
Statistics and Data Science for Text Data

Connie Trojan
Supervised by Dr Jonathan Cumming

April 2021

Declaration

This piece of work is a result of my own work except where it forms an assessment based
on group project work. In the case of a group project, the work has been prepared in
collaboration with other members of the group. Material from the work of others not
involved in the project has been acknowledged and quotations and paraphrases suitably
indicated.

Contents

1 Introduction 1
1.1 Language Modelling . 1
1.2 Definitions . 2
1.3 Key Issues . 3

2 N-Gram Models 5
2.1 Bag-of-Words . 5

2.1.1 Naive Bayes Classifier . 6
2.1.2 Naive Bayes for Sentiment Analysis 8

2.2 Higher Order N-Grams . 10
2.2.1 Maximum Likelihood Estimation . 11
2.2.2 Data Sparsity . 12
2.2.3 Restricting the Vocabulary . 12
2.2.4 Smoothing . 13
2.2.5 Evaluation . 14
2.2.6 Sherlock Holmes Data . 15
2.2.7 Interpolation and Backoff . 17

2.3 Discussion . 18

3 Word Embeddings 19
3.1 Word2Vec . 20
3.2 Logistic Regression . 21
3.3 Stochastic Gradient Descent . 22

3.3.1 Fitting a Logistic Regression with SGD 25
3.3.2 Toy Example . 27

3.4 Logistic Regression for Sentiment Analysis . 29
3.4.1 Comparing Logistic Regression to Naive Bayes 31

3.5 The Skip-Gram Model . 32
3.5.1 Skip-Gram with Negative Sampling 33
3.5.2 Hyperparameters and Training . 34

3.6 Discussion . 37

4 Neural Models 38
4.1 Neural Units . 39
4.2 Feedforward Neural Networks . 41

4.2.1 Categorical Cross-Entropy . 43
4.2.2 Backpropogation . 43
4.2.3 Accelerating Convergence of SGD . 46
4.2.4 Toy Example . 48

4.3 Neural Language Models . 49

4.3.1 Sherlock Holmes Data . 51
4.4 Recurrent Neural Networks . 54
4.5 Discussion . 56

5 Conclusion 57
5.1 Summary . 57
5.2 Further Work . 58

Chapter 1

Introduction

This report will focus on evaluating different approaches to language modelling and pro-
cessing text data. We will start by introducing and motivating the concept of language
modelling, before describing some key definitions and issues in the field. We will also take a
first look at the Sherlock Holmes corpus, which will be used as a running example through-
out this report.

Chapter 2 will introduce n-gram models, a simple class of probabilistic language model.
We will train n-gram models on the Sherlock Holmes corpus and discuss some of their key
weaknesses. Chapter 3 will discuss word embeddings, a tool that helps language models
generalise to unseen data. We will introduce the core building blocks that will allow us
to train word embeddings and later neural language models, before describing skip-gram
with negative sampling and using it to train word embeddings on the Sherlock Holmes
corpus. Finally, Chapter 4 will introduce neural networks and how they can be used for
language modelling. We will discuss how the word embeddings trained in Chapter 3 can be
used to improve performance, demonstrating this by training a neural language model on
the Sherlock Holmes corpus.

1.1 Language Modelling

A language model aims to assign a probability to a sequence of words, based on how likely
they are to be put in that order by a native speaker. It should assign a high probability
to sequences that make sense and follow context-appropriate language rules. This is not
a simple task - we must model the interactions of thousands of words, and what defines a
‘good sentence’ depends heavily on the purpose of our model: if we compare the rules and
vocabularies we would need to learn for a Shakespeare model to those for a Twitter model,
there will be very little overlap despite the fact that both are models for English.

Language models can be used for language generation, since we can generate sentences from
the probability distribution defined by the model. Language generation can be used to gen-
erate captions for images or summaries of tables of data, and to answer questions asked by
humans.

Language models are also useful in any application where we wish to process word sequences:

• A classifier that aims to identify the subject of an article should understand that while
the words white and house are likely to appear individually in a piece about home

1

improvement, the phrase White House is more likely in politics.

• An automatic spellchecker needs to be able to recognise errors, but must also work
out from context which possible corrections match the writer’s intended meaning.

• In machine translation, we need a language model to understand which of many pos-
sible candidate translations is the best fit in the target language. While I to myself

brush the teeth is technically a correct word-for-word translation of the French sen-
tence Je me brosse les dents, a native English speaker is far more likely to say I’m

brushing my teeth.

• In speech recognition, it is helpful to know that an English speaker is more likely to
say the phrase feel the beat from the tambourine than the similar-sounding and
grammatically correct feel the meat on the tangerine - assigning a higher prob-
ability to the latter would result in poor automatically generated subtitles to ABBA’s
‘Dancing Queen’.

1.2 Definitions

Natural language processing (NLP) is an umbrella term for the statistical or compu-
tational analysis of human language. The data type used to represent text is the string,
which is an ordered sequence of characters.

A token is a discrete unit of interest that can be extracted from a string - for example, a
word or a character. Depending on the task we might consider punctuation like sentence
end markers to be tokens, as well as emojis and special characters. The task of splitting a
string into tokens is known as tokenization. The collection of tokens to be used in a task is
called a vocabulary. Tokens not in the vocabulary are typically either ignored or replaced
with a special ‘unknown’ token, <UNK>.

A unit of text will be referred to as a document - examples include a book, an article, a
sentence, a review, or a tweet. A collection of documents is called a corpus.

The training dataset or train data is the corpus to be used for training a model. The
validation dataset is a subset of the training data set aside and used to test a model
with a view to comparing and selecting model hyperparameters. In contrast to the model
parameters, which are treated as variables and are fitted to the training data, hyperpa-
rameters control the form the model takes and how it learns from data. For example,
the number of model parameters can be a hyperparameter. The number of context words
taken into account in an n-gram model (Chapter 2) is another example of a hyperparameter.

The test dataset is the corpus to be used for evaluating how well a model generalises to
unseen data. It is important for this to be disjoint from the data used to train the model or
select hyperparameters, since otherwise we will overestimate the model’s true performance.

A toy dataset is a simple dataset that can serve as an illustrative example. Toy datasets
are typically not expected to be representative of real world datasets in size or complexity.

2

0 2500 5000 7500 10000 12500 15000 17500
Rank

0

2

4

6

8

10

Lo
g

Fr
eq

ue
nc

y

(a) Sorted log frequencies.

0 2 4 6 8 10
Log Rank

0

2

4

6

8

10

12

Lo
g

Fr
eq

ue
nc

y

Zipf's Law

(b) Log frequency against log rank.

Figure 1.1: Word frequencies in Sherlock Holmes.

1.3 Key Issues

One of the main issues in natual language processing is the vocabulary size and the fre-
quency distribution of the words in it: most words appear only rarely, with a small number
of words making up the majority of word counts in the corpus.

To give an example, we will take our corpus to be the collection of public domain Sherlock
Holmes novels and short stories [1–8]. Chapter titles as well as front and back matter were
removed, and the text was converted to lowercase. In total the corpus had around 500 000
words, with a vocabulary size of around 17 500.

The sorted log frequencies are plotted in Figure 1.1a, where we can see that the distribution
is heavily skewed towards the more common words. The most frequent 1% of words in the
vocabulary account for over 60% of the observed words in the corpus, while around half of
words appear once or twice. 35% of the words in the vocabulary appear only once - these
are known as hapax legomena.

In fact, word frequencies in natural languages roughly follow Zipf’s Law [9]: if we count
up the number of times each word in the vocabulary appears in the corpus and sort the list
of words by their frequency, then:

f ∝ 1

r
, (1.1)

where we denote a word’s frequency by f and its rank in the list by r. Taking the log of
both sides, this implies that:

log f = k − log r ,

for some constant k. If we plot the log ranks against the log frequencies as in Figure 1.1b,
we can see that the word counts do roughly follow the predicted distribution with k = e11.

3

This skewed distribution means that we require a large corpus to make inferences about less
common words. Even if we have access to such a corpus, the amount of data can make it
difficult to fit models efficiently, since the number of computations required by many tradi-
tional statistical techniques scales rapidly with dataset size.

It is also possible for the training data for the task at hand to be limited - for example, if our
corpus is the complete works of a dead author, we cannot simply go out and collect more
data. It can also be slow and/or expensive to collect and label data for many applications,
since we are reliant on humans to generate labels for our data. For example, in machine
translation the ‘labels’ required are sentence translations which must be carried out by a
skilled human translator. In these cases the key difficulty is in making the most of smaller
datasets.

4

Chapter 2

N-Gram Models

A simple approach to language modelling would be to collect a large amount of text, and
estimate the probability of each sentence observed by its frequency in the corpus:

P (Sentence) =
Number of times sentence observed in corpus

Total number of sentences in the corpus

However, the number of possible sentences is enormous - far larger than the number of
different sentences in any text corpus we could feasibly gather. This estimate would award
a probability of zero to any sentence not seen in the training corpus, giving us no useful
information about the relative likelihood of previously unseen sentences.

Since our goal is to train a useful probabilistic language model, we must make some simpli-
fying assumptions. This chapter will focus on n-gram models [10], where we assume that
the probability distribution of a word in any given position in a sentence depends only on
the n− 1 previous words in that sentence.

2.1 Bag-of-Words

The simplest n-gram model is the unigram [10], where we simply take n = 1 and assume
that words are decided independently of each other according to a fixed probability distri-
bution. This model is also known as the bag-of-words model, since the order of words in
a sentence is not taken into account when calculating its probability.

Let w be an instance of W , a random variable consisting of a length-m sequence of words
drawn from a vocabulary V . Denote by pi the probability of the ith word in the vocabulary
appearing in any given location in W , and by ni the number of times the ith word appears
in W . Then, under the unigram assumption:

P (W = w)
independence

=

m∏
i=1

P (Wi = wi) =

|V |∏
j=1

p
nj

j . (2.1)

Since the word order is not taken into account in this model, documents can simply be rep-
resented by a list of word frequencies. The list X of word counts for a document of length

5

m can be seen as having a multinomial distribution, X ∼ Multinomial(m, p1, ..., p|V |).

Although the independence assumption made for a unigram model is too strong to model
any dependency between words, it is simple to train and it is informative enough to form
the basis for a surprisingly effective text classifier.

2.1.1 Naive Bayes Classifier

A common task in natural language processing is classification - for example, automatically
deciding if incoming emails are spam, determining whether a review is positive or negative,
or assigning a topic to a document. One simple classifier that can be used for text is the
Naive Bayes classifier [10].

We assume that, given the document class Ck (one of K possible classes), the words in a

document are generated by a unigram model, i.e. X|Ck ∼ Multinomial
(
m, p

(k)
1 , ..., p

(k)
|V |
)
,

where X is the list of word counts (with xi the number of times word i appears) and the

p
(k)
i describe the word distribution of class Ck. The vocabulary V is considered to be shared

between all classes. Then:

P (X = x|Ck) =
m!∏|V |
i=1 xi!

|V |∏
i=1

(p
(k)
i)xi . (2.2)

Although word order, sentences, and grammar are ignored by this assumption, it works well
enough for classification tasks where we expect the vocabulary to differ between classes, since
the presence or absence of certain words is very informative - if we see the word "titration"

in a Wikipedia article it is reasonable to assume that the topic is chemistry, and observing
the word "excellent" in a film review typically indicates that the reviewer enjoyed the film.

We first use maximum likelihood estimation to estimate the p(k) :

p̂
(k)
i =

1

M (k)

∑
D

(j)
k ∈Ck

Count(wi, D
(j)
k) , (2.3)

where M (k) is the total number of words in all documents D
(j)
k observed in class Ck, and

Count(wi, D
(j)
k) is the number of times word wi is observed in document D

(j)
k . Then we can

use Bayes’ theorem to obtain a posterior distribution:

P (Ck|X = x) =
P (X = x|Ck)P (Ck)

P (X = x)
=

P (X = x|Ck)P (Ck)∑K
k=1 P (X = x|Ck)P (Ck)

=

m!∏|V |
i=1 xi!

P (Ck)
∏|V |
i=1(p

(k)
i)xi∑K

k=1
m!∏|V |

i=1 xi!

∏|V |
i=1(p

(k)
i)xiP (Ck)

=
P (Ck)

∏|V |
i=1(p

(k)
i)xi∑K

k=1 P (Ck)
∏|V |
i=1(p

(k)
i)xi

∝ P (Ck)

|V |∏
i=1

(p
(k)
i)xi

estimate≈ p(k)
|V |∏
i=1

(p̂
(k)
i)xi .

6

The prior distribution p(k) can be uniform, or estimated from the relative frequencies of the
classes in the training corpus.

On observing a list of word counts, we predict the document class as the maximum a
posteriori estimate:

ĈMAP = argmax
k

p(k)
|V |∏
i=1

(p̂
(k)
i)xi . (2.4)

We will now examine the binary case k ∈ {0, 1} in more detail. It is easy to derive the de-
cision rule for naive Bayes in this case: given a new observation x∗, we predict that y∗ = 1
if P̂(y∗ = 1|x∗) > P̂(y∗ = 0|x∗). Taking the log of both sides, we see that ĈMAP = 1 if:

log P̂(y∗ = 1|x∗)− log P̂(y∗ = 0|x∗) > 0

Since P̂(y∗ = 1|x∗) = 1 − log P̂(y∗ = 0|x∗), the left hand side is the log odds of y∗ = 1.
Substituting in Eq. 2.4, we find that:

logit(P̂(y∗ = 1|x∗)) = log p(1) +

|V |∑
j=1

x∗j log p̂
(1)
j − log p(0) −

|V |∑
j=1

x∗j log p̂
(0)
j

= log

(
p(1)

p(0)

)
+

|V |∑
j=1

log

(
p̂
(1)
j

p̂
(0)
j

)
x∗j . (2.5)

This is a linear function of the word counts xj , so we can inspect the coefficient log

(
p̂
(1)
j

p̂
(0)
j

)
to

see the impact of observing word wj on the classifier’s decision. For example, if it is positive
then each observation of word wj weights the decision in favour of predicting y∗ = 1. We
will see some examples on real data in the next section.

Naive Bayes is considered to be a generative classifier, since it involves building a model of
how the data is generated: we assume that for each document, the class is first drawn from
a categorical distribution, and the word counts drawn from the corresponding multinomial
distribution.

In the next chapter, we will see an example of a discriminative classifier: the logistic re-
gression, which is considered to be the discriminative counterpart to naive Bayes [11]. This
classifier does not rely on assumptions about the generating distribution of the data, seeking
instead to compute P (Ck|X) directly by optimising for the weights in Eq. 2.5 that give the
best classification performance. Logistic regression is often more effective than naive Bayes
since it does not assume that features are independent.

7

2.1.2 Naive Bayes for Sentiment Analysis

Sentiment analysis is a classification task in natural language processing where the aim is
to determine if a text is positive or negative. We will be looking at the IMDb film review
dataset [12], which consists of 50 000 film reviews labelled with 0 or 1 for negative and pos-
itive reviews respectively. The dataset is split equally into reviews to be used for training
and testing models. The plain text reviews for each dataset were retrieved from TensorFlow
Datasets [13].

A naive approach to the task at hand is to simply look at the word counts in each review.
Looking at Figure 2.1 it is relatively easy to identify which word cloud corresponds to positive
or negative reviews, validating the assumption that we can perform the classification based
on word counts alone. Surprisingly, however, the word good is just as common in negative
reviews as in positive ones - to understand why, it is necessary to take a look at some of the
contexts in which it appears:

"the acting was good but that cannot save lack of story"

"ruining actor’s like Christopher Walken’s good name"

Often, reviewers will complement aspects of the film that they liked even if their overall
opinion is negative - since the unigram assumption takes each word out of context, the clas-
sifier may struggle with this kind of review.

Some data cleaning was necessary before the model was trained - HTML tags like

were removed, as well as numbers and special characters. The reviews were also converted
to lowercase, so that capitalised words at the start of each sentence were not considered
separately from their lowercase versions. Very common words like and and the were also
removed since they are equally common in both classes and hence did not provide much
useful information for classification. Such words are known as stopwords, and they were
removed using the standard stopword list for English provided by the Scikit-learn Python
package [14]. Note that the definition of a stopword may vary depending on the application
- one could argue that words like film and movie count as stopwords in this case. They
did indeed have to be removed to generate the wordclouds in Figure 2.1 since they would

(a) Positive reviews (b) Negative reviews

Figure 2.1: Word clouds for the training reviews.

8

awful terrible bad okay good love great excellent

2

1

0

1

2

Co
ef

fic
ie

nt

(a) The coefficients for some adjectives.

alfred hitchcock did bad job film total
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Co
ef

fic
ie

nt

(b) Decision-making for a sentence.

