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Overview

This report introduces and discusses particle methods for inference on noisy or partially ob-

served data. One application where these methods are useful is in analysing epidemic data -

in this context, the spread of a disease can be modelled as a random process which we can

only partially observe. The so-called hidden state of interest is the true number of active

cases, which cannot be observed directly since not all infected individuals can be tested for the

disease and tests are not 100% accurate. We might also be interested in estimating unknown

parameters of the random process, like the transmission rate of the disease. There has been

much recent interest in using particle methods in this context, as estimating true case numbers

and monitoring the transmission rate of COVID-19 has been critical in informing government

policy on managing its spread.

One main problem of interest in this setting is in estimating the filtering distribution, a

probability distribution representing our knowledge (and uncertainty) about the hidden states

given our sequence of observations. We can use this distribution to compute a best guess for

the hidden states or to estimate the probability that they took a certain value. It is important

to consider this as a probability distribution, since when there is randomness in the observation

process it is not possible to be completely certain of what the hidden states actually were.

The key issue when performing this kind of analysis is that the filtering distribution often cannot

be calculated exactly. In this case, we can use particle filtering to approximate it. This works

by simulating many possibilities for the hidden states (known as particles) and determining

how likely each one is given the data we observed. This can be used as a sub-algorithm in

methods for analysing unknown parameters, such as Markov chain Monte Carlo.

This report will use a simple simulated epidemic dataset as a running example to illustrate the

methods discussed. We will start by introducing hidden Markov models and defining the

filtering distribution in Section 1. Section 2 will introduce the bootstrap filter, a particle

filtering algorithm for approximating the filtering distribution. We will discuss methods for

dealing with unknown model parameters in Section 3, focusing on the use of particle Markov

chain Monte Carlo for performing inference jointly on the hidden states and parameters.
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1 Introduction

This report will discuss the use of particle methods for inference on hidden Markov models

(HMMs). Using the notation of Doucet et al. (2001), we will assume that we wish to perform

inference on some discrete-time Markov process xt (taking values in some state space X ) with

initial distribution p(x1) and transitions described by p(xt |xt−1), subject to the restriction that

we cannot observe xt directly. Our only information about the hidden state xt comes from a

noisy or partial sequence of observations yt with marginal distribution p(yt |xt). The yt are

assumed to be independent given xt.

The main problems of interest in this setting are in estimating the filtering distribution

p(xt | y1:t), as well as to perform inference on any unknown parameters θ of the transition pro-

cess p(xt |xt−1) and observation process p(yt |xt). In the latter case we can target the joint

posterior distribution p(θ, x1:t | y1:t) to perform inference on both θ and x1:t . The methods de-

scribed in this report will be illustrated using a simple epidemiology example to be described in

Section 1.2, where the hidden Markov process models the propagation of some disease through

a population, and only a small fraction of the total number of infections is detected.

1.1 The Filtering Distribution

Particle filtering algorithms perform inference on hidden states by targeting the filtering distri-

bution p(xt|y1:t). Assuming a HMM with known dynamics as described above, we can formulate

this recursively - supposing we know the filtering distribution for time t− 1, we can obtain the

filtering distribution for time t as:

p(xt | y1:t) =
p(yt |xt) p(xt | y1:t−1)

p(yt | y1:t−1)
, (1)

where the predictive distribution p(xt | y1:t−1) is given by integrating over possibilities for xt−1 :

p(xt | y1:t−1) =

∫
X
p(xt |xt−1) p(xt−1 | y1:t−1) dxt−1 , (2)

and the normalising constant by integrating over xt :

p(yt | y1:t−1) =

∫
X
p(yt |xt) p(xt | y1:t−1) dxt . (3)

Note that once this normalising constant has been computed, the marginal likelihood for y,

p(y1:t) can also be obtained recursively:

p(y1:t) = p(y1:t−1) p(yt | y1:t−1) . (4)

This result will be necessary for parameter inference, discussed in Section 3. Unfortunately, the

integrals in (2) and (3) typically cannot be solved analytically, unless the HMM has a finite

discrete state space or is a linear Gaussian model. We will overcome this problem by using

sequential Monte Carlo (SMC) to obtain weighted samples of possible hidden states from

p(x1:t) and estimating the p(xt | y1:t−1) by the empirical distribution function (EDF).
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Figure 1: Simulated epidemic dataset and filtering distribution.

