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Background - Language Models

A language model aims to assign a probability to a sequence of
words, based on how likely they are to be spoken by a native
speaker. They have many uses in text analysis - for example, next
word prediction, grammar checking, and translation.
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Background - Language Models

A language model aims to assign a probability to a sequence of
words, based on how likely they are to be spoken by a native
speaker. They have many uses in text analysis - for example, next
word prediction, grammar checking, and translation.

A key issue in language modelling is the large vocabulary size -
we must model the meanings and interactions of millions of unique
words. It would be useful to exploit similarities between words.
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Background - Word Embeddings

One solution to this is word embeddings: we map words to
vectors in RY, designing the map so that words with similar
meanings are mapped to vectors that are close together.
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vectors in RY, designing the map so that words with similar
meanings are mapped to vectors that are close together.

These vectors will be low dimensional (100 < d < 1000) compared
to the vocabulary size.
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Background - Word Embeddings

One solution to this is word embeddings: we map words to
vectors in RY, designing the map so that words with similar
meanings are mapped to vectors that are close together.

These vectors will be low dimensional (100 < d < 1000) compared
to the vocabulary size.

We will focus on skip-gram with negative sampling, which
obtains embeddings by assuming that words with similar meanings
appear in similar contexts.

Connie Trojan, Supervisor: Jonathan Cumming

Word Embeddings for Language Modelling



Skip-Gram with negative Sampling

m Embeddings will be obtained by training a model to
distinguish between real context words and random ones
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Skip-Gram with negative Sampling

m Embeddings will be obtained by training a model to
distinguish between real context words and random ones

m A real context word or positive sample for word w; will be

defined as any word that appears within a window of length /
around w; anywhere in the training text
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Skip-Gram with negative Sampling

m Embeddings will be obtained by training a model to
distinguish between real context words and random ones

m A real context word or positive sample for word w; will be
defined as any word that appears within a window of length /
around w; anywhere in the training text

m We randomly generate negative samples from the rest of the
vocabulary. For each positive sample (w, w™), we generate k

negative samples (w, w;").
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Example sentence: “Sing, and the hills will answer.”

If we set | = 2 the observed context words for “hills” are “the” and
“will”. We make the assumption that the order of the context
words is not important, representing these target-context pairs as
the skip-grams (hills,the) and (hills,will).

In our example, (hills,sing) and (hills,answer) are possible negative
samples since “sing” and “answer” were not observed within our
context window for “hills".
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We define two sets of embeddings, the target embeddings v,
and the context embeddings cy;. The dot product vy, - €y, will
be used to determine similarity.

The probability that w; is a true context word for w; is modelled by
passing this into the logistic function, o:

1

P (wjlwi) = (Vi * ) = ———ver

1+e

o takes inputs in (—o0, 00) and outputs values in (0, 1), so this is a
valid probability. The probability of w; not being a context word
for w; is simply:

1—o(vy, - cw) =0(—vw, - cw)
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Figure: The logistic function, y = = .
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Making the assumption that context words occur independently of
each other, the likelihood for one positive observation (w, w™) and

the corresponding k negative (w, w;") is:

k k
(wlw) [T~ B Iw)) = o(ewr - va) [[o(-e,- - va)
Jj=1 j=1

The total log likelihood for a dataset is obtained by summing the
log of this expression over each positive sample (w, wt) in the set
of observed context words C,, , for each word in the vocabulary V:

k
Z Z (Ioga(cw+ c V)t Zlog o(—c,-- vw))
weV wred, j=t '

Note that this has no unique maximum (rotating the vectors
preserves the log likelihood), but can still be optimised numerically.
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Gradient Descent

Gradient descent aims to find the parameters 6 € R that
minimise a loss function L(0) by updating 6 in the opposite
direction to the gradient VL.

Figure: Using gradient descent to find the minimum of y = x2.
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For likelihood maximisation, we set the loss function to be —%

times the log likelihood:

N
1 1 N
L(6) = —(6) =~ D €B:x, y0)
i=1

Then the gradient is:

N
1 . .
vL(8) = — § Vo £(0; x1), y )
=1

Computing VL is very computationally expensive for large datasets.
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Stochastic Gradient Descent

An efficient method is stochastic gradient descent (SGD), which
uses a random sample at each iteration to estimate the gradient:

Algorithm: SGD
Set starting value 6 and step size n > 0. lIterate the following for
t>1:

Take random sample b of size m from the dataset

Estimate the gradient at 8; by :

1
g — > Vol(6:-1;x,y)

X,yE€b
Update parameters: 0;: < 0:_1 — 1 g
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Sherlock Holmes

m The dataset was the text of all public domain Sherlock
Holmes novels and short stories
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Sherlock Holmes

m The dataset was the text of all public domain Sherlock
Holmes novels and short stories

m All punctuation was removed, splitting contractions like
“I've” and “he's” into two words
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Sherlock Holmes

m The dataset was the text of all public domain Sherlock
Holmes novels and short stories

m All punctuation was removed, splitting contractions like
“I've” and “he's” into two words

m In total the dataset had around 580 000 words, with a
vocabulary size of 17 500
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Sherlock Holmes

m The dataset was the text of all public domain Sherlock
Holmes novels and short stories

m All punctuation was removed, splitting contractions like
“I've” and “he's” into two words

m In total the dataset had around 580 000 words, with a
vocabulary size of 17 500

m A small embedding dimension d = 100 was chosen, with
k=5and /=10
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Sherlock Holmes

The dataset was the text of all public domain Sherlock
Holmes novels and short stories

All punctuation was removed, splitting contractions like
“I've” and “he's” into two words

In total the dataset had around 580 000 words, with a
vocabulary size of 17 500

m A small embedding dimension d = 100 was chosen, with
k=5and /=10

Fitted model several times with different random seeds
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Figure: The embeddings for 110 common words from Sherlock Holmes,

normalised and projected into 2D with principal component analysis
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Conclusions

m The model did well at grouping words with similar meanings
together

m e.g. you and yourself, brother and son, and crime and
murder

m This worked best for more common words - embeddings for
rarer words were still quite random

m More training data would be required to unlock the full
potential of word embeddings - state-of-the-art word vectors
are trained on datasets with over a billion words
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Future Work

m An embedding layer is typically included as the first layer in
neural network models for language, which is what this
project will focus on next
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Future Work

m An embedding layer is typically included as the first layer in
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m Embeddings can be trained as part of the network or trained
separately to cut down on training time - skip-gram with
negative sampling is an efficient way of doing this
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Future Work

m An embedding layer is typically included as the first layer in
neural network models for language, which is what this
project will focus on next

m Embeddings can be trained as part of the network or trained
separately to cut down on training time - skip-gram with
negative sampling is an efficient way of doing this

m It is also common to use a set of pre-trained word
embeddings out of the box if the dataset is small or
computational power is limited
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Any Questions?
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