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Background

A language model aims to assign a probability to a sequence of words, based
on how likely they are to be spoken by a native speaker. They have many uses in
text analysis - for example, next word prediction or grammar checking.

A key issue in language modelling is the large vocabulary size - we must model
the meanings and interactions of millions of unique words. Models that consider
words to be a list of discrete items in a vocabulary suffer from data sparsity issues
even with large datasets, and cannot take advantage of similarities between
words.

One solution to this is word embeddings: we map words to vectors in Rd ,
designing the map so that words with similar meanings are mapped to vectors
that are close together. These vectors will be low dimensional (100 ≤ d ≤ 1000)
compared to the vocabulary size.

This poster focuses on skip-gram with negative sampling, which obtains
embeddings by assuming that words with similar meanings appear in similar
contexts. Embeddings will be obtained by using a logistic regression to
distinguish between real context words and random ones, and stochastic gradient
descent will be used to fit the model.
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(a) Toy data for a logistic regression
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(b) Fitting a logistic regression to the toy data with SGD

Figure 1

Logistic Regression

Logistic regression models the probability that an observation x
(i) ∈ Rd belongs

to a class y (i) ∈ {0, 1} by passing a linear expression to the sigmoid function, σ:

σ(z) =
1

1 + e−z

This takes inputs in (−∞,∞) and outputs values in (0, 1), allowing us to model
the probability of observation i belonging to class 1 as follows:

p̂i := P(y (i) = 1 | x (i)) = σ(β · x (i)) ,

with parameter β ∈ Rd . The probability that the class is 0 is simply defined as:

1− p̂i = σ(−β · x (i)) ,

The model can be fitted using maximum likelihood estimation. Assuming
observations are independent Bernoulli random variables, the log likelihood for N
observations is:

L(β) =
N∑
i=1

L(β; x (i), y (i)) =
N∑
i=1

y (i) log p̂i + (1− y (i)) log(1− p̂i)

The sigmoid function will be used to model the probability of some word wj

appearing in the context of another word wi . The pair (wi ,wj) will be labelled as
class 1 if wj was observed near wi and 0 otherwise.

Skip-Gram with Negative Sampling

A context word for wi will be defined as any word appearing within a window of
length l around wi anywhere in the training text. Consider the sentence:

Sing, and the hills will answer.

If we set l = 2 the observed context words, or positive samples, for “hills” are
“the” and “will”. Ignoring word order, we can represent these as the
target-context pairs or skip-grams (hills,the) and (hills,will).

Training data for our model is created by treating all words observed as context
words of the target as positive samples, and randomly generating negative
samples from the rest of the vocabulary. For each positive sample (w ,w+), we
generate k negative samples (w ,w−j ). In our example, (hills,sing) and
(hills,answer) are possible negative samples since “sing” and “answer” were not
observed within our context window for “hills”.

We define two sets of embeddings, the target embeddings vwi
and the

context embeddings cwj
. Using logistic regression, the probability of wj being

a real context word for wi will be defined in terms of these embeddings as:

P(wj |wi) = σ(vwi
· cwj

)

The context embeddings can be discarded after training, although in practice
they are often added or concatenated to the target embeddings instead. Making
the assumption that context words occur independently of each other, the log
likelihood for one positive observation and k negative is:

log
(
P(w+|w)

k∏
j=1

(1− P(w−j |w))
)

= log σ(cw+ · vw) +
k∑

j=1

log σ(−cw−
j
· vw)

The total log likelihood for a dataset is obtained by summing over each positive
sample for every observation of the word, for each word in the vocabulary.

Stochastic Gradient Descent (SGD)

Gradient descent aims to find the parameters θ ∈ Rd that minimise a loss
function L(θ) by updating θ in the opposite direction to the gradient ∇L.
We assume L is the average loss per observation, taking the form

L(θ) =
1

N

N∑
i=1

L(θ; x (i), y (i)), with ∇L(θ) =
1

N

N∑
i=1

∇θL(θ; x (i), y (i))

Computing ∇L is very computationally expensive for large datasets, since a
calculation is required for every observation. A more efficient method is
stochastic gradient descent, which takes a random sample at each iteration to
compute an unbiased estimate of the gradient:

Set starting value θ0 and step size η > 0. Iterate the following for t ≥ 1:
1 Take random sample b of size m from the dataset

2 Estimate gradient: g t ← 1
m

∑
x ,y∈b∇θL(θt−1; x , y)

3 Update parameters: θt ← θt−1 − η gt

By setting the loss function to be the 1
N times the negative log likelihood, we can

use SGD for maximum likelihood estimation, as seen in Figure 1(b).

The erratic behaviour of the walk can make it easier to escape suboptimal local
minima and saddle points when the loss function is non-convex. Note that this is
the case for skip-gram - applying a rotation to all of the vectors will preserve dot
products and hence the log likelihood, so there is no unique minimum.

Training Word Embeddings

The dataset was the text of all public domain Sherlock Holmes novels and
short stories, available on Project Gutenberg. To simplify the task, all
punctuation was removed, splitting contractions like “I’ve” and “he’s” into two
words instead of treating them as distinct words. Capitalisation was also removed
and numbers replaced with a # token.

In total the dataset had around 580 000 words, with a vocabulary size of
17 500. Since it was a relatively small dataset, a small embedding dimension
d = 100 was chosen, with k = 5 and l = 10. Any words with less than 10
occurrences in the dataset were discarded.

Since the loss function was non-convex, results varied a lot depending on the
random initialisation and training was repeated several times with different
random seeds.
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Figure 2: The embeddings for 110 common words from Sherlock Holmes, normalised and then projected into 2D

with principal component analysis. Some clusters with high cosine similarity are highlighted in red.

Conclusions and Future Work
The model did well at grouping words with similar meanings together, using the
cosine similarity - the cosine of the angle between vectors - to measure vector
similarity. Some examples were: you was most similar to yourself, brother was
most similar to son, and crime was most similar to murder. This worked best
for more common words - due to the small amounts of training data for rarer
words, their embeddings did not move far from their random initialisation.

An embedding layer is typically included as the first layer in neural network
models for language, which is what this project will focus on next. Embeddings
can be trained as part of the network or trained separately to cut down on
training time - skip-gram with negative sampling is an efficient way of doing this.
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