Figure 2.2

otherwise dominate the figure. However, they were kept in the training data since they have
slightly different connotations.

To limit the number of parameters required by the model, the vocabulary was limited to the
5000 most common words in the training dataset after stop word removal. The Scikit-learn
implementation of naive Bayes with a uniform prior distribution was used.

The trained model had an accuracy of 85.7% on the training data, and 83.4% on the test
data. This is very good, confirming that word counts are an informative summary of the
documents for this problem.

Since naive Bayes is a linear classifier, we can use Eq. 2.5 to calculate the impact of individ-
ual words on the final decision. Figure 2.2a shows some examples: the stronger the word,
the larger the magnitude of its coefficient and its impact on the final decision. For example,
the word good was not very informative in this application and as such has a coefficient
close to zero, while the word awful is strongly negative. We can use this representation to
see how the classifier makes its decisions for each review. For example, take the sentence
"Alfred Hitchcock did a bad job on this film.". After preprocessing and stopword
removal, this becomes "alfred hitchcock did bad job film". The classifier’s weights
for each word are shown in Figure 2.2b, along with the calculated final decision that the
review is positive, obtained by summing the coefficients for each word.

Note that the weights for Alfred and Hitchcock are both positive, with similar magnitudes:
this is because the classifier has observed that reviews for Alfred Hitchcock’s films are likely
to be positive. However, because of the assumption that words occur independently of each
other, it has not taken into account the fact that the words Alfred and Hitchcock are likely
to occur together: 40% of reviews containing the word Alfred also contain Hitchcock. This
causes the classifier to overestimate the probability that reviews mentioning his full name
are positive - if we instead input the sentence "Hitchcock did a bad job on this film",
it is correctly classified as negative.

This issue can be avoided by directly optimising for the weights that give the best prediction
accuracy without making this independence assumption: we will see in Section 3.2 that this
is the case with the logistic regression classifier.

9

2.2 Higher Order N-Grams

Clearly, the bag-of-words model is not a realistic model for language since in practice words
are not independent of each other. For example, in the sentence "The monkeys really

enjoy writing on their typewriters", we must look five words into the past to capture
the dependence of "their" on the plural "monkeys".

To explore this further, the task of computing the joint probability of the full sequence
can be broken up into the product of the conditional probabilities of each word given the
previous words in the sequence. Using the probability chain rule:

P (W = w) = P (W1 = w1)P (W2 = w2|W1 = w1) . . .P (Wi = wi|Wi−1 = wi−1, . . . ,W1 = w1) .

So that we do not have to directly estimate the probability of arbitrarily long sequences of
words, we assume that the full history can be approximated by only the last n− 1 words:

P (Wi = wi|Wi−1 = wi−1, . . . ,W1 = w1) ≈ P
(
Wi = wi|Wi−1 = wi−1, . . . ,Wi−(n−1) = wi−(n−1)

)
.

Under this approximation, the probability of a word sequence becomes:

P (W = w) ≈
m∏
i=1

P
(
Wi = wi|Wi−1 = wi−1, . . . ,Wi−(n−1) = wi−(n−1)

)
. (2.6)

This is a Markov assumption, since we suppose that the probability distribution of the next
word is determined by the n − 1 words before it. This means that sequences generated by
n-gram models are Markov chains of order n− 1.

Note that this expression always depends on a history of length n − 1, even for the first
word in the sequence. To resolve this we insert n − 1 extra padding tokens, <s>, at the
beginning of the sequence. If this is done for each sentence in the dataset, we can model the
probability of a word being the first word in a sentence. It will also be useful to explicitly
model the probability of a word ending a sentence - for this, we also add a sentence end
token, <\s>, to the end of each sentence in the dataset.

For example, in a bigram model, the probability of a word w being the first word of a sen-
tence will be P(w|<s>), and the probability of it being the last is P(<\s>|w), so that:

P (She sells shells.) = P (she|<s>)P (sells|she)P (shells|sells)P (<\s>|shells) .

10

2.2.1 Maximum Likelihood Estimation

We can estimate the probability of an n-gram w1w2 . . . wn by its relative frequency in the
training data. This is the maximum likelihood estimate (MLE):

P̂n(w1 . . . wn) =
Count(w1 . . . wn)

N
, (2.7)

where N is the total number of n-grams observed in the corpus. The conditional probability
of observing wn given the history w1 . . . wn−1 is:

P̂n(wn|w1 . . . wn−1) =
Count(w1 . . . wn)

Count(w1 . . . wn−1)
. (2.8)

The probability of an arbitrarily long sequence of words can then be estimated by substi-
tuting P̂n into Eq. 2.6. For example, take the toy corpus:

"She sells sea shells on the sea shore"

"The shells she sells are sea shells I’m sure"

The observed bigram counts for this corpus are shown in Table 2.1, where row i, column j
contains the number of times the bigram (wi, wj) was observed. Using Eq. 2.8 we estimate,
for example, that P̂2(shells|sea) = 2

3 , and P̂2(shore|sea) = 1
3 .

We can also estimate the probability of an unseen sentence:

P̂2(The shells on the sea shore.) = P̂2(the|<s>)P̂2(shells|the) . . . P̂2(<\s>|shore)

=
1

2
× 1

2
× 1

3
× 1× 1

2
× 1

3
× 1 =

1

72

However, this fails for some sentences since unseen bigrams are given a probability of 0:

P̂2(She sells shells.) =
1

2
× 1× 0× 0 = 0

This is an issue with the sparsity of our dataset - most of the entries in Table 2.1 are 0.

x <s> she sells sea shells on the shore are I’m sure <\s>
<s> 0 1 0 0 0 0 1 0 0 0 0 0
she 0 0 2 0 0 0 0 0 0 0 0 0
sells 0 0 0 1 0 0 0 0 1 0 0 0
sea 0 0 0 0 2 0 0 1 0 0 0 0

shells 0 1 0 0 0 1 0 0 0 1 0 0
on 0 0 0 0 0 0 1 0 0 0 0 0
the 0 0 0 1 1 0 0 0 0 0 0 0

shore 0 0 0 0 0 0 0 0 0 0 0 1
are 0 0 0 1 0 0 0 0 0 0 0 0
I’m 0 0 0 0 0 0 0 0 0 0 1 0
sure 0 0 0 0 0 0 0 0 0 0 0 1
<\s> 0 0 0 0 0 0 0 0 0 0 0 0

Table 2.1: Bigram counts for the toy corpus.

11

2.2.2 Data Sparsity

As n is increased, the model clearly becomes a better fit for real language, as in practice
dependencies can exist between words almost arbitrarily far apart. However, as the order
of the model increases, the total number |V |n of possible n-grams increases exponentially,
and therefore so does the number of parameters required by the model. Here, the model
parameters are the probability estimates for each n-gram.

Many n-grams will have 0 observed counts in the training data, and since nonsensical com-
binations of words in the vocabulary far outnumber sequences that would plausibly be used
by a human, most of them will never occur in any corpus. This problem of having many
more 0 counts than nonzero is known as data sparsity, and can cause problems with fitting
n-gram models since any n-gram with a count of 0 is given 0 probability by the MLE.

The probability estimates for high order n-gram models will have higher variance [15], and
more training data is required to make good estimates. For this reason, bigram and trigram
models are most commonly used in practice, with higher orders used only if there is sufficient
training data available.

The following sections outline some ways of dealing with the data sparsity issue and esti-
mating probabilities for n-grams that do not appear in the training data.

2.2.3 Restricting the Vocabulary

In practice, we may need to limit the vocabulary size of the model to restrict the number of
parameters required. If the model is to be applied to unseen data, it is also likely that it will
come across words that do not appear in the training data, known as out of vocabulary
(OOV) words.

In some tasks, we will have a list of all possible words that can appear - for example,
a machine translation system where candidate translations can only contain words in the
translation dictionary. This situation is known as a closed vocabulary system. In this
case, we can discard words from the training data that cannot appear when the model is in
use, replacing them with the unknown word token <UNK>, which is then treated as a normal
word when training the model.

If we don’t already have a fixed vocabulary for the task at hand, we can create such a
vocabulary from the training data - by either choosing a fixed vocab size |V | and taking the
|V | most common words as the vocabulary, or by fixing a minimum frequency and including
only words with counts above this threshold. It is common to remove words occurring only
once in the corpus - this will greatly reduce the size of the parameter space, with minimal
impact on model quality. Words outside of this new vocabulary can be replaced by <UNK>

as before and if OOV words are encountered when the model is in use, they can be dealt
with in the same way.

Numbers are a potential source of a large number of unique tokens in the text - after all,
there are infinitely many of them. The values of the numbers themselves will not contain
much information for the purposes of language modelling, so a separate <NUMBER> token can
be employed to replace numbers, reducing the vocabulary size further.

12

Notice also that the way in which numbers are used in the text can depend on their length
- for example, the ideal model should decide that:

P("November 1965") > P("November 15.3"),
and also:

P("the 1965th of November") < P("the 18th of November").

Replacing each digit of a number with a symbol (e.g. "1965" becomes "####", "15.3"

becomes "##.#") would still reduce the vocabulary size without discarding much important
information. This trick is useful in word models for translation [16], as it provides enough
information to make decisions about word choice and order, and the original number can
easily be substituted back into the final translation.

2.2.4 Smoothing

A key issue with the maximum likelihood estimates for n-gram probabilities is that a prob-
ability of 0 is given to any unseen n-gram. We want our model to make good probability
estimates for previously unseen sentences, but sparse data is an issue even for low order
n-grams.

A very simple solution is to add one to all counts so that no n-gram is given zero probabil-
ity. This is known as add-one or Laplace smoothing, and corresponds to the Bayesian
estimate derived using a uniform prior over all n-grams [9].

P̂Laplace(w1 . . . wn) =
Count(w1 . . . wn) + 1

N + |V |n (2.9)

P̂Laplace(wn|w1 . . . wn−1) =
Count(w1 . . . wn) + 1

Count(w1 . . . wn−1) + |V |

The addition of |V |n or |V | in the denominator ensures that the result is still a valid prob-
ability distribution, since if we sum over all possible n-grams or continuations we should
get 1. In practice, Laplace smoothing does not produce reasonable estimates [17] - it makes
quite a large change to the estimated probabilities of the n-grams we did observe, giving
far too much probability mass to unseen n-grams. This is again due to data sparsity - for
a large vocabulary, plausible n-grams make up a tiny proportion of the set of all possible
n-grams.

To resolve this, we simply add a number smaller than one to each count. This is known as
add-α smoothing (or add-k/add-λ), and our estimates become:

P̂add-α(w1 . . . wn) =
Count(w1 . . . wn) + α

N + α|V |n , (2.10)

P̂add-α(wn|w1 . . . wn−1) =
Count(w1 . . . wn) + α

Count(w1 . . . wn−1) + α|V | .

This can be seen as a linear interpolation between the MLE and a uniform prior:

13

P̂add-α(w1 . . . wn) =
N

N + α|V |n
Count(w1 . . . wn)

N
+

(
1− N

N + α|V |n
)

1

|V |n

= µ P̂n(w1 . . . wn) + (1− µ)
1

|V |n , where µ ∈ [0, 1]. (2.11)

A good value for α can be found by cross-validation. A common choice is 0.5, known as the
Jeffreys-Perks law [9].

2.2.5 Evaluation

While language models can be compared by computing the probability given to a test
dataset, this probability is often difficult to interpret since it depends on the size of the
dataset used - larger datasets will be given a smaller probability. It will also be also very
small - even a short sentence can have a probability less than 10−20, and the probability of
a large dataset is often small enough to be indistinguishable from zero to a computer.

For these reasons, the model Perplexity, PP(w), on dataset w is often used in practice:

PP(w) = (P̂(w1 . . . wN))−
1
N = N

√
1

P̂(w1 . . . wN)
∈ [1,∞] . (2.12)

The smaller the perplexity, the better the model - for a ‘perfect’ model giving the dataset
a probability of 1 the perplexity will be 1, while a model that gives zero probability to the
data will have infinite perplexity. The ‘worst reasonable case’ scenario [15] is PP(w) = |V |,
since this is the perplexity of the uniform model P̂Unif defined by giving equal probability
to each word:

(P̂Unif(w1 . . . wN))−
1
N = N

√√√√ N∏
i=1

(
1

|V |

)−1
= N

√
|V |N = |V | . (2.13)

For an n-gram model, the perplexity has the form:

PP(w) =

(
N∏
i=1

P̂(wi|wi−n+1 . . . wi−1)

)− 1
N

(2.14)

= exp

{
− 1

N

N∑
i=1

log P̂(wi|wi−n+1 . . . wi−1)

}
, (2.15)

where N is the total number of words in the training corpus, including sentence end tokens.
Since the individual probabilities are very small and N is typically large, the product in Eq.
2.14 will be often be rounded to zero by computers, resulting in PP(w) being undefined.
To avoid this, the perplexity is computed in practice using the log probabilities as in Eq. 2.15.

14

10 5 10 4 10 3 10 2 10 1

Alpha (log scale)

0

1000

2000

3000

4000

5000

Av
er

ag
e

va
lid

at
io

n
pe

rp
le

xi
ty

n = 1
n = 2
n = 3
n = 4

Figure 2.3: Cross-validation for α.

2.2.6 Sherlock Holmes Data

We will now apply these techniques to the Sherlock Holmes corpus introduced in Section
1.3. To simplify the task and reduce the vocabulary, all punctuation was removed, splitting
contractions like “I’ve” and “he’s” into two words instead of treating them as distinct words.
Capitalisation was also removed and digits of numbers replaced with a # token. The dataset
was split into test and train datasets, with a randomly sampled 75% of the sentences used
for training. The vocabulary was created from the training dataset, with words mapped to
the <UNK> token if they appeared only once.

To train the models with add-α smoothing, the best value for α for each n-gram model was
found by 5-fold cross validation [18]: the training data was split into 5 groups of equal
size, and each group was in turn used as a validation dataset, with the other 4 used to create
the vocabulary and train the model. The perplexity of the resulting model on the validation
dataset was then computed. This was repeated for a range of values of α in a multiplicative
grid of resolution 10−

1
3 , i.e. in the set {α = 10−i/3 | i ∈ {1, . . . , 16}}, and the value with the

lowest average validation perplexity was chosen. This value was on the boundary of the grid
for the unigram model, and on investigation the best value for α in this case was 0. The
average validation perplexity for each choice of α and n is plotted in Figure 2.3.

The full training dataset was then used to train the language models. The perplexity on
the test and train datasets for the MLE and smoothed n-gram models is reported in Table
2.2. The test perplexity for the MLE models with n ≥ 2 was infinite, since the test dataset
contained unseen n-grams which were given a probability of 0. This was not an issue for
the unigram model, since unseen words were mapped to the <UNK> token and hence were
not given 0 probability. This is likely the reason why the unigram model did not require
smoothing, a technique designed to combat the issue of 0 probability n-grams.

The smoothed bigram model achieved the lowest test perplexity - while increasing n further
decreased the train perplexity, the resulting model generalised poorly to the test data. This
is an example of overfitting - the probability estimates for unseen n-grams are not very
good, and for large n there was insufficient training data to ensure that the model had seen
the n-grams in the test data.

15

n α Train perplexity Test perplexity

1 0 511 474

2 0 58 -
2 0.005 81 237

3 0 8 -
3 0.002 29 942

4 0 3 -
4 0.001 14 2737

Table 2.2: Perplexities on the test and train datasets for n-gram models with add-α
smoothing.

n α Example generated sentence

1 0 Soames the having a there but with of the were.

2 0 What are natural else will understand having his bearing expression as he muttered.

2 0.005 If there was like an authoritative calculation cliffs begged electric robberies room.

3 0 Well though somewhat crippled by occasional attacks of energy that he shall.

3 0.002 I fear fight matter short months persisted arrange groove swung grandeur...

4 0 Can you not tell when a warning is for your own sake.

4 0.001 No thank listened climbed sometimes distracting cast learns passed terrace...

Table 2.3: Examples of sentences generated by the n-gram models. Capitalisation and full
stops were added by hand, with ellipses indicating a sentence too long to be displayed.

We can gain some intuition for how the models view language by using them to generate
sentences. This is done by starting with n− 1 padding tokens and sampling words from the
n-gram conditional distribution until a sentence end token is generated. Table 2.3 shows
some examples of generated sentences for different models. The sentences generated from
MLE models appear to get better as n is increased, however on inspection it is clear that
they are simply quoting parts of the training data - for example, the sentence "Can you not

tell when a warning is for your own good." appears in the dataset. This is because
many histories are observed only once or twice in the training data and hence only have one
or two observed continuations.

This was not a problem with the smoothed models, however the smoothed 3- and 4-gram
models typically generated worse sentences than even the unigram model, since words fol-
lowing an unseen history were generated from a uniform distribution. This is why the test
perplexities for the smoothed 3- and 4-gram models were actually worse than that of the
unigram model. Because of this issue, the smoothed 3- and 4-gram models also consistently
underestimated the probability of a sentence end token and their generated sentences were
very long.