1.2 Example: Epidemic Modelling

Particle methods lend themselves to use in epidemiology, as the spread of a disease can be

modelled by a stochastic process which is difficult to observe directly (Endo et al. (2019)). We

will use the discrete time Reed-Frost model described by Abbey (1952) as a simple run-

ning example in this report. This is a compartmental model, where we categorise a closed

population of fixed size N as susceptible to (S), infected by (I) or recovered from (R) a

disease. It is assumed that the infectious period of the disease is short compared to its incuba-

tion period, so that individuals infected at time t will infect others at time t+1 and then recover.

We will denote the number of susceptible individuals at time t by St and the number of new

infections by It, so that the hidden state in the process is xt = (St, It) and Rt can be recovered

as N − St − It. All susceptible individuals have probability p of being infected by any given

infectious individual, so that the probability of any one susceptible individual escaping infection

at time t + 1 is (1 − p)It . This gives rise to a binomial number of infections at each timestep,

It+1 | (St, It) ∼ Binom(St, 1−(1−p)It), with St+1 = St−It+1. We will assume that the epidemic

is triggered by the arrival of a single ‘patient zero’, so that I1 ∼ Binom(N, p) and S1 = N − I1.

Finally, we will assume a fixed probability pobs of detecting any given infection, so that the

observation process is given by yt |xt ∼ Binom(It, pobs). See Figure 1 for a realisation of this

model terminating at time T = 30 with p = 0.0015, pobs = 0.2 and N = 1000, which will be

used as a running example. Note that since the population is closed, the state space for this

model is finite with N2 possibilities for (St, It). This means that we can compute the exact

filtering distribution (also shown in Figure 1), although this can become prohibitively compu-

tationally expensive for large populations - in our small example this took six hours to calculate.

In light of the COVID-19 pandemic, there has been much recent interest in using particle

methods in this context. The compartmental models used are usually time continuous and can

take additional categories (e.g. asymptomatic, vaccinated) and varying transmission rates into

account. For example, Romero-Severson et al. (2020) modeled COVID-19 case numbers as a

partially observed Markov process with varying transmission rate. Their model was fitted with

the iterated filtering method mentioned in Section 3 to analyse changing transmission rates.
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2 Particle Filtering

2.1 Sequential Importance Sampling

One simple way of producing Monte Carlo samples from the filtering distribution is by sequen-

tial importance sampling (SIS) (Doucet et al. (2001)), a recursive version of the standard

Monte Carlo importance sampling technique. We start by sampling m particles from p(x1)

and iteratively propagating them forwards according to the HMM dynamics. The importance

weight w
(i)
t for each particle is updated at each timestep by multiplying w

(i)
t−1 by p(yt |x(i)t ) and

re-normalising. At each timestep we estimate the filtering distribution by the weighted EDF of

the particles, p̂(xt | y1:t) =
∑m

i=1w
(i)
t δ(x

(i)
t − xt), where δ is the Dirac delta function.

Algorithm 1: Sequential Importance Sampling

Result: Estimate p̂(xT | y1:T ) of filtering distribution

Require: y1:T , m, p(xt |xt−1), p(yt |xt), p(x1)

Initialise: For i = 1, . . . ,m, sample x
(i)
1 ∼ p(x1) and set w

(i)
1 =

p(y1 |x(i)
1 )∑

j p(y1 |x
(j)
1 )

;

for t = 2, . . . , T do

Propogate: for i = 1, . . . ,m, sample x
(i)
t ∼ p(xt |x(i)t−1) ;

Reweight: for i = 1, . . . ,m, set w
(i)
t =

p(yt |x(i)
t )w

(i)
t−1∑

j p(yt |x
(j)
t )w

(j)
t−1

;

end

Set p̂(xT | y1:T ) =
∑m

i=1w
(i)
T δ(x

(i)
T − xT ) .

