0.7482 \\ 0.8735 \\ 0.6218 \end{array}$	$\begin{array}{c} 0.2131 \\ 0.8589 \\ 0.7728 \\ 0.8072 \\ 0.6052 \end{array}$	$\begin{array}{c} 0.2212 \\ 0.8889 \\ 0.7655 \\ 0.8916 \\ 0.6457 \end{array}$	$\begin{array}{c} 0.2212 \\ 0.8792 \\ 0.7568 \\ 0.8735 \\ 0.6288 \end{array}$	$\begin{array}{c} 0.2455 \\ 0.8740 \\ 0.6969 \\ 0.9398 \\ 0.6166 \end{array}$
	Best score Mean score	2 0.7856	2 0.7798	1 0.7610	3 0.7979	3 0.7846	1 0.7818
Batch size: 64	THRESHOLD AUC ACCURACY RECALL F_2	$\begin{array}{c} 0.2939 \\ 0.8646 \\ 0.7295 \\ 0.8675 \\ 0.6040 \end{array}$	$\begin{array}{c} 0.1646 \\ 0.7604 \\ 0.5396 \\ 0.9458 \\ 0.5223 \end{array}$	$\begin{array}{c} 0.2455 \\ 0.8681 \\ 0.7688 \\ 0.7952 \\ 0.5951 \end{array}$	$\begin{array}{c} 0.2374 \\ 0.8750 \\ 0.6969 \\ 0.9277 \\ 0.6106 \end{array}$	$\begin{array}{c} 0.1889 \\ 0.8703 \\ 0.7022 \\ 0.9036 \\ 0.6024 \end{array}$	$\begin{array}{c} 0.3101 \\ 0.8741 \\ 0.7722 \\ 0.8373 \\ 0.6216 \end{array}$
	Best score Mean score	$\frac{3}{0.7664}$	$\frac{1}{0.6920}$	$\frac{1}{0.7568}$	$\frac{3}{0.7776}$	$\frac{1}{0.7696}$	$\frac{3}{0.7763}$

forward together sonke siya phambili saam vorentoe

Summary

1. SupCon vs Baseline across encoders

- 2. Small vs larger batch size
- 3. Relative SupCon performance as batch size increases

Encoder		VIT		Res	Net50	INCEPTIONV3		
Encoder parameters		$34,\!276,\!288$		$23,\!564,\!800$		$21,\!802,\!784$		
TRAINING METHOD		BASE	SUPCON	BASE	SupCon	BASE	SupCon	
BATCH SIZE:	Threshold	0.2455	0.2859	0.2131	0.2212	0.2212	0.2455	
16	AUC	0.8829	0.8759	0.8589	0.8889	0.8792	0.8740	
	ACCURACY	0.7109	0.7482	0.7728	0.7655	0.7568	0.6969	
	RECALL	0.9277	0.8735	0.8072	0.8916	0.8735	0.9398	
	F_2	0.6210	0.6218	0.6052	0.6457	0.6288	0.6166	
	Best score	2	2	1	3	3	1	
	Mean score	0.7856	0.7798	0.7610	0.7979	0.7846	0.7818	
BATCH SIZE:	Threshold	0.2939	0.1646	0.2455	0.2374	0.1889	0.3101	
64	AUC	0.8646	0.7604	0.8681	0.8750	0.8703	0.8741	
	Accuracy	0.7295	0.5396	0.7688	0.6969	0.7022	0.7722	
	RECALL	0.8675	0.9458	0.7952	0.9277	0.9036	0.8373	
	F_2	0.6040	0.5223	0.5951	0.6106	0.6024	0.6216	
	Best score	3	1	1	3	1	3	
	Mean score	0.7664	0.6920	0.7568	0.7776	0.7696	0.7763	

Test Results

- AUC: 0.8569
- Accuracy: 0.7055
- Recall: 0.8304
- F2: 0.5717
- Mean score: 0.7411

Problem statement

forward together sonke siya phambili saam vorentoe

- Does supervised contrastive learning outperform traditional image classification models in detecting melanoma?
 - Finding: Supervised contrastive learning does not consistently produce superior melanoma detection performance.
- 2. Do vision transformers yield superior classification performance over CNNs for the task of melanoma detection?
 - Finding : ViT encoders do not necessarily outperform CNN architectures.

forward together sonke siya phambili saam vorentoe