Smoothing solves the issue of zero probability n-grams, but awards the same probability to
each unseen n-gram - the following section describes some more sophisticated approaches
that can make judgements about which unseen n-grams are most likely.

16

2.2.7 Interpolation and Backoff

Interpolation and backoff both aim to use information from lower order n-grams to improve
the model, since probability estimates for lower order n-gram are more robust.

Interpolation (or Jelinek-Mercer smoothing) [19] constructs the interpolated language

model, P̂
(n)
li , by fitting several MLE n-gram models Pn of different orders (for example,

n=1,2,3) and taking a linear combination of them:

P̂
(3)
li (w3|w1, w2) = λ1 P̂1(w3) + λ2 P̂2(w3|w2) + λ3 P̂3(w3|w1, w2) , (2.16)

subject to:
3∑
i=1

λi = 1 ,

0 ≤ λi ≤ 1 ∀ i ∈ {1, 2, 3} .

For general n, we can formulate the above recursively as a linear interpolation between the
MLE and the order n− 1 interpolated model:

P̂
(n)
li (wi|wi−n+1...wi−1) = λnP̂n(wi|wi−n+1...wi−1) + (1− λn)P̂

(n−1)
li (wi|wi−n+2...wi−1) ,

where λi ∈ [0, 1] ∀i ∈ {0, . . . , n} and the recursion ends with either the unigram model P̂1

or the uniform model P̂0. Defined this way, we can see add-α smoothing as a special case of
the interpolated language model where λi = 0 ∀i /∈ {0, n}, since it is a linear interpolation
between the MLE and the uniform model.

A numerical optimisation method on a held-out corpus can be used to fit the weights λi -
the n-gram probabilities are estimated using a subset of the training data, and the λi are
chosen to maximise the likelihood of the remaining held-out data.

Backoff is another way of incorporating information from lower order n-gram models - if the
n-gram we observe appears infrequently or not at all in the training data, we can approxi-
mate it by backing off to the (n−1)-gram. In order to create a valid probability distribution,
we must also discount the higher order n-grams to reserve some probability mass for the
backoff models.

This method is known as Katz backoff or Katz smoothing [20]. We rely on the discounted
n-gram probability if the n-gram has been observed more than k times (typically, 0 or 1),
else we back off recursively to the (n− 1)-gram Katz model.

P̂
(n)
BO(wi|wi−n+1...wi−1) =

(1− dn(w(i−n+1):(i−1))) P̂n(w(i−n+1):i) if Count(w(i−n+1):i) > k

αn(w(i−n+1):(i−1)) P̂
(n−1)
BO (wi|wi−n+2...wi−1) otherwise

(2.17)

17

Here, d represents the discounting function and α the normalising factor that distributes
the remaining probability mass over the lower order n-grams. The discounting function de-
pends on the history, wi−n+1...wi−1. This is because our confidence in the estimated n-gram
probability might depend on how frequently we have observed this history - if the history
appeared infrequently in the training data, we may have only seen a small fraction of the
possible continuations wi.

Both interpolation and backoff perform much better than add-α smoothing, which is typ-
ically only competitive for very large datasets. Generally, interpolation performs better
than backoff for small or sparse datasets since it produces better estimates for rare n-grams
[21]. Intuitively, this is because it always uses all of the lower order probability estimates,
while backoff uses only one. Because of this, interpolation gives more probability mass to
rare n-grams than backoff - this can be an issue for larger datasets, where the higher order
n-gram estimates are more robust and do not require as much correction. Indeed, backoff
tends to outperform interpolation on large datasets, since it produces better estimates for
more frequent n-grams.

2.3 Discussion

A key issue with n-gram models is that they have a very short memory - even with the
methods described to make higher order models practically feasible, we can still only model
dependence on a few preceding words, with trigrams most often used in practice. This is
because the number of parameters required increases exponentially with the order of the
model, while the data becomes increasingly sparse.

One way of tackling this sparsity issue is to capitalise on word similarities - instead of looking
at each word separately, we can gain insight by also considering other words with similar
meanings. In the next chapter we will look at word embeddings, which use this idea to
produce lower-dimensional, more informative representations of words.

The current state-of-the-art models for language are neural networks, which can take much
longer contexts into account since they use word embeddings to represent prior context.
This reduces the number of parameters required and allows them to better generalise to
unseen sentences. It is also possible to design neural networks which do not have to rely on
the n-gram Markov assumption and can take arbitrarily long contexts into account.

18

Chapter 3

Word Embeddings

As we have seen, large vocabularies and their frequency distributions can cause problems
with language models, due to data sparsity and the difficulty of handling rare words. It
would be useful to build a model that can take advantage of word similarity and infer infor-
mation about a particular word from what it knows about words with similar meanings.

For example, if we are trying to predict the next word in the sentence:

For dinner, we will be eating ... ,

it would be useful for our model to understand that words like spaghetti and soup are
equally likely to follow since they are both food items, even if one of them did not appear in
this context in the training data. To do this, we need to consider how words are represented
in the model - in an n-gram model, for example, the vocabulary is seen as an unordered
list of words, with each word assigned to an index in the vocabulary. This is a simple way
of storing information about words, but the representation is not meaningful - each word is
treated as completely distinct from all other words.

A more meaningful way of representing words is via word embeddings [22]: we map
words to vectors in Rd, designing the map so that words with similar meanings are mapped
to word vectors that are close together. These vectors will be low dimensional compared to
the vocabulary size and will also be dense. Typically, the cosine similarity metric is used
to determine vector similarity: this is simply the cosine of the angle between the vectors,
computed as:

cosine(x,y) =
x · y
|x||y| . (3.1)

Word vectors typically use the distributional hypothesis [10] to define word similarity,
making the assumption that words with similar meanings appear in similar contexts. Word
embeddings can then be obtained by training a classifier to make predictions related to con-
text words, such as predicting a hidden word from its context in a sentence in the training
data. We expect coordinates of the resulting vectors to reflect different aspects of word
meaning: for example, we might expect there to be coordinates corresponding to verb tense
or noun gender. In practice, these concepts might not be represented by a single coordinate,
but by directions in the vector space [23]. For example, it is often possible to find some
‘past tense’ vector, so that we can map present tense verbs to their past tense versions by
translation, resulting in vector equations like: eat + <PAST TENSE> = ate.

19

3.1 Word2Vec

It is not immediately obvious how to train an embedding map - how would a candidate map’s
accuracy be evaluated for each word without already having access to a thesaurus with ex-
haustive entries for every word? It would be ideal to learn embeddings in an unsupervised
or self-supervised manner. One way of doing this is to train a model for some classification
task that is easy to evaluate and that benefits from embeddings with the desired properties.
If an embedding step is incorporated in the model and the vectors are treated as trainable
parameters, we can obtain the embeddings when we train the model.

The Word2Vec family [24] contains two such model architectures: continuous bag-of-
words (CBOW) and skip-gram. The CBOW model takes a window of context words as
an input and attempts to predict the hidden target word, while Skip-gram predicts context
words given the target word. For example, take the sentence:

She sells sea shells on the sea shore.

In CBOW, given the context window "She <?> sea shells", the classifier must predict
the probability of observing words in place of <?> based on the embeddings for she, sea,
and shells. The order of the context words is not taken into account and the average of
the embedding vectors is input to a classifier. In this case, the model should give sells a
high probability and we would expect it to consider similar words like buys to be likely as
well.

In skip-gram, however, we input the embedding of the word sells to a classifier and predict
the probabilities of observing possible context words - here, she and shells are examples
of true context words, but other words like he and apples might also be given a high prob-
ability since they are also likely to appear near sells.

Both CBOW and skip-gram can be seen as classification problems, where the set of possible
‘classes’ is the vocabulary V . Generally, skip-gram performs better than CBOW for rare
words or small datasets, but takes longer to train. We will focus on the skip-gram model and
how it can be simplified to skip-gram with negative sampling [25] to be trained more
efficiently. To do this, we will first have to introduce the logistic regression, a classifier
that models the probability that its input belongs to a particular class.

We will start by examining the binary logistic regression in detail, since it is also a
key building block of the neural network models we will encounter in Chapter 4. We will
introduce the stochastic gradient descent (SGD) algorithm in the context of fitting this
model - SGD is an efficient method for fitting models to large datasets, and will be used to
train the skip-gram embeddings and the neural language models we will encounter later.

20

3.2 Logistic Regression

Logistic regression [18] is a classifier that models the probability that some observation
x(i) ∈ Rd belongs to a class k ∈ K. It is the discriminative counterpart to naive Bayes
(Section 2.1.1), so called because it models the class probability directly instead of making
assumptions about the generating distribution of the data. In this section, we will focus on
the binary case, where K = {0, 1}. This was the case in the sentiment analysis task we
encountered in Section 2.1.2, where each x(i) was a list of word counts, and in Section 3.4.1
we will see how logistic regression compares to naive Bayes on this task.

To model the probability that some observation x(i) belongs to class 1, a linear expression
b+wTx(i) is passed into the sigmoid function, σ, also known as the logistic function:

σ(z) =
1

1 + e−z
. (3.2)

The graph of σ is shown in Figure 3.1. It takes inputs in (−∞,∞) and outputs values in
(0, 1), allowing us to model the probabilities of an observation x(i) ∈ Rd belonging to class
0 or 1 as follows:

P
(
y(i) = 1 |x(i)

)
= σ(b+wTx(i)) =

1

1 + e− (b+wTx(i))
, (3.3)

P
(
y(i) = 0 |x(i)

)
= 1− σ(b+wTx(i)) =

e− (b+wTx(i))

1 + e− (b+wTx(i))
.

Here, b ∈ R is usually called the bias term, and w = (w1, . . . , wd)
T ∈ Rd is a list of weights

for each element x
(i)
j of the input. We will refer to the estimated probability P

(
y(i) = 1 |x(i)

)
as p̂i for simplicity. Generally speaking, we will predict a label of 1 for observation x(i) if
p̂i > 0.5, although a different threshold can be used for more or less conservative predictions.

4 2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

Figure 3.1: The sigmoid function.

21

Eq. 3.3 can be rearranged as follows to find that, like naive Bayes, the logistic regression
model produces log-odds that are linear in x [26]:

p̂i
1− p̂i

= e b+w
Tx(i)

=⇒ log

(
p̂i

1− p̂i

)
= b+wTx(i) .

Logistic regression models are typically fitted using maximum likelihood estimation. Since
there are two discrete outcomes, each observation has a Bernoulli distribution:

`(y(i), b,w) = P
(
y(i)|p̂i

)
= p̂i

y(i)(1− p̂i)1−y
(i)

=

{
p̂i if y(i) = 1

1− p̂i if y(i) = 0
.

Assuming observations are independent, the log likelihood for N observations is:

L(b,w) =
N∑
i=1

L(y(i), b,w) =
N∑
i=1

y(i) log p̂i + (1− y(i)) log(1− p̂i) . (3.4)

Note that since the p̂i are functions of the x(i), the success probability is in general not con-
stant, so fitting the model is more complicated than simply fitting a binomial distribution
to the data.

As we will see in Section 3.3.1, the log likelihood function is concave, so any solution to the
score equations will be its unique maximum. This can be found using the Newton-Rhapson
algorithm [18]. However, this requires calculating both the gradient and Hessian matrix of
the log likelihood at each iteration, which involves a calculation over every observation in
the dataset. Computing and inverting the Hessian is also particularly costly when the data
is high-dimensional, since its size scales quadratically with the number of features. This is
problematic in natural language processing, where datasets are usually both very large and
very high-dimensional.

In the next section we will look at stochastic gradient descent, an optimisation method
which is computationally efficient for large datasets since it only requires an estimate of the
gradient at each iteration.

3.3 Stochastic Gradient Descent

Gradient descent [27] aims to find the parameters θ ∈ Rd that minimise an objective
function L(θ) by repeatedly updating θ in the opposite direction to the gradient of L. The
intuition behind this is that if we visualise the loss function as a multidimensional surface,
its lowest point can be found by taking successive small steps ‘downhill’. Since ∇L(θ) is
the direction of steepest increase of L at our current location in Rd, we can decrease L by
taking a step in the opposite direction. Figure 3.2 gives an example of how this looks in
the one-dimensional case θ ∈ R. Note the effect of changing the learning rate - if it is too
small then convergence will be very slow, if too large then we will overshoot the minimum
at θ = 0, and in this case the algorithm will diverge if η > 1.

22

Algorithm 1: Gradient Descent

Require: learning rate η;
Initialise θ0;
for t = 1, 2, . . . do

θt ← θt−1 − η∇L(θt);
end

This works very well when the function is convex since there are no suboptimal local minima
to get stuck in, so with an appropriate learning rate gradient descent is guaranteed to find
the global minimum (if it exists). In general, as long as the function’s derivative is well-
behaved and the learning rate is small enough, gradient descent will always converge to a
local minimum [28].

3 2 1 0 1 2 3
0

2

4

6

8

10

12

(a) η = 0.1

3 2 1 0 1 2 3
0

2

4

6

8

10

12

(b) η = 0.25

3 2 1 0 1 2 3
0

2

4

6

8

10

12

(c) η = 0.75

6 4 2 0 2 4 6
0

5

10

15

20

25

30

35

(d) η = 1.05

Figure 3.2: Using gradient descent with 5 iterations to find the minimum of y = x2.

Since only the first derivative of L is required, the computational cost per iteration is lower
than in a second order method like Newton-Rhapson, although more iterations may be re-
quired for convergence. However, when fitting a statistical model, computing this gradient
requires a calculation over the whole dataset, which can be very slow for large datasets. A
more efficient method is stochastic gradient descent (SGD) [29], which takes a random
sample of the dataset at each iteration to estimate the gradient.

We will assume that the objective function takes the form:

L(θ) =
1

N

N∑
i=1

L(θ;x(i), y(i)) . (3.5)

23

L is typically called a loss function, and L(θ;x(i), y(i)) is a measure of how far away the
model’s prediction is from the true label y(i) for observation i. Minimising an objective
function of the form in Eq. 3.5 is equivalent to minimising the expected loss of a sample
drawn at random from our dataset. Crucially, this should also approximately minimise the
expected loss of an unseen sample drawn from the same distribution as our dataset [30].

Note that the gradient of L(θ) has the form:

∇L(θ) =
1

N

N∑
i=1

∇θL(θ;x(i), y(i)) ,

so ∇L(θ) is the mean of the gradients of the loss function for each observation in the dataset.
This means that we can cheaply compute an unbiased estimate of the full gradient by taking
a random sample b of size m < N from the data and calculating the sample mean of the
∇θL(θ;x, y) :

∇L(θ) ≈ 1

m

∑
x,y ∈ b

∇θL(θ;x, y) .

Stochastic gradient descent computes this estimate instead of the true gradient to update θ
at each iteration.

Algorithm 2: Stochastic Gradient Descent

Require: sample size m < N , step size sequence ηt;
Initialise θ0;
for t = 1, 2, . . . do

bt ← random sample from the dataset of size m;
gt ← 1

m

∑
x,y∈bt ∇θL(θt−1;x, y);

θt ← θt−1 − ηtgt;
end

Note that this defines a random walk in Rd. Subject to some regularity conditions on the loss
function, SGD will converge almost surely [31] to a local minimum for step size sequences
satisfying:

∞∑
t=1

ηt = ∞ ,
∞∑
t=1

η2t < ∞ . (3.6)

The intuition behind these requirements is that the first is necessary to ensure we reach
the optimum no matter how far away the initial parameter values are, while the second is
required for convergence since it implies lim t→∞ ηt = 0 .

In practice, it can be difficult to find a step size schedule satisfying Eq. 3.6 for which con-
vergence is fast. It is convenient to instead use a small fixed step size η. Since the gradient
estimate is noisy the walk is no longer guaranteed to converge to an exact local minimum,
but will spend an increasing amount of time in regions where L has a small gradient [30].

24

We typically generate the samples in SGD by taking a random partition of the data and
using each minibatch in the partition in turn to update θ. The process is then restarted
with another random partition.

Algorithm 3: Minibatch Stochastic Gradient Descent

Require: minibatch size m < N , step size η, number of training epochs E;
Initialise θ0;
t← 1;
for epoch e ∈ {1, 2, . . . , E} do
B ← random partition of the data into minibatches of size m;
for minibatch b ∈ B do

gt ← 1
m

∑
x,y∈b∇θL(θt−1;x, y);

θt ← θt−1 − ηgt;
t← t+ 1;

end

end

The time taken for convergence is typically measured in the number of these training
epochs (or passes through the dataset) used rather than the number of updates, since the
number of calculations required for each epoch is roughly the same for any minibatch size.

