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Markov Decision Processes

A Markov decision process (MDP) is a sequential
decision-making process

The decision maker or agent is in some state S from a finite
state space S and must select some action A from a finite
action set A(S).

After taking an action, the process moves to the next time
step, transitioning randomly to some new state S ′ according
to fixed transition probabilities P (S ′ | S ,A) and awarding a
reward R(S ,A) to the agent.
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Aims

Find the decision rule or policy π : S → A that maximises
expected reward in some sense.

For tasks that can continue indefinitely, “maximising total
reward” might not be a well defined objective.

Might maximise the rate at which reward is accumulated via
the long run limiting average reward:

lim
T→∞

1

T + 1

T∑
t=0

R(St ,At) .
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Discounted reward: maximise the total reward when a
discount factor γ ∈ [0, 1) is applied to future rewards.

∞∑
t=0

γt R(St ,At) .

The use of discounting might be motivated by a mechanism
like inflation, by which rewards earned in the future are less
valuable than those earned immediately.

In MDPs, an optimal policy for the limiting average case can
always be obtained by solving the discounted case for γ
sufficiently close to 1.

Connie Trojan

Stochastic Dynamic Optimisation



The Bellman Optimality Equations

It is always possible to find a stationary optimal policy.

The expected values of each state under an optimal policy are
uniquely defined by the Bellman Optimality Equations:

v(S) = max
A∈A(S)

{
R(S ,A) + γE

(
v(S ′) | S ,A

)}
We can find these values by linear programming: find the
smallest value vector that is ≥ the RHS for all states and
actions.

Also have algorithms like value and policy iteration that are
guaranteed to find an optimal policy in a finite number of
iterations.
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Example: Blackjack

On their turn, players have two choices: hit (be dealt another
card from the deck) or stick (stop drawing cards).

Assuming that the cards are dealt from a deck that is
sufficiently large, card draws are i.i.d. and each player plays
independently against the dealer.

The state space is defined by the player’s current total, the
dealer’s card, and whether or not the player has a useable ace.

We also have three possible terminal states: WIN, DRAW, and
LOSE with the player receiving a reward of 1, 0, or -1
respectively on transition.
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Figure: State values in blackjack

The state values can be found efficiently by linear programming
since the state and action spaces are relatively small, |S| = 344
and |A| = 2.
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Figure: Optimal blackjack strategy

Can calculate expected reward as the expected value of your
starting state: −0.047. True optimal strategy - don’t play at all.
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Stochastic Games

A stochastic game is the multi-agent version of an MDP,
where there is more than one agent or player, and the state
transitions and rewards can depend on all of their choices.

They can also be seen as the sequential, stochastic
generalisation of a matrix game.

The key objective is to identify Nash equilibrium policies,
defined as pairs of strategies where neither player can get a
better expected reward by unilaterally changing their strategy.
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Key Questions

Do stationary Nash equilibrium strategies exist?

Are they “optimal”?

How can we find them?
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Key Questions (without easy answers)

Do stationary Nash equilibrium strategies exist? (not always)

Are they “optimal”? (not always)

How can we find them? (can be complicated)
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When do stationary equilibrium strategies exist?

Nash equilibrium stationary strategies always exist for
stochastic games with discounted rewards.

Shapley’s theorem for 2-player zero-sum SGs: The value vt(S)
of starting the game in state S at time t is the value of the
matrix game Γ(S) with rewards:

[Γ(S)]i ,j = R(S ,A1
i ,A

2
j ) + γ

∑
S ′∈S

P
(
S ′ |S ,A1

i ,A
2
j

)
v(S ′) .

For limiting average reward, stationary NE strategies do not
always exist.
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Example: The Big Match

Two-player zero-sum stochastic game with limiting average
reward. Has 3 states with the reward matrices:

Γ(1) =

(
1 0
0 1

)
, Γ(2) =

(
0
)
, Γ(3) =

(
1
)
.

In state 1, players can choose either 0 or 1. If both make the
same choice, player 1 receives a reward of 1 from player 2.

If player 1 chooses 0, they stay in state 1. If player 1 chooses
1, they are absorbed in state 2 if player 2 chose 0, or 3
otherwise.

There are no stationary NE strategies.
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What is “optimal” play?

If all of the games are zero-sum, all Nash equilibria will have
the same value. If we can find a stationary NE then we are
done.

Otherwise, it is possible to have multiple (stationary) Nash
equilibria with different values.

Might be necessary to relax objective of finding stationary
equilibrium strategies: e.g. cyclic equilibria.

Connie Trojan

Stochastic Dynamic Optimisation



Example: Iterated Prisoner’s Dilemma

The prisoner’s dilemma has the following payoffs:

You co-operate You betray

Opponent co-operates -1 0
Opponent betrays -3 -2

Unique Nash equilibrium: (betray, betray).

When the game is repeated indefinitely (SG with one state),
this is the only stationary Nash equilibrium.

Many non-stationary NE strategies have better
average/discounted reward: e.g. tit-for-tat.
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How can we find stationary equilibria?

Can for example derive an algorithm analogous to value
iteration from Shapley’s theorem.

However, there is no guarantee of being able to find a
stationary equilibrium policy from the game data in a finite
number of iterations.

It is possible for stochastic games to lack the ordered field
property: a game with rational data could have an optimal
strategy with irrational entries.

Some classes of SG with this property are known, e.g. single
and switching controller games.
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Further Research

When do rational stochastic games have the ordered field
property?

Multi-agent reinforcement learning - how can policies be
learned from interaction with a system whose dynamics are
not known?

Partial observability - what can be done if we only have partial
information about the state?
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Any Questions?
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