Unfortunately, SIS typically fails as t increases as the importance weights become increasingly

concentrated on a few particles with most falling in areas where the filtering distribution has low

density, corresponding to possible hidden states that are very unlikely given the observed data.

In fact, the number of particles required to produce good estimates increases exponentially in

t (Doucet and Johansen (2009)). In our epidemiology example (see Figure 2a which shows

E (It | y1:t) as well as the 5% and 95% quantiles), SIS did well initially but the shrinking credible

intervals after t = 10 indicate that the sample weights are becoming increasingly concentrated

on just a few trajectories.

2.2 The Bootstrap Filter

The bootstrap filter or sequential importance resampling filter was first proposed by

Gordon et al. (1993) as a way of sequentially generating samples from p(x1:t) that are more

concentrated in areas of high density of p(yt |xt). Instead of continually updating the weights,

the bootstrap filter uses them to resample the particles, creating a new sample where all parti-

cles are given equal weight. This allows particles with negligible weight to be eliminated, while

we simulate several descendants of the particles with higher weights. At each timestep of

SIS, we sample the next generation of particles from a categorical distribution with outcomes

{x(i)t−1}mi=1 and probabilities determined by their weights {w(i)
t−1}mi=1.
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Algorithm 2: The Bootstrap Filter

Result: Estimate p̂(xT | y1:T ) of filtering distribution, estimate p̂(y1:T ) of data likelihood

Require: y1:T , m, p(xt |xt−1), p(yt |xt), p(x1)

Initialise: For i = 1, . . . ,m, sample x
(i)
1 ∼ p(x1) and set w

(i)
1 =

p(y1 |x(i)
1 )∑

j p(y1 |x
(j)
1 )

;

for t = 2, . . . , T do

Resample: for i = 1, . . . ,m, sample x̃
(i)
t−1 ∼ Categorical

(
{x(i)t−1}mi=1 , {w

(i)
t−1}mi=1

)
;

Propogate: for i = 1, . . . ,m, sample x
(i)
t ∼ p(xt | x̃(i)t−1) ;

Reweight: for i = 1, . . . ,m, set w
(i)
t =

p(yt |x(i)
t )∑

j p(yt |x
(j)
t )

;

Set p̂(y1:t) = p̂(y1:t−1) p̂(yt | y1:t−1) = p̂(y1:t−1)
1
m

∑m
i=1 p(yt |x

(i)
t ) ;

end

Set p̂(xT | y1:T ) =
∑m

i=1w
(i)
t δ(x

(i)
T − xT ) .

See Figure 2b for the performance of the bootstrap filter on our running example - its output

with m = 100 is a reasonable approximation for the exact filter mean and quantiles, and for

m ≥ 1000 the two are virtually indistinguishable. so a very close approximation to the filtering

distribution can be computed in seconds.

The likelihood estimation step in Algorithm 2 is optional for filtering and as discussed in Sec-

tion 1.1 comes from estimating the normalising constant p(yt | y1:t−1) of the filtering distribution.

The resulting estimate of p(y1:T ) is in fact unbiased (Fearnhead and Künsch (2018)) and will

be the key output of this algorithm for the parameter estimation in Section 3.

2.3 Improved Resampling Schemes

One issue with the bootstrap filter mentioned by Gordon et al. (1993) is that, if the region where

the likelihood takes significant values is small, then some particles will be resampled many times

- if this region is also in an area that is unlikely in the propagation step, then all of the resamples

may be descended from a single particle, which will result in the same problem encountered with

SIS if the propagation steps do not sufficiently restore particle diversity. Gordon et al. (1993)

suggest that this could be alleviated by introducing random noise perturbation after resampling.

The resampling step in bootstrap, while alleviating the key issue with SIS, introduces extra

variability in the estimates of the filtering distribution. There are other resampling schemes

with lower variance that can still produce an unbiased estimate of the filtering density - one

example is stratified sampling, which is used by Carpenter et al. (1999) in their improved

particle filter, which they also showed to be less prone to the sample impoverishment problem

discussed above.
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(a) Sequential importance sampling, m = 100 particles.
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(b) The bootstrap filter, m = 100 particles.