Information from previous steps can be used to speed up convergence, for example by adding
a momentum term −γ (θt−1 − θt−2), γ ∈ (0, 1) at each iteration.

3.3.1 Fitting a Logistic Regression with SGD

For notational convenience in the calculations below, we will concatenate b and w into a
single column vector, β = (b,w) ∈ Rd+1 and use X to refer to the design matrix with rows
Xi = (1, (x(i))T) ∈ Rd+1, so that b+wTx(i) = Xi β, and Xij = (1, (x(i))T)j .

To fit a logistic regression, we will use the negative log likelihood or log loss. This is known
more generally as the cross-entropy loss LCE , since it is also the formula for the cross-
entropy between the true probability distribution and our estimation p̂i [10].

LCE(β;x(i), y(i)) = −L(y(i),β) = −y(i) log(p̂i)− (1− y(i)) log(1− p̂i) . (3.7)

We will define the objective function as the average loss per sample:

LCE(β) =
1

N

N∑
i=1

LCE(β;x(i), y(i)) = − 1

N
L(β) . (3.8)

Since we have simply multiplied by the constant 1
N and changed the sign to turn the max-

imisation problem into a minimisation problem, using SGD will be equivalent to maximising
the likelihood of the dataset.

25

The formula for the log likelihood of each observation can be rearranged as follows:

L(yi,β)
3.4
= yi log(p̂i) + (1− yi) log(1− p̂i)

= yi log
1

1 + e−Xiβ
+ (1− yi) log

e−Xiβ

1 + e−Xiβ

= −yi log(1 + e−Xiβ) + (1− yi)
(

log(e−Xiβ)− log(1 + e−Xiβ)
)

= (1− yi) log(e−Xiβ)− log(1 + e−Xiβ)

= −(1− yi)Xi β − log(1 + e−Xiβ) .

Taking the partial derivative of −L(yi) with respect to βj ,

− ∂

∂βj
L(yi) = Xij (1− yi)−Xij

e−Xiβ

1 + e−Xiβ
= Xij (1− yi − (1− p̂i))

= Xij (p̂i − yi) . (3.9)

Hence the gradient of LCE(β) is:

∇LCE(β) =
1

N

N∑
i=1

(p̂i − yi)XT
i . (3.10)

To prove that LCE is a convex function, it is enough to show that the Hessian matrix
∇2LCE(β) is positive semidefinite. To calculate the Hessian, we must partially differentiate
once more:

− ∂2

∂βj∂βk
L(yi)

3.9
=

∂

∂βk
Xij

(
1

1 + eXiβ
− yi

)
= Xij Xik

eXiβ

(1 + eXiβ)2

= Xij Xik
1

1 + eXiβ

eXiβ

1 + eXiβ
= Xij Xik p̂i (1− p̂i)

= p̂i (1− p̂i)
[
XiX

T
i

]
jk
.

Hence, the Hessian matrix is:

∇2LCE(β) =
1

N

N∑
i=1

p̂i (1− p̂i)XT
i Xi . (3.11)

26

Note that ∀β ∈ Rd+1, 0 ≤ p̂i ≤ 1, so 0 ≤ p̂i (1 − p̂i). Also, since ∀a ∈ Rd+1 we have
aTXT

i Xia = (aTXT
i)(aTXT

i)T = (aTXT
i)2 ≥ 0, each matrix XT

i Xi is positive semidefinite.
Hence ∇2LCE(β) is also positive semidefinite ∀β ∈ Rd+1 (since by Eq. 3.11 it is a sum of
positive semidefinite matrices), and the loss function is convex as claimed. Note that this
also implies that the log likelihood is concave, since LCE(β) = − 1

NL(β). This means that
the log likelihood can have at most one stationary point and logistic regression will have a
unique MLE for β (as long as the MLE exists), as claimed.

3.3.2 Toy Example

A toy dataset was generated by sampling 1000 x(i) from Uniform(0,1). The y(i) were then
drawn from a Bernoulli distribution with parameter σ(1 + x(i)), so that the ‘true’ logistic
regression parameter is β = (1, 1)T . Figure 3.3 shows a scatter plot of this dataset alongside
the true underlying logistic model.

Since the parameter space is two-dimensional, we can easily visualise the loss function with
a contour plot, as seen in Figure 3.4 where the path taken by SGD is also plotted. Note the
effect of changing the minibatch size m - with smaller samples the gradient estimates have
a higher variance, but many more iterations can be done in the same amount of time. This
high variance can be an advantage when the loss function is not convex - the more erratic
behaviour of the walk can help it to escape suboptimal local minima and saddle points
[32]. In practice, good values for m are typically in the range 32-256 - large minibatch sizes
are practical if parallel computing is available, since the calculations for each member of
the minibatch can be carried out independently of each other. Having m be a power of two
can improve runtime [33] since this allows the minibatch to fit neatly into computer memory.

In this example, the loss function’s slope at the starting point is a lot steeper in the β2
direction, which is why SGD moves sharply upwards to start with, before slowly moving
across to the best value for β1. This is because β2 is the coefficient for x and β1 is the bias
term - starting from β1 = β2 = 0, changing β2 has a far bigger impact on the classifier’s
performance than changing β1, since if β2 = 0 the classifier’s output is a constant.

10.0 7.5 5.0 2.5 0.0 2.5 5.0 7.5 10.0
x

0.0

0.2

0.4

0.6

0.8

1.0

y

Figure 3.3: Scatter plot of simulated data, with σ(1 + x(i)) plotted in blue.

27

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) m = 50

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) m = 1

Figure 3.4: Contour plot of the log loss for the toy example, with the path taken by SGD
over 5 training epochs plotted in black. Start and endpoints marked in red.

28

3.4 Logistic Regression for Sentiment Analysis

We will revisit the sentiment analysis task seen in Section 2.1.2, training a logistic regres-
sion classifier to distinguish between positive and negative film reviews given a list of word
counts for each review. The dataset was preprocessed in the same way as before, so that
the logistic regression was trained and tested on the same data as the naive Bayes classifier.

The model was fitted with SGD initialised at β = 0, using a minibatch size of 50 (0.27%
of the training data). The learning rate was chosen by randomly splitting the training data
into new training and validation datasets, with 25% of the original training data used for
validation. The learning rate with the lowest validation loss after 50 epochs of training was
found by a grid search [33] on a multiplicative grid of resolution 10−

1
3 : values for the

learning rate η in the set {η = 10−i/3 | i ∈ {0, . . . , 10}} were tested. The best learning rate
η = 0.02 was in the middle of this grid.

This learning rate was then used to train a model for 50 epochs on the full training dataset.
Figure 3.5 shows how the loss and accuracy on the test and train datasets changes during
training. The loss and accuracy improved rapidly to start with, before levelling off as the
MLE was approached. Logistic regression achieved a better accuracy than naive Bayes (Sec-
tion 2.1.2) on both the test and train datasets - training accuracy was 91.6% (naive Bayes:
85.7%), and test accuracy converged to 87.5% (naive Bayes: 83.3%). The next section will
discuss some reasons for this difference in performance. The fitted coefficients for some
words are shown in Figure 3.6c - we can see that the model has correctly determined the
strength of their positive or negative connotations.

Note that the loss on the training dataset did not converge in the 50 epochs, so we did not
reach the MLE of β for the training data. If we continue training for longer, the loss on
the test dataset actually starts increasing - this is an indicator that the model is starting to
overfit to the training data. Fixing the number of training epochs and using a validation
dataset to choose the learning rate helped prevent overfitting by restricting how far SGD
could move from the starting point. Since the starting point was at the origin, this indicates
that the true ‘best’ value for β is closer to the origin than the MLE for the training data.
This is the idea behind regularised logistic regression [10], which prevents overfitting
by penalising the norm of β in the loss function. For example, in L2 regularised logistic
regression the loss function is:

1

N

N∑
i=1

LCE(β;x(i), y(i)) + γ||β||22 , (3.12)

where ||β||22 is the squared Euclidean norm of β, ||β||22 =
∑

j β
2
j , and γ ∈ R>0 is fixed in

advance. Since training aims to minimise this loss function, this penalty restricts how far
the fitted solution will be from the origin. It has a Bayesian interpretation as a Gaussian
prior with mean 0 on the βj .

29

0 10 20 30 40 50
Training Epochs

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Lo
ss

Train loss
Test loss

0 10 20 30 40 50
Training Epochs

0.70

0.75

0.80

0.85

0.90

0.95

1.00

Ac
cu

ra
cy

Train accuracy
Test accuracy

Figure 3.5: Loss and accuracy of logistic regression on the IMDb dataset.

awful terrible bad okay good love great excellent

2

1

0

1

2

Co
ef

fic
ie

nt

(a) Naive Bayes coefficients.

alfred hitchcock did bad job film total
1.5

1.0

0.5

0.0

0.5

1.0

1.5

Co
ef

fic
ie

nt

(b) Naive Bayes decision-making.

awful terrible bad okay good love great excellent

1.0

0.5

0.0

0.5

1.0

Co
ef

fic
ie

nt

(c) Logistic regression coefficients.

alfred hitchcock did bad job film total

0.6

0.4

0.2

0.0

0.2

0.4

0.6

Co
ef

fic
ie

nt

(d) Logistic regression decision-making.

Figure 3.6: Comparing logistic regression with naive Bayes.

30

3.4.1 Comparing Logistic Regression to Naive Bayes

We will now compare the fitted logistic regression model with the naive Bayes classifier from
Section 2.1.2. Recall that both classifiers produce log odds that are linear in x, so that for
some observation x∗ ∈ Rd the predicted log odds of y∗ = 1 are:

naive Bayes: log

(
p(1)

p(0)

)
+

d∑
j=1

log

(
p̂
(1)
j

p̂
(0)
j

)
x∗ ,

logistic regression: β0 +
d∑
j=1

βjx
∗
j ,

where the p(k)and the p̂
(k)
j are the prior probabilities and unigram MLEs for each class as

defined in Section 2.1.1, and the βj are unconstrained real numbers. Both classifiers predict
that y∗ = 1 if the log odds above are positive, and y∗ = 0 otherwise.

In this case, the bias term in naive Bayes was exactly 0 since a uniform prior distribution
was used. Similarly, the fitted β̂0 in the logistic regression was very close to 0 (β̂0 = −0.01).
This suggests that β0 is not needed at all here: in fact, setting β0 = 0 improved the test
accuracy of the logistic regression from 87.50% to 87.52% even with no changes to the other
fitted parameters. We could test this formally using the likelihood ratio test [34]: the logis-
tic regression model with β0 = 0 is nested in the unconstrained model, so we can fit both
models with maximum likelihood estimation and compute the likelihood ratio test statistic

Λ = 2(L(β̂
′
) − L(β̂)), where β̂

′
and β̂ are the MLEs of the constrained and unconstrained

models respectively and L is the log likelihood function. If Λ > χ2
d−1,α this test would reject

the hypothesis β0 = 0 at significance level α. It would also be interesting to perform this
test for each of the weights βj to see if they could be set to 0 - this would determine whether
the presence of the corresponding word has a significant impact on the sentiment of a review.

It is easy to see that logistic regression has a lower asymptotic error than naive Bayes, since
the decision rule for naive Bayes is a special case of that of logistic regression, with restric-
tions placed on the parameters [11]. Indeed, logistic regression outperformed naive Bayes
on this task - since it doesn’t make the assumption that the features are independent, it
handles correlated words better.

An example of this is the example sentence from Section 2.1.2, "Alfred Hitchcock did a

bad job on this film", which was misclassified by naive Bayes since the words Alfred

and Hitchcock are correlated. Because they appeared more often in positive reviews, both
were given large positive coefficients, as shown in Figure 3.6b. In the logistic regression,
however, both have coefficients close to zero - this is to be expected since they are not
actually indicative of the reviewer’s opinion. Because of this, logistic regression correctly
classifies the sentence, as shown in Figure 3.6d. Note that the bias term is omitted from
this plot for readability since it had a negligible impact on this decision.

However, this does not mean that we should disregard naive Bayes completely - it is easier
and faster to train, since we can solve for the MLE analytically. It can actually outperform
logistic regression on small datasets since it converges faster to its asymptotic error, only
requiring O(log d) training examples in most cases, compared to O(d) for logistic regres-
sion [11]. The intuition here is that since the parameter space for naive Bayes is lower
dimensional, it requires less data to fit the model well.

31

3.5 The Skip-Gram Model

We will now return to the task of training word embeddings as introduced in Section 3.1.
We will look at the skip-gram model [24], which aims to predict context words given the
embedding for a target word. We define a context word as any word appearing within a
context window of length l = 2c of the target word, where c is the number of words
included in the window on either side of the target word.

It is assumed that context words appear independently of each other. As such, the training
data can be represented using skip-grams, so called because they are n-grams that allow
tokens to be skipped. We represent the (l + 1)-gram centred on the target word with l
skip-gram pairs of target and context words. For example, consider the sentence:

She sells sea shells on the sea shore.

If we set c = 1, the observed context words for shells are sea and on. We represent these
as the skip-grams (shells,sea) and (shells,on). Table 3.1 contains a complete list of the
skip-grams observed in this sentence.

The task of predicting context words can be seen as a classification task, where the model
must output the probability of each possible context word in the vocabulary given the target
word. We define this probability distribution with the softmax function, softmax : RK →
RK , a multi-dimensional generalisation to the sigmoid (logistic) function:

softmax(z)i =
ezi∑K
j=1 e

zj
. (3.13)

The softmax function produces a valid probability distribution: softmax(z)i ∈ (0, 1) ∀i
and

∑K
i=1 softmax(z)i = 1. It can be used to generalise the binary logistic regression to K

classes, defining the probabilities for a multinomial logistic regression as:

P
(
y(i) = k

)
= softmax(b+W Tx(i))k =

e bk+Wk·x(i)∑K
j=1 e

bj+Wj ·x(i)
for k ∈ {1, ...,K} , (3.14)

where W ∈ Rd×K is a matrix of weights with columns Wj ∈ Rd, and b ∈ RK is a vector of
biases. This actually overparametrises the distribution [33], since only K − 1 outputs are
required to compute P

(
y(i) = K

)
as 1−∑K−1

k=1 P
(
y(i) = k

)
. This can be resolved by setting

bK and WK to 0 [18], but in practice the overparametrisation is not a big issue for word

Target word Observed skip-grams

she (she, sells)
sells (sells, she), (sells, sea)
sea (sea, sells), (sea, shells), (sea, the), (sea, shore)

shells (shells, sea), (shells, on)
on (on, shells), (on, the)
the (the, on), (the, sea)

shore (shore, the)

Table 3.1: Skip-grams observed in the example sentence

32

embeddings or neural networks. In these contexts, the formulation in Eq. 3.14 is generally
preferred since it is simpler to implement. In this case, it will allow us to interpret the
weights as a second set of word embeddings.

In the skip-gram model, the set of possible classes is simply the vocabulary V . We feed the
target embedding vwi for word wi into a multinomial logistic regression with |V | classes and
a bias vector of 0. Its jth output is the estimated probability of word wj appearing as a
context word for wi, P̂(wj |wi). Since each possible context word in the vocabulary has its
own weight vector in the logistic regression, it is more intuitive to think of these as another
set of word embeddings, the context embeddings, so that:

P̂(wj |wi) = softmax(CTvwi)j =
ecwj ·vwi∑
w∈V e

cw·vwi
, (3.15)

where C is a matrix whose jth column contains cwj , the context embedding for word wj .
The context embeddings can be discarded after training, although in practice they are often
added or concatenated to the target embeddings instead to improve their quality.

The training objective for skip-gram is to find the set of target and context embeddings that
maximise the average log probability of the observed context words in the dataset:

1

N

N∑
i=1

∑
−c≤j≤c : j 6=0

log P̂(wi+j |wi) . (3.16)

Note that this cannot have a unique maximum - applying a rotation to all of the vectors
will preserve the dot products in Eq 3.15 and hence the log likelihood. Although there is no
unique set of ‘best’ word embeddings, we can still find a good set of vectors by optimising
the negative log likelihood with SGD. The gradient of the loss function can be calculated
using the backpropogation algorithm, which we will discuss in more detail in the context
of neural network models in Section 4.2.2.

One key issue with this approach is that calculating a softmax over the full vocabulary is
computationally expensive for large vocabularies, since the computation cost scales linearly
with the vocabulary size. One alternative is to use the hierarchical softmax [25], a com-
putationally efficient approximation to the full softmax using a binary tree, requiring only
around log2 |V | calculations. As we will see in the next section, another approach is to
simplify the model so that it describes a binary classification problem instead.

3.5.1 Skip-Gram with Negative Sampling

Since the context word prediction task is just a means to achieve our real aim of obtaining
word embeddings, we are free to simplify the model further. The idea behind negative
sampling [25] is to instead train a binary classifier to distinguish between real context
words and randomly selected noise words.

