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4. Reward Function

Aim: Discover non-linear epidemic dynamics directly from data.
Method: Use a modified Monte Carlo Graph Search (MCGS) for Dynamical
Symbolic Regression (DSR).

Motivation (1): Epidemic model discovery

ODE system: % =Xt = f(x¢,0).

We simultaneously learn the functional form of the ODEs, f(x¢,6), and
estimate its parameters, 6. This avoids restrictive assumptions of tradi-
fional models.

Motivation (2): Interpretability

DSR outputs explicit, parsimonious mathematical expressions for ODEs.
Interpretability is key for policymakers who require more than ‘black-box’
reasoning to justify public health decisions.

2. SIR Dynamics

Figure 1. Dynamics of the Susceptible-Infectious-Recovered (SIR) model.
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We leverage system stoichiometry to perform flux discovery as opposed
to full model discovery:

S —1 O 7 —J1
l = |+1 —1| X [j] = |J1— J
R 0 o+ EE |

L= , ,

stoichiometry coupled ODEs

= |[nfection flux, Jy, should learn 8S1.

= Recovery flux, Jo, should learn 1.
= Fluxes |J1, Jo| are learnt simultaneously.

3. Method

= Generated ODEs undergo constant optimisation to minimise
trajectory MSE.

= Estimated trajectories are computed by applying Euler’s integration
method to generated ODEs.

= Reward function evaluates ODEs, balancing parsimony and fit:
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where:

= 1 is a hyperparameter controlling equation parsimony (n < 1).

= ¢ measures equation complexity of the fluxes.

= MSE represents the mean-squared error between true and
estimated trajectories.

= Rewards are also used to update the guaranteed lower bounds (L)
of nodes.

5. Results

= Grammar: Context-free grammar describing valid actions.

= Symbolic graph: Nodes represent partial/complete generated ODEs;
edges represent grammar rules.

= Transposition table: Track existing states to allow merging of identical
states reached via different paths.

= Bounds: Optimistic upper bound U and guaranteed lower bound L.

Select
— Traverse graph using optimistic upper bounds (U).

Ex- Ji=M+MxS, Jh=MxI-C

- N | Transposition |
Expand Table

Generate children from selected node. |
Ex: 1 = M+ (M x M) xS

1 Merge identical
states to reduce
search space.

Y

Rollout
Perform k parallel, random rollouts to complete ODEs.

Ex: J1(1)=C+(C><I)><S, J2(1)=[3—C

Evaluate
\—__| Optimise constants and compute reward (see Block 4).

Ex: Rewards { Ry, Ra, ..., Ry}

Propagate: Update & tighten bounds.

The method successfully reconstructs trajectories given multiple realisa-
fions, even in noisy data settings.
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Figure 2. Trajectory reconstruction: Comparison of true vs. estimated SIR states. Light
lines show the 10 noisy, independently simulated training trajectories, representing
different regions.

The correct terms are largely identified in the top-scoring inferred equa-
tions.
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Figure 3. Equation discovery frequency: The proportion of times different terms appear
In the top 50 equation sets. Green bars indicate the correct ground truth terms for the
infection and recovery flux.
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