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1. Introduction

Aim: Discover non-linear epidemic dynamics directly from data.

Method: Use a modifiedMonte Carlo Graph Search (MCGS) forDynamical

Symbolic Regression (DSR).

Motivation (1): Epidemic model discovery

ODE system: dxt
dt = ẋt = f (xt, θ).

We simultaneously learn the functional form of the ODEs, f (xt, θ), and
estimate its parameters, θ. This avoids restrictive assumptions of tradi-

tional models.

Motivation (2): Interpretability

DSR outputs explicit, parsimonious mathematical expressions for ODEs.

Interpretability is key for policymakers who require more than ‘black-box’

reasoning to justify public health decisions.

2. SIR Dynamics

Figure 1. Dynamics of the Susceptible-Infectious-Recovered (SIR) model.
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Infection flux, J1, should learn βSI .

Recovery flux, J2, should learn γI .

Fluxes [J1, J2] are learnt simultaneously.

3. Method

Grammar: Context-free grammar describing valid actions.

Symbolic graph: Nodes represent partial/complete generated ODEs;

edges represent grammar rules.

Transposition table: Track existing states to allow merging of identical

states reached via different paths.

Bounds: Optimistic upper bound U and guaranteed lower bound L.

Select

Traverse graph using optimistic upper bounds (U ).

Ex: J1 = M + M × S, J2 = M × I − C

Expand

Generate children from selected node.

Ex: J1 → M + (M × M) × S

Rollout

Perform k parallel, random rollouts to complete ODEs.

Ex: J
(1)
1 = C + (C × I) × S, J

(1)
2 = I3 − C

Evaluate

Optimise constants and compute reward (see Block 4).

Ex: Rewards {R1, R2, . . . , Rk}

Transposition

Table

Merge identical

states to reduce

search space.

P
ro
p
a
g
a
te
:
U
p
d
a
te

&
ti
g
h
te
n
b
o
u
n
d
s.

4. Reward Function

Generated ODEs undergo constant optimisation to minimise

trajectory MSE.

Estimated trajectories are computed by applying Euler’s integration

method to generated ODEs.

Reward function evaluates ODEs, balancing parsimony and fit:

R = ηc

1 + MSE
∈ (0, η)

where:

η is a hyperparameter controlling equation parsimony (η < 1).
c measures equation complexity of the fluxes.

MSE represents the mean-squared error between true and

estimated trajectories.

Rewards are also used to update the guaranteed lower bounds (L)

of nodes.

5. Results

The method successfully reconstructs trajectories given multiple realisa-

tions, even in noisy data settings.

Figure 2. Trajectory reconstruction: Comparison of true vs. estimated SIR states. Light

lines show the 10 noisy, independently simulated training trajectories, representing

different regions.

The correct terms are largely identified in the top-scoring inferred equa-

tions.

Figure 3. Equation discovery frequency: The proportion of times different terms appear

in the top 50 equation sets. Green bars indicate the correct ground truth terms for the

infection and recovery flux.
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