Training data for our model is created by treating words observed as context words of the tar-
get as positive samples, and randomly generating negative samples from the rest of the
vocabulary. For each positive sample (w,w+), we generate some fixed number k of negative
samples (w,w−j). In the example sentence "She sells sea shells on the sea shore.",

33

(shells,she) and (shells,shore) are possible negative samples for the observed skip-gram
(shells,sea) since she and shore were not observed within our context window for shells.

The negative samples are generated according to their unigram frequency: noise word wj
is sampled with probability P(wj) ∝ Count(wj)

α for some constant α, with α = 3
4 most

commonly used in practice. This approach outperforms using the unigram or uniform dis-
tributions [25], since it redistributes probability mass towards rarer words. This is desirable
since it increases the amount of data available to train the context embeddings for rare
words, while still taking word frequency into account.

Using the logistic function, the probability of wj being a real context word for wi will be
defined in terms of their target and context word embeddings as:

P̂(wj |wi) = σ(vwi · cwj) .

This will be high if the angle between the target vector for wi and the context vector for wj
is small. Making the assumption that context words occur independently of each other, the
log likelihood for one positive observation and k negative is:

log
(

P̂(w+|w)

k∏
j=1

(1− P̂(w−j |w))
)

= log σ(cw+ · vw) +

k∑
j=1

log σ(−cw−j · vw).

The total log likelihood for the dataset is obtained by summing this expression over each
positive sample (w,w+) in the set of observed context words for w, for each word in the
vocabulary V :

∑
w∈V

∑
w+

(
log σ(cw+ · vw) +

k∑
j=1

log σ(−cw−j · vw)

)
.

Like the log likelihood for the original skip-gram model, this is preserved under rotation of
the word vectors and therefore does not have a unique maximum. However, we can still
train the word embeddings by optimising with SGD.

3.5.2 Hyperparameters and Training

Generally, increasing the dimension of embeddings improves their quality, although more
training data and computation time is required to train good high-dimensional vectors.
Mikolov et al. [25] recommend using a context window of length l = 10 for skip-gram, and
taking 2-5 negative samples for large datasets, with 5-20 necessary for smaller ones. The
intuition behind this rule of thumb is that increasing k increases the number of training
samples, which can improve the embeddings. This is important for small datasets, where
we need to make the most of what data we have, while for larger datasets this is less of a
concern than the increased computation cost of training. Increasing l only improves quality
up to a point, since more distant words are less informative. In fact, the size of l has an effect
on the type of word similarities picked up by the model [35]: If l is small the embeddings
will primarily reflect syntactic similarities (e.g. grouping nouns or verbs), while with a large
l words will tend to be grouped by topic.

34

Target word Most similar to:

you ye, yourselves
good kind, bad
take bring, give
took drew, received
say saying, bet
said answered, cried
chin brows, chest

brother father, son
sister mother, wife
coat overcoat, waistcoat

revolver pistol, butt

Table 3.2: Examples of word similarities found by the model.

We will once again use the Sherlock Holmes corpus to train the model. Since this dataset is
relatively small (typical datasets for this task can have millions or even billions of words),
a small embedding dimension d = 100 was chosen, with l = 10 and k = 20. Any words
with less than 2 occurrences in the dataset were discarded, since this greatly reduced the
vocabulary size while having only a small impact on the training data. The Gensim library
[36] was used to train the model, since this ran far more efficiently than an implementa-
tion from scratch - Gensim uses techniques like parallel processing to speed up computations.

Note that unlike the loss function for logistic regression, the loss for skip-gram is not convex
so there is no unique minimum. This means that the resulting vectors vary a lot depending
on the random initialisation, and we will even see different results starting from the same
initial values, since SGD is a random walk. The resulting word embeddings can be eval-
uated by examining how useful they are in the target task, for example by using them to
initialise the embedding layer of a neural language model, as we will see in Section 4.3.1. It
is also possible to directly evaluate how well the embeddings capture word similarities by
comparing the cosine similarities between pairs of vectors to a database of similarity scores
for the corresponding words [15].

On inspection, the model did well at grouping words with similar meanings together - some
examples are listed in Table 3.2. The model also successfully grouped words by syntac-
tic meaning - nouns, adjectives, and verbs were usually grouped together, with verbs even
grouped by tense as well as meaning. This worked best for more common words - due to
the small amounts of training data for rarer words, their embeddings cannot move far from
their random initialisation.

The word vectors can be visualised more easily by projecting them into two dimensions.
Using principal component analysis (PCA) to identify the principal directions of variation,
the resulting projection preserves some of the structure of the vector space, including some
clusters of similar words. Figure 3.7 shows the embeddings for 100 common words from the
dataset, normalised and then projected into two dimensions with PCA. It is interesting to
note that while the individual embeddings and word associations varied each time the model
was fitted, the arrangement of these clusters in the PCA projection was very similar each
time - for example: crime words clustered at the bottom and family members in the centre.

35

10 5 0 5 10 15

5.0

2.5

0.0

2.5

5.0

7.5

10.0

12.5

the

and

it

he

was

you

his

is

had

have

my

with

for

at

which

we

but

me

not

be

him

said

from

on

no

upon

one been

were

man

her

your

very

she

when

out

will

then

our

who

up

has

they

do

us

well

into

can

down

them

over

before

know

room

here

did

must

came

other

face

woman

gentleman

sunmoon

pipe

cigarette

said

answered

say

saying
bring

took

received

neck

chin fingers

brows
notebook

bag

overcoat

coat

waistcoat

yourself

brother

son

mother

sister

father

daughter

murder

crime

pistol

revolver

mystery

robbery

criminal

motive

kind

clever

bad

Figure 3.7: The embeddings for 100 words from Sherlock Holmes, projected into 2D. Some
clusters of words with high cosine similarity are highlighted in red.

36

3.6 Discussion

More training data would be required to unlock the full potential of word embeddings - state-
of-the-art word vectors are trained on datasets with over a billion words and even follow
logical semantic rules [23] . For example, using their vector representations, performing the
calculation king - man + woman results in a vector close to queen. Due to the computational
expense of training embeddings on such large datasets, it is common to use pre-trained word
vectors. These can either be used out of the box in a language model, or fine-tuned on the
desired dataset first. Using a larger dataset to help with initialising word vectors is a form
of transfer learning [37], and can be a good strategy for improving model performance
with limited training data since it makes it possible to obtain good representations of rare
words. Fine-tuning can be seen as a Bayesian approach, since the pre-trained embeddings
represent a prior belief on how words should be represented in the model, which is then
updated after observing the target dataset and desired model.

Word embeddings for different languages often share a similar structure - Mikolov et al.
[38] showed that embeddings trained with Word2Vec for different languages have a similar
geometric structure, and it is even possible to learn a linear projection between the embed-
ding spaces that allows for translation of words. The matrix for this projection is trained
using SGD and a list of translations for some common words. The resulting projection was
surprisingly effective at translating words, even allowing for the detection of some errors in
a translation dictionary.

One issue with Word2Vec is that it does not account for the meanings of words being context-
dependent, since each word is assumed to have a fixed meaning. For example, stick can
be either a noun or a verb and means something very different in each case. Word2Vec em-
beddings are an example of static embeddings, since the embedding for each word is fixed,
and must capture every possible sense of the word. An alternative is to use contextual
word vectors like those computed by BERT (Bidirectional Encoder Representations from
Transformers) [39], which aim to capture what words mean in a particular context and can
consider both the left and right context at the same time. These embeddings are pre-trained
on very large corpora, and can be fine-tuned on the desired dataset.

While vector relationships like the above "man is to king as woman is to queen" re-
flect an analogous relationship between the meanings of the words they represent, the same
is not true of all such learned relationships. In practice, the semantics of word vectors often
reflect biases present in the training data such as gender stereotypes [40]: for example, the
same model computes that "man is to surgeon as woman is to nurse". It is possible
to correct this bias - Bolukbasi et al. [40] suggested a method for debiasing word embed-
dings by learning a subspace of the embedding space that captures the bias. Their method
preserves analogies for gender specific words like gramdmother and grandfather, while re-
moving inappropriate gender analogies.

In the next chapter, we will introduce neural network language models, which typically
include an embedding layer as their first layer. These embeddings can be trained as part
of the network, but using pre-trained word vectors to initialise them can often improve
performance, and using fixed pre-trained embeddings can significantly cut down computation
time.

37

Chapter 4

Neural Models

Neural networks [33] are a class of models inspired by the workings of the brain. As the
name suggests, they consist of a network of artificial neurons, which are simple computa-
tional units that each take a vector of input values and produce a scalar output which is
passed on to other neurons in the network.

We will focus on using neural networks for classification, since language modelling can be
seen as a classification problem. Given some sequence of words w = w1, . . . , wt−1 the aim is
to estimate the probability that some word wi will appear next in the sequence. In this case,
the set of possible ‘classes’ for the input data w is the vocabulary V , and the statement
“w ∈ class wi” is equivalent to “wi is the next word in the sequence w1, . . . , wt−1” .

We have examined two classifiers so far - logistic regression (Sections 3.2 and 3.5) and naive
Bayes (Section 2.1.1). These are both examples of linear classifiers, because they make
decisions based on a linear function of their inputs. As we have seen, the binary logistic
regression will predict a label of y∗ = 1 if β0 +

∑d
j=1 βjx

∗
j > 0 and 0 if β0 +

∑d
j=1 βjx

∗
j < 0.

Hence its decision boundary is the hyperplane β0 +
∑d

j=1 βjx
∗
j = 0. Because of this,

logistic regression will do well when the data is linearly separable, ie. when it is possible
to find a hyperplane that divides the data into the two classes. This is not always the case -
for example, in Figure 4.1a we see an example of a two-dimensional toy dataset that is split
into two classes (represented in red and blue) by the curve x2 = sinx1. If we fit a logistic
regression to this dataset its decision boundary is the straight line shown in Figure 4.1b,
which does a poor job of separating the classes.

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(a) Scatter plot of the toy dataset.

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(b) Decision boundary of logistic regression.

Figure 4.1: Toy dataset divided into classes by a curve.

38

While it is often possible to transform the input variables for logistic regression and other
linear classifiers in such a way that they become linearly separable, this transformation
must be chosen manually based on prior knowledge about the classification task. The key
advantage of neural networks is that they automatically learn useful representations of the
raw input data, and can learn to approximate a wide range of functions. This is very ad-
vantageous in the context of language modelling, a complex classification task where it is
important to represent the input words in a way that reflects their meanings and similarities.

In this chapter we will first introduce feedforward neural networks for classification and dis-
cuss how to train them, as well as how to resolve some of the difficulties this task presents.
We will see how to train a neural network classifier for language modelling, using the concept
of word embeddings introduced in Chapter 3.

4.1 Neural Units

Neural units or neurons [10] are the building blocks of the neural network. Each neuron
has a similar structure to a logistic regression (Section 3.2): given inputs x1, . . . , xh the unit
computes a linear combination b+

∑h
i=1wixi, where the weights wi and bias b are parame-

ters to be learned.

This linear expression is passed into a nonlinear activation function a : R → R, so that
the output of the neuron is a(b+

∑h
i=1wixi). Representing the inputs and weights as vectors

in Rh, we can write this as a(b+wTx). Each neuron in the network is typically represented
as a node in a directed graph, as shown in Figure 4.2.

While the parameters b and w will be learned during training, the activation function a for
each neuron is a hyperparameter, since it is determined in advance. In principle, a can be
any function, although the sigmoid (Eq. 4.1), tanh (Eq. 4.2) and rectified linear (Eq.
4.3) functions are by far the most common choices.

x1

x2

x3

wTx+b a(wTx+b)

Figure 4.2: The computation carried out by a single neuron.

39

−4 −2 0 2 4

0.0

0.2

0.4

0.6

0.8

1.0

(a) Sigmoid (σ)

−4 −2 0 2 4

−1.00

−0.75

−0.50

−0.25

0.00

0.25

0.50

0.75

1.00

(b) Tanh

−4 −2 0 2 4

0

1

2

3

4

5

(c) Rectified linear (ReLU)

Figure 4.3: The graphs of some common activation functions.

These are defined as follows:

σ : R→ (0, 1) σ(x) =
1

1 + e−x
, (4.1)

tanh : R→ (−1, 1) tanh(x) =
e2x − 1

e2x + 1
, (4.2)

ReLU : R→ [0,∞) ReLU(x) =

{
0 if x < 0

x if x ≥ 0
. (4.3)

Figure 4.3 shows the plots of these functions. Note that the sigmoid is the activation func-
tion for the binary logistic regression, so binary logistic regression can in fact be seen as a
single neuron with sigmoid activation. We will see in the next section that a multinomial
logistic regression can be represented with a layer of neurons.

There are no hard rules for how to choose an activation function - as is the case with
many other neural network hyperparameters it is common to use a process of trial and
error, comparing performance on a validation dataset. ReLU is typically a good general
purpose choice: it is close to linear and hence cheaper to compute and easier to optimise
with gradient-based methods [33]. The sigmoid and tanh functions have the advantage of
being smoothly differentiable everywhere, and map large inputs towards the mean since they
have a finite range. They are in fact closely related: tanh(x) = 2σ(2z)− 1. However, tanh
typically outperforms sigmoid since it is similar to the identity function around 0.

These units can be linked together into a network - this is done by constructing a directed
graph, where each node represents a neuron and each edge represents the output of one neu-
ron being transmitted to one of the inputs of the next. As we will see in the next section, a
simple way of doing this is to connect them into an acyclic graph.

40

4.2 Feedforward Neural Networks

In a feedforward neural network or multi-layer perceptron (MLP) [33], neurons are
arranged in layers so that neurons in each layer are connected to every neuron in the following
layer. Each layer of neurons is called a fully connected or dense layer. This architecture
is shown in Figure 4.4. This is known as a feedforward network since the outputs from each
layer of neurons are fed forwards into the next layer, with no connections back to previous
layers.

The layers of the network are grouped into three types: the input layer, hidden lay-
ers and output layer. Note that although the inputs to the network are included as a
layer, they simply transmit the input x ∈ Rdi to the first layer of the network and have
no trainable parameters. The output layer produces the output ŷ ∈ Rdo of the network,
which should be close to the true label y ∈ Rdo . The hidden layers are so called because
their outputs are not used directly in evaluating the network and we do not impose any defi-
nition of what counts as a good output beyond that it should be useful for subsequent layers.

When using neural networks for classification, the true label y is typically a one-hot
vector in Rdo , with zeros in every coordinate except the one corresponding to the true

class. That is to say: if the true class of x(i) is k ∈ {1, . . . , do}, then y
(i)
k = 1 and

y
(i)
j = 0 ∀j ∈ {1, . . . , do} \ {k}. We assume that the distribution of y(i) given the data

x(i) is multinoulli, i.e. y(i)|x(i) ∼ Multinomial(1,p) for some function p : Rdi → Rdo of x(i)

that our neural network output will approximate by ŷ(i). This means that the jth output
of the neural network should be an estimate of P

(
{x(i) ∈ class j}

)
.

To ensure that the output of the network is a valid probability distribution, we will use the
softmax function defined in Section 3.5 as the activation function for the output layer:

softmax(z)i =
ezi∑do
j=1 e

zj
for 1 ≤ i ≤ do. (4.4)

Input Layer

Hidden Layer

Output Layer

x1 x2 x3

h1

y1 y2

h2 h3 h4 h5

^ ^

Figure 4.4: A simple neural network with one hidden layer.

41

The full computation or forward pass carried out by a neural network classifier with one
hidden layer is as follows:

• Input layer: a vector x = (x1, . . . , xdi)
T of fixed length di is fed into the network.

• Hidden layer: each of the dh neurons computes a weighted sum of the xj , so that the

output of neuron k is hk = a(bk +
∑dx

j=1wk,j xj). We can write this more compactly
by representing the linear transformation as a matrix multiplication: the output of
the layer is h = (h1, . . . , hdh)T = a(b+Wx), where b = (b1, . . . , bdh)T , W ∈ Rdh×di is
such that Wjk = wj,k, and a is applied element-wise to the input vector.

• Output layer: this layer has do neurons, one per class. Given weight matrix U ∈
Rdo×dh and bias vector v ∈ Rdo , the output of the network is ŷ = softmax(v + Uh).

In total, this network has (di + 1) × dh + (dh + 1) × do trainable parameters. Additional
hidden layers h can easily be added, carrying out the same calculation with their own acti-
vation function a(h), weight matrix W (h) and bias vector b(h). A classification decision can
be obtained from the network by predicting the class with the highest estimated probability,
Ĉ = argmaxk ŷk.

Note that if the activation function for each neuron is linear (for example, the identity
function), the whole network can be reduced to a single linear transformation: the nonlin-
ear activation functions are required to produce a model with a nonlinear decision boundary.

