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Markov Decision Processes

m A Markov decision process (MDP) is a sequential
decision-making process

m The decision maker or agent is in some state S from a finite
state space S and must select some action A from a finite
action set A(S).

m After taking an action, the process moves to the next time
step, transitioning randomly to some new state S’ according
to fixed transition probabilities P(S’|S, A) and awarding a
reward R(S, A) to the agent.
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Aims

m Find the decision rule or policy 7 : § — A that maximises
expected reward in some sense.

m For tasks that can continue indefinitely, “maximising total
reward” might not be a well defined objective.

m Might maximise the rate at which reward is accumulated via
the long run limiting average reward:
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m Discounted reward: maximise the total reward when a
discount factor «y € [0, 1) is applied to future rewards.
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m The use of discounting might be motivated by a mechanism
like inflation, by which rewards earned in the future are less
valuable than those earned immediately.

m In MDPs, an optimal policy for the limiting average case can

always be obtained by solving the discounted case for
sufficiently close to 1.
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The Bellman Optimality Equations

It is always possible to find a stationary optimal policy.

The expected values of each state under an optimal policy are
uniquely defined by the Bellman Optimality Equations:

v(S) = Aemj(xs) {R(S,A)+E (v(5)|S,A)}

We can find these values by linear programming: find the
smallest value vector that is > the RHS for all states and
actions.

Also have algorithms like value and policy iteration that are
guaranteed to find an optimal policy in a finite number of
iterations.
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Example: Blackjack

m On their turn, players have two choices: hit (be dealt another
card from the deck) or stick (stop drawing cards).

m Assuming that the cards are dealt from a deck that is
sufficiently large, card draws are i.i.d. and each player plays
independently against the dealer.

m The state space is defined by the player's current total, the
dealer’s card, and whether or not the player has a useable ace.

m We also have three possible terminal states: WIN, DRAW, and
LOSE with the player receiving a reward of 1, 0, or -1
respectively on transition.
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Figure: State values in blackjack

The state values can be found efficiently by linear programming
since the state and action spaces are relatively small, |S| = 344

and |A| = 2.
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Figure: Optimal blackjack strategy

Can calculate expected reward as the expected value of your
starting state: —0.047. True optimal strategy - don't play at all.
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Stochastic Games

m A stochastic game is the multi-agent version of an MDP,
where there is more than one agent or player, and the state
transitions and rewards can depend on all of their choices.

m They can also be seen as the sequential, stochastic
generalisation of a matrix game.

m The key objective is to identify Nash equilibrium policies,

defined as pairs of strategies where neither player can get a
better expected reward by unilaterally changing their strategy.
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Key Questions

m Do stationary Nash equilibrium strategies exist?
m Are they “optimal”?

= How can we find them?
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Key Questions (without easy answers)

m Do stationary Nash equilibrium strategies exist? (not always)
m Are they “optimal’? (not always)

m How can we find them? (can be complicated)
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When do stationary equilibrium strategies exist?

m Nash equilibrium stationary strategies always exist for
stochastic games with discounted rewards.

m Shapley’s theorem for 2-player zero-sum SGs: The value v¢(S)
of starting the game in state S at time t is the value of the
matrix game '(S) with rewards:

[F(S)lij = R(S, AL AY) +7 > P (S'|S, AL AZ) v(S).
S'eS

m For limiting average reward, stationary NE strategies do not
always exist.

Connie Trojan
Stochastic Dynamic Optimisation



Example: The Big Match

m Two-player zero-sum stochastic game with limiting average
reward. Has 3 states with the reward matrices:

=g 5 ) r@=(0). ®=(1).

m In state 1, players can choose either 0 or 1. If both make the
same choice, player 1 receives a reward of 1 from player 2.

m If player 1 chooses 0, they stay in state 1. If player 1 chooses
1, they are absorbed in state 2 if player 2 chose 0, or 3
otherwise.

m There are no stationary NE strategies.
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What is “optimal” play?

m If all of the games are zero-sum, all Nash equilibria will have
the same value. If we can find a stationary NE then we are
done.

m Otherwise, it is possible to have multiple (stationary) Nash
equilibria with different values.

m Might be necessary to relax objective of finding stationary
equilibrium strategies: e.g. cyclic equilibria.
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Example: lterated Prisoner’'s Dilemma

m The prisoner’s dilemma has the following payoffs:

You co-operate  You betray
Opponent co-operates -1 0
Opponent betrays -3 -2

m Unique Nash equilibrium: (betray, betray).

m When the game is repeated indefinitely (SG with one state),
this is the only stationary Nash equilibrium.

m Many non-stationary NE strategies have better
average/discounted reward: e.g. tit-for-tat.
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How can we find stationary equilibria?

m Can for example derive an algorithm analogous to value
iteration from Shapley’s theorem.

m However, there is no guarantee of being able to find a
stationary equilibrium policy from the game data in a finite
number of iterations.

m It is possible for stochastic games to lack the ordered field
property: a game with rational data could have an optimal
strategy with irrational entries.

m Some classes of SG with this property are known, e.g. single
and switching controller games.
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Further Research

m When do rational stochastic games have the ordered field
property?

m Multi-agent reinforcement learning - how can policies be
learned from interaction with a system whose dynamics are

not known?

m Partial observability - what can be done if we only have partial
information about the state?
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Any Questions?
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