Figure 2: Particle Filtering (Section 2)
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(a) Estimated posterior marginal distribution for I1:T .
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Figure 3: Particle MCMC (Section 3)
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3 Particle Methods for Parameter Inference

So far, we have treated model parameters as known constants. This is often not the case, and

parameter inference is often just as important as inference on the hidden states. We saw ear-

lier that the data likelihood p(y1:T ) can be estimated using a particle filter. For the purposes

of parameter inference, we consider this to also be a function of the unknown parameters θ,

p(y1:T | θ) which can be estimated for any given value of θ by using a particle filtering algorithm.

This can be used for maximum likelihood estimation, although challenges arise from the fact

that this estimate of the likelihood function is noisy, and discontinuous even when common

random numbers are used between evaluations (Kantas et al. (2015)). One solution is the it-

erated filtering method (Ionides et al. (2006)), which involves allowing θ to vary with t as

a random walk. This means θ can be considered a hidden state in the problem formulation,

so that particle filtering can be used to estimate the filter means E (θt | y1:t), which are then

used to iteratively update an estimate for the MLE of θ as the random walk variance is reduced.

The next section will focus on Bayesian parameter inference, since this is a natural way of

capturing uncertainty about parameters and the resulting inference on the hidden states.

3.1 Particle Markov Chain Monte Carlo

The particle marginal Metropolis-Hastings sampler was first proposed by Andrieu et al.

(2010) as a method for sampling from the joint posterior distribution p(θ, x1:T | y1:T ). It is an

approximation to the usual Metropolis-Hastings sampler where a particle filtering algorithm is

used to estimate the likelihood term in the acceptance probability. The filter is also used to

propose samples of x1:t, by sampling a single particle’s trajectory from the distribution defined

by the final filter weights {w(i)
T }mi=1.

Algorithm 3: Particle Marginal Metropolis-Hastings

Result: samples from p(θ, x1:T | y1:T )
Require: prior p on θ, proposal distribution q, particle filtering algorithm

Initialise: sample θ1 ∼ p(θ) ;

Set L1 = p̂(y1:T | θ1) and sample x
(1)
1:T ;

for n = 2, . . . do

Propose new sample θ∗n ∼ q(θ | θn−1) ;

Set L∗
n = p̂(y1:T | θ∗n) and sample x∗1:T ;

Accept θ∗n with probability min
{
1, L∗

n p(θ∗n) q(θn−1 | θ∗n)
Ln−1 p(θn−1) q(θ∗n | θn−1)

}
;

If θ∗n was accepted, set (θn, Ln, x
(n)
1:T ) = (θ∗n, L

∗
n, x

∗
1:T ).

Otherwise, set (θn, Ln, x
(n)
1:T ) = (θn−1, Ln−1, x

(n−1)
1:T ) ;

end

7



We’ll now apply this to our epidemic example - for simplicity, uniform priors on the parameters

and a normal proposal distribution with mean 0 were chosen. Estimates of the likelihood and

samples from p(x1:T | y1:T ) were obtained using the bootstrap filter described in Section 2.2,

with m = 500 particles. Figure 3a shows the estimated means (and 90% credible intervals) of

the marginal distributions of the It. This was close to the true number of infections at each

time point but had a different shape to the filtering distribution since the marginal distribu-

tion p(xt | y1:T ) also takes future observations into account. The estimated marginals for the

parameters p and pobs are shown in Figure 3b. The posterior mean for p was 0.00158 (with

90% central credible interval (0.00138, 0.00177)) and the posterior mean for pobs was 0.231 (90%

central credible interval (0.187, 0.293)).

Note that this is an offline method - we need to have observed all of the data up to time T

before starting, and would have to repeat the analysis from scratch if a new datapoint arrived.

This is in constrast to the particle filtering algorithms discussed, which are online methods and

hence easy to update with new observations. Online methods do exist for particle MCMC but

struggle with the particle degeneracy problem (Kantas et al. (2015)).
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