The key advantage of neural networks is that they automatically learn useful representations
of the input data. The computation carried out by the output layer is in fact identical to
that of a multinomial logistic regression classifier (as defined in Section 3.5), so we can think
of the hidden layers as learning a representation h of the input data which can then be used
as the input to a standard multinomial logistic regression [10].

In fact, neural networks with only one hidden layer can be trained to be arbitrarily good
approximations to a very large family of functions, including all continuous functions on
compact subsets of Rn [35]. However, this may require a very large hidden layer and there is
no guarantee that the required model parameters are easy to find. As we will see in Section
4.2.4, neural networks with several smaller hidden layers are typically preferable in practice
since they often require fewer parameters to reach the same level of accuracy.

Neural networks are usually fitted using stochastic gradient descent (Section 3.3). The next
sections will introduce the loss function typically used in neural network classifiers, as well
as a method for computing its gradient with respect to the neural network parameters.

42

4.2.1 Categorical Cross-Entropy

The loss function most often used for neural networks for classification is the categorical
cross-entropy. This is the multi-class generalisation to the binary cross-entropy loss in-
troduced in Section 3.3.1 for the binary logistic regression, and is equal to the negative log
likelihood.

Recall that each true label y(i) is a one-hot vector, i.e. if the true class of x(i) is k then

y
(i)
k = 1 and y

(i)
j = 0 ∀j 6= k. We assume that the distribution of y(i) given the data x(i) is

multinoulli, i.e. y(i)|x(i) ∼ Multinomial(1,p(x(i))) for some function p. Then the likelihood
of y(i) given the neural network’s estimate ŷ(i) of p(x(i)) is:

`(y(i)|ŷ(i)) = y(i) · ŷ(i) = ŷ
(i)
k ,

and the categorical cross-entropy loss for one observation (x(i),y(i)) is:

LCE(ŷ(i);x(i),y(i)) = − log(y(i) · ŷ(i)) . (4.5)

The loss for a dataset of size N is:

LCE(ŷ) =
1

N

N∑
i=1

LCE(ŷ(i);x(i),y(i)) = − 1

N

N∑
i=1

log(y(i) · ŷ(i)) .

4.2.2 Backpropogation

To compute the gradient of the loss function, we will use an algorithm called backpropoga-
tion [33]. This works by representing the network as a computation graph and recursively
applying the chain rule to calculate the derivative with respect to each parameter.

We will start by examining how this works on a single neuron. Figure 4.5 shows a computa-
tion graph representation of the calculation carried out by a single neuron with two inputs
and activation function a. The derivative of the output z can be computed with respect to
wi using the chain rule as follows:

∂z

∂wi
=
∂a

∂p

∂p

∂mi

∂mi

∂wi
= a′(p) · 1 · xi = xi a

′
(
b+

2∑
j=1

wjxj

)
. (4.6)

x1

x2

b

w2

w1
*

+

*

a zp

m1

m2

Figure 4.5: Computation graph representation of a single neuron with two inputs.

43

Similarly:

∂z

∂xi
= wia

′
(
b+

2∑
j=1

wjxj

)
,

∂z

∂b
= a′

(
b+

2∑
j=1

wjxj

)
.

The only thing missing is the derivative of the activation function. The derivatives of the
sigmoid and tanh activation functions are as follows [10]:

σ′(x) = σ(x)(1− σ(x)) ,

tanh′(x) = 1− tanh(x)2 .

However, we run into a problem with ReLU since its derivative is undefined at x = 0. In
practice this is not a big issue - it is very unlikely that the input to ReLU will be exactly 0
[41]. It is also not an issue that it is possible for the gradient at a minimum to be undefined,
since when training the neural network we are only trying to approximately minimise the
loss function and do not expect to reach a true minimum. As such, we can simply define
the derivative as:

ReLU′(x) =

{
0 if x < 0

1 if x ≥ 0
,

where we return one of the one-sided derivatives if x = 0. The justification for this approach
is that a computer will round small values of x to 0, so if ReLU receives an input of 0 it
is far more likely to be as a result of this rounding than the input actually being exactly 0 [33].

We will now use the calculation above for individual neurons to define the derivatives of the
loss function for all of the network parameters. We will first define some notation:

Let the network have n hidden layers. Let layer h have dh neurons, activation function a(h),
weight matrix W (h), and bias vector b(h). Let l(h) be the linear part of layer h, so that

l(h)(z(h−1)) = b(h) + W (h)z(h−1), and l
(h)
i =

∑
jW

(h)
ij z

(h−1)
j . Denote the output of layer h

by z(h), so that z
(h)
i = a(h)(l

(h)
i) .

Define z(0) to be the input to the network, z(0) = x, and let W out and bout be the parameters
of the output layer.

In the forward pass of the network, we compute and store the l(h) and z(h) for a particular
input x. Having done this, we can use backpropogation to compute the derivatives of L
with respect to the neural network parameters.

We will first compute this for the output layer. Note that by Eq. 4.5, the loss of one
observation x depends only on the kth element of the output layer, where k is the true class
of x. Using the definition of softmax in Eq. 4.4 we have that:

LCE(ŷ;x,y) = − log
(
softmax(lout)k

)
= − loutk + log

(∑
j

exp(loutj)

)
,

44

and hence:

∂LCE
∂louti

= −δik +
exp(louti)∑
j exp(loutj)

,

where δik is the Kronecker delta, δik = 1 if i = k else 0.

To compute the other derivatives, the multivariate chain rule is required: let x ∈ Rn,
z = f(g(x)) ∈ R, where g : Rn → Rm and f : Rm → R. If y = g(x), then:

∂z

∂xi
=

m∑
j=1

∂z

∂yj

∂yj
∂xi

. (4.7)

Applying Eq. 4.7, the derivatives of the output layer with respect to the z
(n)
i are:

∂L

∂z
(n)
i

=

dout∑
j=1

∂L

∂lj

∂lj

∂z
(n)
i

=

dout∑
j=1

∂L

∂lj
W out
ji ,

and, using the univariate chain rule:

∂L

∂W out
ij

=
∂L

∂li
z
(n)
j ,

∂L

∂bouti

=
∂L

∂li
.

Note that L is a scalar function of z(n) and z(n) is a function of z(n−1), so Eq. 4.7 can be
applied to compute ∂L

∂z
(n−1)
i

in terms of the ∂L

∂z
(n)
j

, which we calculated above. In fact, given

any set of partial derivatives for the outputs of layer h we can define the partial derivatives
for layer h− 1 recursively as follows, using the computation for a single neuron in Eq. 4.6:

∂L

∂z
(h−1)
i

=

dh∑
j=1

∂L

∂z
(h)
j

∂z
(h)
j

∂z
(h−1)
i

=

dh∑
j=1

∂L

∂z
(h)
j

× (a(h))′
(
l
(h)
j

)
W

(h)
ji .

The derivatives for the parameters of layer h are:

∂L

∂W
(h)
ij

=
∂L

∂z
(h)
i

∂z
(h)
i

∂W
(h)
ij

=
∂L

∂z
(h)
i

× (a(h))′
(
l
(h)
i

)
z
(h−1)
j ,

∂L

∂b
(h)
i

=
∂L

∂z
(h)
i

∂z
(h)
i

∂b
(h)
i

=
∂L

∂z
(h)
i

× (a(h))′
(
l
(h)
i

)
.

By computing the above for every h ∈ {1, . . . , n}, we will have found the derivative of the
loss function with respect to every parameter in the network.

45

4.2.3 Accelerating Convergence of SGD

The task of optimising neural network parameters is very challenging, since the objective
function is typically non-convex and very high-dimensional. SGD can be slow to converge
in these conditions: one reason for this is the difficulty in choosing a learning rate or a
deterministic learning rate schedule, since different regions of the loss surface may require
different learning rates. One simple solution to this is momentum SGD [32], where pre-
vious updates are used to accelerate convergence.

Algorithm 4: Momentum SGD

Require: learning rate η, momentum parameter γ ∈ (0, 1);
Require: sequence gt of gradient estimates;
Initialise m0 = 0;
Initialise θ0;
for t = 1, 2, . . . do

mt ← γmt−1 + ηgt Update velocity;
θt ← θt−1 −mt Update θ;

end

The sequence of gradient estimates can be produced in the same way as in Section 3.3 by
taking a sequence of random subsamples of the dataset. A typical choice for γ is 0.9.

The intuition behind standard SGD is that, picturing the loss function as a surface, we are
taking steps ‘downhill’ to minimise the loss. In momentum SGD, we allow these steps to
accelerate if we spend time descending in the same direction, eventually reaching terminal
velocity since γ < 1. The momentum term also helps reduce the impact of the noisy gradient
estimates, since it smooths out sudden changes in direction. Note thatmt = η

∑t
s=1 γ

t−s gs,
so since γ ∈ (0, 1), gradient estimates from previous iterations have an exponentially decay-
ing weight in the calculation of new updates as time goes on.

We can speed up convergence further by adjusting the learning rate for each parameter
automatically during training. One algorithm that does this is Adaptive Moment Es-
timation (Adam) [42]. Like momentum SGD, Adam uses a velocity vector mt which is
an exponential moving average of previous gradient estimates. Adam also adjusts the per
parameter learning rate using estimates of the second moment of the gradient, computed as
an exponential moving average of the squared gradient estimates. The algorithm for Adam
is given in Algorithm 5. Note that the operations on vectors (square, square root, division
etc.) are performed elementwise. The bias correction step is included because initialising
the first and second moment vectors at 0 produces estimates that are biased towards 0.

Good default values for the hyperparameters are η = 0.001, β1 = 0.9, β2 = 0.999, and
ε = 10−8. ε is required to ensure that each parameter update is defined and bounded in
size: it is possible for the vector

√
v̂t to have some zero entries (or arbitrarily close to 0),

in which case the elementwise division by
√
v̂t is undefined (or can be arbitrarily large).

Unlike SGD, where the learning rate must be carefully tuned for good results, Adam rarely
requires changes to these default values [33]. This greatly reduces the time required to tune
neural network hyperparameters, since it is usually not necessary to optimise a learning rate
for each combination of hyperparameters.

46

Algorithm 5: Adam

Require: learning rate η, exponential decay rates β1, β2 ∈ [0, 1);
Require: small constant ε;
Require: sequence gt of gradient estimates;
Initialise: m0 ← 0, v0 ← 0;
Initialise θ0;
for t = 1, 2, . . . do

mt ← β1mt−1 + (1− β1)gt Update biased first moment estimate;
vt ← β2vt−1 + (1− β2)g2t Update biased second moment estimate;
m̂t ← mt

1−βt
1

Correct bias in first moment estimate;

v̂t ← vt

1−βt
2

Correct bias in second moment estimate;

θt ← θt−1 − η m̂t√
v̂t+ε

Update θ;

end

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(a) SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(b) Momentum SGD

0.00 0.25 0.50 0.75 1.00 1.25 1.50 1.75 2.00
0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

2.00

(c) Adam

Figure 4.6: Contour plot of the log loss for the toy example, with the path taken by each
optimiser plotted in black. Start and endpoints marked in red.

To compare these algorithms, we will return to the toy example from Section 3.3.2, since its
loss function can easily be visualised with a contour plot. Figure 4.6 shows the paths taken
by SGD, momentum SGD, and Adam as they attempt to minimise this loss function. Each
optimiser used a batch size of 50 and ran for 3 epochs, and in each case a gridsearch was
used to find the best learning rate. Note that the ‘true’ value of θ in this case is (1, 1)T . As
we can see, momentum SGD is a lot smoother - regular SGD zig-zags back and forth a lot
as it descends the slope. However, momentum SGD also tends to overshoot the minimum
slightly and has to correct course.

Adam seems to jump straight to the minimum - in fact, it converges in just 4 iterations (0.2
epochs) to a value very close to the true value of θ. This is because it scales the learning
rate for each parameter - at the starting point, the loss function’s slope is much steeper in
the second coordinate than in the first, resulting in SGD and momentum SGD making a
big jump upwards before slowly moving across to the minimum. Adam, however, scales the
learning rates for each parameter so that the first step in each direction is about the same
size. The per-parameter learning rates are then slowly scaled down as training continues.
In this case, with a large learning rate η the first iteration of Adam brings it very close to
the minimum so convergence is very fast.

47

4.2.4 Toy Example

We will now revisit the toy example from the introduction to this chapter, to demonstrate
how neural networks can effectively classify data that is not linearly separable. The toy
dataset was generated by sampling points from a two-dimensional uniform distribution and
labelling them as class 0 (blue) if they fell above the line x2 = sinx1 and class 1 (red)
otherwise. This means that the two classes can be separated with 100% accuracy by the
function f : R2 → R, where:

f(x) =

{
1 if sin(x1) ≤ x2
0 if sin(x1) > x2

We will look at the decision boundaries of various neural networks to determine how well
they can approximate f .

A selection of neural network models were trained to classify the data. Each model had
di = 2 inputs and do = 2 output neurons, and had one or two hidden layers with ReLU
activation. The models were built and trained using the TensorFlow [43] Python package,
and Adam was used as the optimiser with its default hyperparameters. Four different model
architectures were used:

(a) One hidden layer with 4 units (Figure 4.7a). Number of parameters: 3×4+5×2 = 22

(b) Two hidden layers with 4 units each (Figure 4.7b). Number of parameters: 3 × 4 +
5× 4 + 5× 2 = 42

(c) One hidden layer with 16 units (Figure 4.7c). Number of parameters: 3×16+17×2 =
82

(d) Two hidden layers with 16 units each (Figure 4.7d). Number of parameters: 3× 16 +
17× 16 + 17× 2 = 354

The decision boundaries for each model are visualised in Figure 4.7, where the red and blue
shaded areas correspond to the model output for points in that region, and the dashed line
indicates the decision boundary of f .

Note that increasing the number of layers and increasing the number of units per layer both
improve the accuracy of the model - this is to be expected since both increase the number
of model parameters. However, we can also improve performance without requiring more
parameters by rearranging the neurons - model (b) is a slightly better match for the desired
decision boundary than model (c) despite having far fewer parameters, since it has two
hidden layers instead of just one.

In practice, model architectures are chosen by a process of trial and error based on their
performance on a validation dataset. While larger models can in theory do a better job of
modelling the data, in practice a model that is too large will easily overfit to the training
data and will struggle to generalise to unseen data.

48

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(a) One hidden layer with 4 units.

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(b) Two hidden layers with 4 units each.

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(c) One hidden layer with 16 units.

3 2 1 0 1 2 3

1.0

0.5

0.0

0.5

1.0

(d) Two hidden layers with 16 units each.

Figure 4.7: Comparison of the decision boundaries for different neural network architectures.

4.3 Neural Language Models

We will now look at how to use neural networks as language models. We will once again
use the probability chain rule to simplify this to the task of repeatedly predicting the next
word wt in the sentence given some sequence wt−1, wt−2, . . . of previous words:

P (w1, . . . , wt) = P (w1)P (w2|w1) . . .P (wt|wt−1, . . . , w1) .

Note that feedforward neural networks as defined in Section 4.2 require their inputs to have
a fixed length, so cannot handle an arbitrarily long list of context words. A simple solution
to this is to consider only the most recent n − 1 words when estimating the probability
distribution of wt [44]. This is also the simplification made by n-gram models, so as in
Section 2.2 the probability of some sequence w1, . . . , wt of words will be approximated by:

P (w1, . . . , wt) ≈
t∏
i=1

P
(
wi|wi−1, . . . , wi−(n−1)

)
, (4.8)

where P
(
wi|wi−1, . . . , wi−(n−1)

)
is estimated by the output of a neural network classifier.

The key difference between the n-gram and neural approaches is that we will train the neu-
ral network using the word embeddings introduced in Chapter 3. This helps avoid the
data sparsity issues that cause problems for n-gram models (Section 2.2.2), since the neural
model will be able to take advantage of word similarities.

49

Input layer

Embedding layer
(shared embedding matrix)

Hidden layer

Output layer

softmax

tanh

ith output = P(wt = wi | wt-3,wt-2,wt-1)

wt-3 wt-2 wt-1

Figure 4.8: Structure of the neural language model for n = 4.

We can represent a set of word embeddings of dimension m with a matrix E ∈ Rm×|V |,
where the ith column of E contains the embedding vwi ∈ Rm of the word wi ∈ V . If we
represent each word wi as a one-hot vector in R|V | then we can use matrix multiplication to
extract the embedding of wi from E, since vwi = E ei, where ei is the basis vector with a 1
in coordinate i.

This means that looking up an embedding is equivalent to feeding a one-hot vector into a
neural network layer with a bias vector of zero and the identity function as its activation.
Such a layer is called an embedding layer, and we can include its weight matrix E with
the other trainable parameters of the network. For example, the skip-gram model described
in Section 3.5 can be seen as a neural network classifier consisting of an embedding layer
followed by a dense output layer with a bias vector of 0.

Putting all of this together, we can build the neural language model [44] represented in
Figure 4.8, with the dense connections between layers represented as a single arrow for
readability. This model performs the following computations in its forward pass:

• Input: n− 1 one-hot vectors, representing the sequence wt−(n−1), . . . , wt−1 of context
words.

• Embedding layer: extract the embeddings vwt−(n−1)
, . . . ,vwt−1 ∈ Rm for the n − 1

context words from the matrix E. The number of trainable parameters in this layer
is m|V |.

• Flatten: concatenate the n− 1 embeddings into one vector, x ∈ Rm(n−1).

• Dense layer: fully connected layer with dh neurons and tanh activation. This layer
computes h = tanh(b+Wx) ∈ Rdh and has ((n− 1)m+ 1)dh trainable parameters.

50

• Output layer: fully connected layer with |V | neurons and softmax activation. The
output is softmax(s + Uh) ∈ R|V |, a probability distribution over all of the pos-
sibilities for the next token in the sequence, wt. The ith output of this layer is
P̂(wi|wi−n+1, . . . , wi−1), an estimate of the probability that wt = wi. This layer has
(dh + 1)|V | trainable parameters.

Overall this model has m|V |+((n−1)m+1)dh+(dh+1)|V | parameters, while the equivalent
n-gram model has |V |n. This is linear in both n and |V |, resulting in a model that is less
prone to overfitting than n-gram models, and can deal with much larger values for n. The
embedding matrix E can be initialised randomly and trained from scratch alongside the rest
of the network, however we can often improve performance by initialising E with a set of
pre-trained word embeddings. These can be obtained very efficiently using the skip-gram
algorithm described in Section 3.5.

Note that the loss function for this model has a close relationship with the perplexity
metric defined in Section 2.2.5. For a dataset consisting of a sequence w1, . . . , wN , the
cross-entropy loss is:

LCE(w) = − 1

N

N∑
i=1

log P̂(wi|wi−n+1...wi−1)

= log

(

N∏
i=1

P̂(wi|wi−n+1...wi−1)

)− 1
N

= log(PP(w))

This means that having calculated the loss LCE of the model on a dataset we can simply
obtain its perplexity as exp{LCE}. This is the method used to compute the perplexity of the
models in the following section for comparison with the n-gram models trained in Section
2.2.6.

4.3.1 Sherlock Holmes Data

We will now train a neural language model on the Sherlock Holmes corpus, using the ar-
chitecture described in the previous section. We will follow some of the hyperparameter
suggestions of Bengio et al. [44], using n-grams of size n = 5 and setting the hidden layer
size to dh = 100. Bengio et al. train their word embeddings from a random initialisation,
but suggest that performance might be improved with a knowledge based initialisation - as
such, we will compare the performance of several different initialisation strategies:

• Random (m = 30), random (m = 300): 30- and 300-dimensional word embeddings
initialised randomly.

• Sherlock (m = 30), Sherlock (m = 300): 30 and 300-dimensional word embeddings
initialised with a set of embeddings trained using skip-gram with negative sampling
on the Sherlock training dataset.

51

Model initialisation Train perplexity Best test perplexity Time per epoch

Random (m = 30) 72 132 161s
Random (m = 300) 33 132 528s

Sherlock (m = 30) 66 126 149s
Sherlock (m = 300) 34 129 534s

Google News (m = 300) 31 124 521s

Table 4.1: Perplexities on the test and train datasets for the neural models.

• Google News (m = 300): 300-dimensional word embeddings initialised with the Google
News set of pre-trained word vectors [25]. This is a set of word embeddings published
by Google, trained using skip-gram on a corpus of news articles with a total of around
1 billion words. These were included to analyse the impact of using embeddings pre-
trained on a larger dataset.

The corpus was preprocessed in the same way as for the n-gram models in Section 2.2.6 -
sentences were padded with n−1 start tokens and a sentence end token, and words occurring
less than twice in training data were removed from the vocabulary and replaced with <UNK>.
The test/train split was the same as the one used to evaluate the n-gram models.

The dataset was generated by extracting all of the n-grams from the corpus and using the
first n− 1 tokens in each n-gram as the model input, with the nth as the ‘true’ label in the
classification task. All hidden layers and output layers were initialised with random param-
eters. The starting loss was around 9.22 for all models - this corresponds to a perplexity
of around 10100, which was equal to the vocabulary size. This is exactly what one would
expect from a random language model, since it corresponds to the perplexity of the uniform
language model (Section 2.2.5).

The models were implemented in TensorFlow [43], and Gensim [36] was used to train or
download the pre-trained word embeddings. Adam with the default hyperparameters was
used for optimisation - this significantly sped up training, since all models reached their best
test accuracy within 5 epochs. Other optimisers were tested for comparison, however they
failed to converge even after 100 epochs of training.

Figure 4.9 shows plots of train and test loss against the number of training epochs. It also
includes plots of loss against the amount of time spent training - this is the wall clock time
elapsed during training, as reported by TensorFlow. The time required to pre-train the word
embeddings on the training dataset was very small compared to the time spent training the
full model - around 8s for m = 30 and 22s for m = 300. The perplexity reached on the
training data after 5 epochs, as well as the lowest perplexity achieved on the test data, are
reported for each model in Table 4.1.

All models outperformed the n-gram models in Section 2.2.6, where the lowest test perplex-
ity of 237 was achieved by the smoothed bigram model. All models had started to overfit
to the training data by the end of the 5 epochs, as evidenced by the test loss starting to
rise again in the plots. Training could have been stopped automatically before this point by
using a validation dataset to determine when the model started to overfit - this is known as
early stopping [33].

52

0 1 2 3 4 5
Training Epochs

3.50

3.75

4.00

4.25

4.50

4.75

5.00
Tr

ai
ni

ng
 L

os
s

Random (m=30)
Random (m=300)
Sherlock (m=30)
Sherlock (m=300)
Google News (m=300)

0 500 1000 1500 2000 2500
Training time in seconds

3.50

3.75

4.00

4.25

4.50

4.75

5.00

Tr
ai

ni
ng

 lo
ss

Random (m=30)
Random (m=300)
Sherlock (m=30)
Sherlock (m=300)
Google News (m=300)

0 1 2 3 4 5
Training Epochs

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

5.20

Te
st

 L
os

s

Random (m=30)
Random (m=300)
Sherlock (m=30)
Sherlock (m=300)
Google News (m=300)

0 500 1000 1500 2000 2500
Training time in seconds

4.80

4.85

4.90

4.95

5.00

5.05

5.10

5.15

5.20

Te
st

 lo
ss

Random (m=30)
Random (m=300)
Sherlock (m=30)
Sherlock (m=300)
Google News (m=300)

Figure 4.9: Plots showing the changes in loss on the test and train datasets during training.

The models with higher dimensional embeddings achieved far lower perplexity on the train-
ing data, but performed similarly to the lower dimensional embeddings on the test data.
The key difference is that they took far longer to train - in situations where computation
power or time is limited, the best option is to use low dimensional embeddings initialised
with an efficient method like skip-gram with negative sampling.

Generally, models initialised with pre-trained word vectors outperformed those with ran-
dom initialisations, converging faster on the training data and generalising better to the
test data. The lowest train and test perplexity was achieved by initialising the embeddings
with the Google News vectors - using them allowed the model to take advantage of this
much larger dataset. However, the difference was not as big as one might expect - this is
likely because the Google News vectors were trained on modern American English articles,
so the word meanings were slightly different and many words (such as place names and
words with English spellings) were missing from the vocabulary and their embeddings had
to be trained from scratch.

Despite having fewer parameters than the equivalent n-gram model and being trained on
the same dataset, the neural models were more effective but took considerably longer to
train. The n-gram models in Section 2.2.6 took less than a minute to train, while the neural
models each took 10-45 minutes. Computing probabilities with the neural models was also
much slower - it took around a minute to evaluate the loss on the test and train datasets,
compared with a few seconds for the n-gram models. This is because calculating probabil-
ities using an n-gram model simply involves looking up each n-gram probability, while a
forward pass of the neural network is much more computationally expensive.

53

As in Section 2.2.6, we can gain some intuition for how the models view language by using
them to generate sentences. One way of doing this is to start with n − 1 padding tokens
and iteratively sample the next word in the sentence from the distribution defined by the
model’s output given the last n − 1 tokens. This is repeated until a sentence end token is
generated. Some sentences generated by the model with Google News initialisation are:

"I’ll be happy to read it to you and so that one has said against him."

"I helped myself in a chair pistol lay I closed the door behind him."

These sentences are quite close to making sense, and demonstrate some understanding
of grammar rules and word meanings, although the model’s memory of 4 words does
not allow it to remember how it started the sentence. This technique can also be em-
ployed to use the model to complete sentences. For example, given the sentence beginning
"<s> the murderer is" the model generated the sentence "The murderer is against

the law.".

4.4 Recurrent Neural Networks

We have seen how we can use feedforward neural networks to incorporate word embeddings
into language models, but this model suffers from the same limited context restriction as
an n-gram model. However, we can modify the neural network architecture to enable it to
handle arbitrarily long sequences of words.

One way of doing this is to use a recurrent neural network (RNN) [33]. RNNs are a
family of neural networks designed to process sequences element by element - given a se-
quence x(1), . . . ,x(T) of input data, the x(t) are fed into the network one at a time. Unlike
the feedforward networks we have seen so far, RNNs allow cycles in their structure - this
means that the output ŷ(t) of the network at time t depends not only on x(t) but also on
the internal state of the network at time t− 1.

We can think of this as the network continually updating and passing along a context vec-
tor h(t) representing information about the sequence up to time t. The dependence of the
network’s output on this context vector can be represented compactly as a cycle (Figure
4.10a), but it can be visualised more intuitively by ‘unrolling’ the RNN as in Figure 4.10b.

y

x

h N

^

(a) A simple RNN.

y1

x1

Nhh0

y2

x2

N
h1 h2

^ ^

(b) The same RNN unrolled.

Figure 4.10: RNN architecture.

54

We can use this idea to define a recurrent neural language model [45]. Given a sequence of
words w1, . . . , wT , let x(t) ∈ R|V | denote the one-hot vector representation of wt. At each
time step t ∈ {1, . . . , T} our aim is to estimate the probability distribution of wt+1 given
w1, . . . , wt. To do this, the network performs the following updates:

h(t) = N(x(t),h(t−1)) = σ(Wxt + V h(t−1)) ,

ŷ(t) = softmax(Uh(t)) .

Here, the parameters of the network are the matrices W ∈ Rdh×|V |, V ∈ Rdh×dh , and
U ∈ R|V |×dh . Note that this network has no bias vectors - Mikolov [46] chose to omit them
in order to simplify the model, having observed that including them as trainable parameters
had no significant impact on performance. This is equivalent to simply fixing all of the bias
parameters in the network to zero. Since x(t) is a one-hot vector, the matrix multiplication
Wx(t) simply extracts a column of W - this means that we can see W as a matrix of word
embeddings, similar to the embedding layer in the feedforward neural language model in
Section 4.3.

The RNN also requires an initial context vector h(0) - this can be set to 0, or included
as a trainable parameter. Training h(0) can be beneficial when the word sequences in the
training corpus are relatively short, for example if the dataset consists of tweets. This is
because h(0) usually only has a significant impact on the first few network outputs.

Notice that a given output ŷ(t) can be expressed as the output of a deep feedforward network
where the hidden layers share the same parameters - this is easier to see in Figure 4.10b,
where we can see that t copies of the hidden layer N are required to calculate ŷ(t). This
parameter sharing allows the RNN model to have a longer memory than the feedforward
model in Section 4.3, which must learn a separate set of parameters in its hidden layer
for each position in the input history. It makes some intuitive sense to share parameters
in this way: it is not the exact position of a word in the sequence that is important, but
rather the order of the words around it. For example, the phrase "I hated this film" in
a film review indicates a negative opinion regardless of where exactly in the review it appears.

Considering the unrolled RNN as a special feedforward network allows us to apply backpro-
pogation (Section 4.2.2) in the same way as for a normal feedforward network. This process
is known as backpropogation through time [35]. Since RNNs produce a sequence of
outputs there are several different ways to compute the loss, depending on the purpose of
the RNN. For language modelling, where the classification problem is next word prediction,
there is an obvious true label to compare to each output in the sequence: the word that
actually occurred next in the training data. In this case, we would use all of the outputs of
the RNN to compute the loss. However, if the RNN is to be used for a classification task
like sentiment analysis, then we might only use the final output of the RNN since we want
a classification decision based on the text as a whole.

The language models we have seen so far have all been word-based, with the classification
task being to predict the next word in a sequence. Considering words to be the building
blocks of language is an intuitive approach to take, but it is not the only one. It is also
possible to define character level language models, where we instead define the classifi-
cation task to be next character prediction. This is often not a practical approach to take
for n-gram based models, since next character prediction clearly has very long range de-
pendencies. For example, to understand spelling a character based model must look as far

55

back as the beginning of the current word, and understanding dependencies between words
requires a very long memory in characters. However, RNNs can be very effective at next
character prediction since they can capture these long range dependencies [47]. It is very
easy to adapt the architecture above for character level language modelling - we can simply
define the vocabulary to be a set of characters, including punctuation, spaces and special
characters. This approach can be used to generate computer code, for example, since this
is an application where words are not the key building blocks.

4.5 Discussion

This chapter introduced neural networks, a powerful class of models that can solve many of
the issues raised in previous chapters. However, in moving towards more complicated mod-
els we have sacrificed some of the qualities that make simpler models easy to understand
and interpret - it is easy to interpret the parameters of logistic regression and analyse their
influences on the final classification decision (see Section 3.4), but this is much harder for
neural networks. It is possible to make some deductions about the influence of individual
neurons by looking at their activations while processing a dataset. For example, in character
level RNNs it is possible to identify neurons that are responsible for keeping track of whether
speech marks or parentheses are open, since they only have high activations when processing
characters inside quotes or brackets [47]. However, many of the features extracted by neural
networks do not have a clear interpretation. Even if the network performs well on a test
dataset, this does not guarantee that the features it is extracting are truly useful or match
up to our intuition of what features are relevant for the task.

We can illustrate this issue by generating adversarial examples. This is a process where
an existing member of the dataset that is correctly classified by the model is transformed
slightly in such a way that its true label does not change, but the model misclassifies it. We
encountered an example of this for the naive Bayes classifier in Section 2.1.2, where using
Alfred Hitchcock’s full name caused the classifier to misclassify a negative review as positive
despite the fact that it didn’t change the meaning of the sentence.

Adversarial examples generated for neural networks show that things can go wrong in sur-
prising ways. Some of the clearest examples of this are in image processing - for example,
it is possible to fool state-of-the-art image classifiers by changing only a single pixel of the
input image [48]. This is a change that is almost imperceptible to the human eye but causes
the classifier to make incorrect predictions with a high degree of confidence - this shows that
the network’s ‘reasoning’ does not match up with our intuitions for this task. This is not
a purely theoretical concern - it is possible to create physical objects that are adversarial
examples even when photographed from different angles [49]. It is also possible to design
adversarial examples for deep natural language models: for example, Alzantot et al. [50]
generated adversarial reviews for an RNN trained for sentiment analysis on the IMDb film
review dataset by changing a handful of words to close synonyms.

The question of how to make neural networks robust to this kind of attack is currently
an open problem - adding the adversarial examples to the training dataset can help in
some cases, and improving model interpretability is a key issue in increasing trust in neural
networks’ decisions. This is a serious concern for real world applications where there is
an incentive to mislead the model - for example, there is a huge financial incentive to fool
models responsible for detecting money laundering.

56

Chapter 5

Conclusion

5.1 Summary

In this report, we looked at several key issues in language modelling and the effectiveness
of different approaches in handling them. We started off by introducing n-gram language
models. This is a simple and somewhat intuitive approach, where we estimate the likelihood
of the next word in a sequence by counting the number of times it appeared in that context
in the training dataset.

These models have the advantage of being easy to fit and easy to interpret, however are
limited by the fact that they learn about each word independently of the others in the vo-
cabulary. Since they are unable to take advantage of word similarities, they suffer greatly
from the sparsity issue inherent in language modelling: due to the large vocabulary and
Zipfian distribution of words, most n-grams are observed rarely and the majority are never
seen. This restricts the length of the word history that n-gram models can take into account
- in Section 2.2.6, we saw that n-grams with add-α smoothing performed very badly with
histories longer than one word. While we can improve performance by using information
from lower order n-grams via interpolation or backoff, in practice this only allows us to in-
crease the word history’s length to two. This is good enough for some applications - n-gram
models are used in statistical machine translation [16], and we saw in Section 2.1.2 that even
the unigram model can be useful in classification.

The key trick to training better language models is to learn useful representations of words -
in Chapter 3, we saw that the skip-gram algorithm can do this efficiently in a self-supervised
manner, successfully capturing intuitive word similarities. In Chapter 4, we saw how these
embeddings can be used in neural language models to help overcome the data sparsity and
improve generalisation. We saw in Section 4.3.1 that this approach significantly outper-
formed the n-gram models trained in Section 2.2.6, allowing us to train a model that could
handle histories of length 4. We also introduced recurrent neural network models, which
can use histories of arbitrary length.

We saw that neural models are more powerful than the models introduced previously, but
are also more difficult to train and harder to interpret. However, it is important to avoid
treating them as black boxes - they tend to pick up biases in their training data, and despite
their power they are still vulnerable to surprising adversarial attacks.

57

5.2 Further Work

This section will discuss some possible extensions to the work in this report, as well as
touching on some state-of-the-art techniques in natural language processing.

It would have been interesting to train a word-based RNN model on the Sherlock Holmes
corpus to compare performance with the limited context models. However, in practice, the
basic RNN model defined in Section 4.4 will still struggle to capture very long range depen-
dencies - this is due to an issue known as the vanishing gradients problem [41], where
the computed gradients quickly tend to zero during backpropogation so that earlier inputs
have a very small impact on parameter updates.

One solution to this problem is to use the Long Short-Term Memory (LSTM) [15] RNN
architecture - as well as passing on a hidden state at each iteration, an LSTM adds a mem-
ory cell ct that serves as the model’s long term memory. ct is updated as a gated sum of
ct−1 and an update computed from the current input xt and previous hidden state ht−1.
The LSTM uses several gates (which can be seen as smooth versions of logic gates like AND

or OR) to determine when new information should be added to or forgotten from ct, and to
decide what information should be passed on through ht.

We saw in Section 4.3.1 that the performance of the Sherlock Holmes neural models could be
improved by initialising the embedding layer with pre-trained word vectors, and in partic-
ular by initialising the model with embeddings pre-trained on a larger dataset. A key issue
in this fine-tuning approach is that the model can forget useful information learned during
pre-training, a problem known as catastrophic forgetting. One solution to this issue is
to adjust the learning rate for pre-trained parameters [37], since using a lower learning rate
prevents them from moving too far from their initialisation. It would have been interesting
to see if changing the learning rate for the pre-trained embeddings in Section 4.3.1 improved
performance, particularly for the embeddings pre-trained on the larger Google News dataset.

This idea of using pre-trained parameter initialisations is the key trick behind much of the
current state of the art in natural language processing, since it allows complex models trained
on very large datasets to be adapted for use with smaller datasets. For example, in Section
3.6 we touched on the idea of contextual word embeddings, with BERT as an example.
BERT is a very versatile tool that is designed to be fine-tuned for natural language tasks
by adding a task-specific output layer - for example, BERT can be used for classification
by padding the input text with a classification token and passing its contextual embedding
to a classification output layer that is learned from scratch. Sun et al. [51] achieved 95.8%
accuracy on the IMDb sentiment analysis dataset by fine-tuning BERT in this way, using a
small learning rate to avoid catastrophic forgetting.

One model commonly considered to be the current state of the art in language modelling is
GPT-3 [52], a neural model that owes much of its success to its enormous size (175 billion
parameters) as well as the size and diversity of its training data. GPT-3 is capable of
generating text that is almost indistinguishable from text written by humans, as well as
being able to adapt to new tasks given only a handful of examples. This is known as few-
shot learning, and the approach taken by GPT-3 actually requires no parameter updates
- a very short task description, example, and prompt can simply be input to the model
which then completes the prompt. Such tasks include generating an article given a title and
subtitle, or using a new word in a sentence given a definition of the word.

58

Bibliography

[1] A. C. Doyle. A Study in Scarlet. Project Gutenberg, 1995. Retrieved February 2021,
from https://www.gutenberg.org/ebooks/244.

[2] A. C. Doyle. The Sign of the Four. Project Gutenberg, 2000. Retrieved February 2021,
from https://www.gutenberg.org/ebooks/2097.

[3] A. C. Doyle. The Hound of the Baskervilles. Project Gutenberg, 2001. Retrieved
February 2021, from https://www.gutenberg.org/ebooks/2852.

[4] A. C. Doyle. The Valley of Fear. Project Gutenberg, 2002. Retrieved February 2021,
from https://www.gutenberg.org/ebooks/3776.

[5] A. C. Doyle. The Adventures of Sherlock Holmes. Project Gutenberg, 1999. Retrieved
February 2021, from https://www.gutenberg.org/ebooks/1661.

[6] A. C. Doyle. The Return of Sherlock Holmes. Project Gutenberg, 2006. Retrieved
February 2021, from https://www.gutenberg.org/ebooks/108.

[7] A. C. Doyle. The Memoirs of Sherlock Holmes. Project Gutenberg, 1997. Retrieved
February 2021, from https://www.gutenberg.org/ebooks/834.

[8] A. C. Doyle. His Last Bow: An Epilogue of Sherlock Holmes. Project Gutenberg, 2000.
Retrieved February 2021, from https://www.gutenberg.org/ebooks/2350.

[9] C. Manning and H. Schütze. Foundations of Statistical Natural Language Processing.
MIT Press, 1999.

[10] D. Jurafsky and J. H. Martin. Speech and Language Processing. Prentice Hall, 3rd
edition. December 2020 draft accessed at https://web.stanford.edu/~jurafsky/

slp3.

[11] A. Ng and M. Jordan. On Discriminative vs. Generative Classifiers: A comparison of
logistic regression and naive Bayes. In T. Dietterich, S. Becker, and Z. Ghahramani,
editors, Advances in Neural Information Processing Systems, volume 14. MIT Press,
2002.

[12] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng,
and Christopher Potts. Learning word vectors for sentiment analysis. In Proceedings
of the 49th Annual Meeting of the Association for Computational Linguistics: Human
Language Technologies, pages 142–150, Portland, Oregon, USA, June 2011. Association
for Computational Linguistics.

[13] TensorFlow Datasets, a collection of ready-to-use datasets. https://www.tensorflow.
org/datasets.

59

https://www.gutenberg.org/ebooks/244
https://www.gutenberg.org/ebooks/2097
https://www.gutenberg.org/ebooks/2852
https://www.gutenberg.org/ebooks/3776
https://www.gutenberg.org/ebooks/1661
https://www.gutenberg.org/ebooks/108
https://www.gutenberg.org/ebooks/834
https://www.gutenberg.org/ebooks/2350
https://web.stanford.edu/~jurafsky/slp3
https://web.stanford.edu/~jurafsky/slp3
https://www.tensorflow.org/datasets
https://www.tensorflow.org/datasets

[14] F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel,
P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot, and E. Duchesnay. Scikit-learn: Machine learning in Python.
Journal of Machine Learning Research, 12:2825–2830, 2011.

[15] J. Eisenstein. Introduction to Natural Language Processing. MIT Press, 2019. URL
https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes.

[16] P. Koehn. Statistical Machine Translation. Cambridge University Press, 2009.

[17] W. A. Gale and K. W. Church. What’s wrong with adding one? In Corpus-Based
Research into Language, pages 189–198. Rodolpi, 1994.

[18] T. Hastie, R. J. Tibshirani, and J. H. Friedman. The Elements of Statistical Learning.
Springer, 2nd edition, 2017.

[19] F. Jelinek and R. L. Mercer. Interpolated estimation of Markov source parameters from
sparse data. In Proceedings of the Workshop on Pattern Recognition in Practice, pages
381–397. North Holland, 1980.

[20] S. M. Katz. Estimation of probabilities from sparse data for the language model com-
ponent of a speech recognizer. IEEE Trans. Acoust. Speech Signal Process., 35:400–401,
1987.

[21] S. F. Chen and J. Goodman. An empirical study of smoothing techniques for language
modeling. Computer Speech and Language, 13(4):359–394, 1999.

[22] N. Smith. Contextual word representations: Putting words into computers. Commu-
nications of the ACM, 63(6):66–74, 2020.

[23] T. Mikolov, W. Yih, and G. Zweig. Linguistic regularities in continuous space word
representations. In Proceedings of the 2013 Conference of the North American Chap-
ter of the Association for Computational Linguistics: Human Language Technologies,
Atlanta, Georgia, 2013. Association for Computational Linguistics.

[24] T. Mikolov, K. Chen, G. Corrado, and J. Dean. Efficient estimation of word represen-
tations in vector space. In ICLR, 2013.

[25] T. Mikolov, I. Sutskever, K. Chen, G. Corrado, and J. Dean. Distributed representations
of words and phrases and their compositionality. In Advances in Neural Information
Processing Systems, volume 26. Curran Associates, Inc., 2013.

[26] G. James, D. Witten, T. Hastie, and R. Tibshirani. An Introduction to Statistical
Learning. Springer, 2013.

[27] A. Cauchy. Méthode générale pour la résolution des systèmes d’équations simultanées.
Comptes rendus de l’Académie des Sciences, 25:536–538, 1847.

[28] D. Bertsekas. Nonlinear programming. Athena Scientific, 2nd edition, 1999.

[29] H. Robbins and S. Monro. A stochastic approximation method. The Annals of Math-
ematical Statistics, 22(3):400–407, 1951.

[30] L. Bouttou, F. Curtis, and J. Nocedal. Optimization methods for large-scale machine
learning. SIAM Review, 60(2):223–311, 2018.

60

https://github.com/jacobeisenstein/gt-nlp-class/blob/master/notes

[31] L. Bottou. Online algorithms and stochastic approximations. In Online Learning and
Neural Networks. Cambridge University Press, Cambridge, UK, 1998. revised, oct 2012.

[32] S. Ruder. An overview of gradient descent optimization algorithms. 2017. arXiv
preprint arXiv:1609.04747.

[33] I. Goodfellow, Y. Bengio, and A. Courville. Deep Learning. MIT Press, 2016. http:

//www.deeplearningbook.org.

[34] A. Agresti. Categorical Data Analysis. Wiley Series in Probability and Statistics Ser.
John Wiley & Sons, Incorporated, 2nd edition, 2002.

[35] Y. Goldberg. A primer on neural network models for natural language processing.
Journal of Artificial Intelligence Research, 57, 2015.

[36] R. Řeh̊uřek and P. Sojka. Software Framework for Topic Modelling with Large Corpora.
In Proceedings of the LREC 2010 Workshop on New Challenges for NLP Frameworks,
pages 45–50, Valletta, Malta, May 2010. ELRA. http://is.muni.cz/publication/

884893/en.

[37] S. Ruder, M. E. Peters, S. Swayamdipta, and T. Wolf. Transfer learning in natural
language processing. In Proceedings of the 2019 Conference of the North American
Chapter of the Association for Computational Linguistics: Tutorials, pages 15–18, 2019.
Expanded version: https://ruder.io/state-of-transfer-learning-in-nlp/.

[38] T. Mikolov, Q. Le, and I. Sutskever. Exploiting similarities among languages for ma-
chine translation. arXiv preprint arXiv:1309.4168.

[39] J. Devlin, M. Chang, K. Lee, and K. Toutanova. BERT: Pre-training of deep bidirec-
tional transformers for language understanding. In Proceedings of the 2019 Conference
of the North American Chapter of the Association for Computational Linguistics: Hu-
man Language Technologies, Volume 1 (Long and Short Papers), pages 4171–4186,
Minneapolis, Minnesota, 2019. Association for Computational Linguistics.

[40] T. Bolukbasi, K.-W. Chang, J. Y. Zou, V. Saligrama, and A. T. Kalai. Man is to
computer programmer as woman is to homemaker? Debiasing word embeddings. In
D. Lee, M. Sugiyama, U. Luxburg, I. Guyon, and R. Garnett, editors, Advances in
Neural Information Processing Systems, volume 29. Curran Associates, Inc., 2016.

[41] K. Cho. Natural language understanding with distributed representation, 2015. arXiv
preprint arXiv:1511.07916.

[42] D. P. Kingma and J. Ba. Adam: A method for stochastic optimization, 2014. arXiv
preprint arXiv:1412.6980.

[43] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado,
A. Davis, J. Dean, M. Devin, S. Ghemawat, I. Goodfellow, A. Harp, G. Irving, M. Is-
ard, Y. Jia, R. Jozefowicz, L. Kaiser, M. Kudlur, J. Levenberg, D. Mané, R. Monga,
S. Moore, D. Murray, C. Olah, M. Schuster, J. Shlens, B. Steiner, I. Sutskever, K. Tal-
war, P. Tucker, V. Vanhoucke, V. Vasudevan, F. Viégas, O. Vinyals, P. Warden, M. Wat-
tenberg, M. Wicke, Y. Yu, and X. Zheng. TensorFlow: Large-scale machine learning on
heterogeneous systems, 2015. Software available from https://www.tensorflow.org/.

[44] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin. A neural probabilistic language
model. Journal of Machine Learning Research, 3:1137–1155, 2003.

61

http://www.deeplearningbook.org
http://www.deeplearningbook.org
http://is.muni.cz/publication/884893/en
http://is.muni.cz/publication/884893/en
https://ruder.io/state-of-transfer-learning-in-nlp/
https://www.tensorflow.org/

[45] T. Mikolov, M. Karafiát, L. Burget, J. Cernocký, and S. Khudanpur. Recurrent neural
network based language model. In Proceedings of the 11th Annual Conference of the
International Speech Communication Association, INTERSPEECH 2010, volume 2,
pages 1045–1048, 2010.

[46] T. Mikolov. Statistical language models based on neural networks. PhD thesis, Brno
University of Technology, 2012.

[47] A. Karpathy. The unreasonable effectiveness of recurrent neural networks, 2015. http:
//karpathy.github.io/2015/05/21/rnn-effectiveness/.

[48] J. Su, D. Vargas, and K. Sakurai. One pixel attack for fooling deep neural networks.
IEEE Transactions on Evolutionary Computation, 23(5):828–841, 2019.

[49] A. Athalye, L. Engstrom, A. Ilyas, and K. Kwok. Synthesizing robust adversarial exam-
ples. In J. Dy and A. Krause, editors, Proceedings of the 35th International Conference
on Machine Learning, volume 80 of Proceedings of Machine Learning Research, pages
284–293, 2018.

[50] M. Alzantot, Y. Sharma, A. Elgohary, B. Ho, M. Srivastava, and K. Chang. Generating
natural language adversarial examples. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing, pages 2890–2896, Brussels, Belgium,
2018. Association for Computational Linguistics.

[51] C. Sun, X. Qiu, Y. Xu, and X. Huang. How to fine-tune BERT for text classifica-
tion? In M. Sun, X. Huang, H. Ji, Z. Liu, and Y. Liu, editors, Chinese Computational
Linguistics, pages 194–206. Springer, Cham, 2019.

[52] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. D. Kaplan, P. Dhariwal, A. Nee-
lakantan, P. Shyam, G. Sastry, A. Askell, S. Agarwal, A. Herbert-Voss, G. Krueger,
T. Henighan, R. Child, A. Ramesh, D. Ziegler, J. Wu, C. Winter, C. Hesse, M. Chen,
E. Sigler, M. Litwin, S. Gray, B. Chess, J. Clark, C. Berner, S. McCandlish, A. Radford,
I. Sutskever, and D. Amodei. Language models are few-shot learners. In H. Larochelle,
M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, Advances in Neural In-
formation Processing Systems, volume 33, pages 1877–1901. Curran Associates, Inc.,
2020.

62

http://karpathy.github.io/2015/05/21/rnn-effectiveness/
http://karpathy.github.io/2015/05/21/rnn-effectiveness/

	Introduction
	Language Modelling
	Definitions
	Key Issues

	N-Gram Models
	Bag-of-Words
	Naive Bayes Classifier
	Naive Bayes for Sentiment Analysis

	Higher Order N-Grams
	Maximum Likelihood Estimation
	Data Sparsity
	Restricting the Vocabulary
	Smoothing
	Evaluation
	Sherlock Holmes Data
	Interpolation and Backoff

	Discussion

	Word Embeddings
	Word2Vec
	Logistic Regression
	Stochastic Gradient Descent
	Fitting a Logistic Regression with SGD
	Toy Example

	Logistic Regression for Sentiment Analysis
	Comparing Logistic Regression to Naive Bayes

	The Skip-Gram Model
	Skip-Gram with Negative Sampling
	Hyperparameters and Training

	Discussion

	Neural Models
	Neural Units
	Feedforward Neural Networks
	Categorical Cross-Entropy
	Backpropogation
	Accelerating Convergence of SGD
	Toy Example

	Neural Language Models
	Sherlock Holmes Data

	Recurrent Neural Networks
	Discussion

	Conclusion
	Summary
	Further Work

