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The CARLA Simulator

Figure: Dosovitskiy et al (2017)

m Purpose-built driving simulator with realistic physics and
readouts for various sensors.

m Allows testing of autonomous Al in different scenarios, can
analyse performance by varying starting parameters (e.g.
weather conditions, starting speed).
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Scenarios in CARLA

Figure: https://leaderboard.carla.org/scenarios/

m A scenario in CARLA is a detailed description of the initial

conditions of a scene, ie. positions and speeds of road users,
road conditions etc.

m Problem 1: Recreating real scenes as scenarios in CARLA
from crash data/ dashcam footage.

m Problem 2: Generating realistic data for new scenarios.
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Generative modelling

m Generate samples from an unknown probability distribution
given a finite set of samples from the true distribution.

m Might try to directly learn the pdf of the data using maximum
likelihood estimation (variational autoencoders, normalising
flows). Problem: difficult to balance model complexity with
tractability.

m Could define the pdf implicitly by a generative process
(GANs). Problem: difficult to evaluate sample quality.
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Neural Networks

m Class of models popular for use as general function
approximators.

m Composed of a sequence of linear transformations alternating
with the application of a nonlinear activation function.

m Usually trained by stochastic gradient descent (SGD),

requiring a differentiable objective function known as a loss
function.
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Generative Adversarial Networks

m Most well known deep generative model: generative
adversarial networks (GANs).

m Train a generator network to generate samples from noise and
a discriminator network to distinguish between real and fake
samples.

m Training is a min/max problem: alternate between training

the discriminator to label samples correctly and the generator
to fool the discriminator.
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m Good at generating realistic samples, ie. samples from areas
of high probability density.

m However, adversarial training can be unstable and very time
consuming.

m GANs can struggle to match the full data distribution - prone
to mode collapse and mode hopping, ie. only generating
samples from some parts of the distribution.

m Can improve performance by changing to an objective
function with better properties.
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Diffusion Models
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m Idea: hard to generate data from noise, easy to generate noise
from data.

m Define a stochastic process that gradually adds noise to the
data until it resembles pure Gaussian noise, then learn the
time reversal of this process to convert noise to data.
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Diffusions

m Use a continuous time stochastic process called a diffusion.

m These are defined by a stochastic differential equation,

dXt = f(Xt, t)dt+g(Xt, t)th
—— v

drift noise

m When g depends only on t, the distribution of X; | Xp will be
Gaussian, e. g if dX; = g(t)dW; then X; | Xp has distribution
N(Xo, [ g(s)?ds) for t > 0.
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Simulation

m Euler approximation - given initial value Xy, iterate:
Xiv1 = Xi + f(t;, Xi)(tiv1 — t;) + g(ti, Xi)(Wip1 — W)
m Here W; is a Brownian motion, so this is equivalent to:
Yier = Yi+f(t;, Yi)(tip1 — ti) + g(ti, Vi \/mzurl )
with Z; ~ N(0,1)
m Typically use time intervals of constant length.

= Might require hundreds/thousands of iterations to get a good
approximation.
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Time Reversal

m The time reversal of dX; = f(X¢, t)dt + g(t)dW, is:

dXe = [f(Xt, t) — g(t)2 Vi log Pt(Xt)} dt + g(t)dW;

m Here, the score function Vy log p:(x) is the gradient of the
log pdf of X; with respect to x.

m We know that p(x¢|xp) is Gaussian, so if we know the data
distribution p(xp) then we are done.
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Score Matching

m Method for learning unnormalised probability density models
by learning the score function of the data distribution.

m Want to find parameters 6 minimising the MSE between the
approximation (x; #) and the true score Vp(x).

m Denoising score matching: approximate by taking samples
from the data and corrupting them with Gaussian noise,
learning a function that points towards the uncorrupted
sample.

= Objective ming Ep(, %) [319(%;0) — Vi p(%]x)[?] is
equivalent to matching score of X.
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Score Matching

m Denoising score matching learns the score function of the data
+ noise, which is what we need for diffusions.

m We also need to learn a time conditional function to
estimate the score function for different noise levels.

m e.g. for dX; = g(t)dW;, minimise:

i Ex { O By [10000,150) = 7otz = 1P

m Approximate expectations with MC sampling - sample a time

uniformly from (0, 1], take a sample xo from the data, and
generate corrupted sample X from p(x: | xo).
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Score Network

m Can in theory use any architecture as long as time is an input.

m In practise the architecture choice has a big impact on
performance.

m Low dimensional distributions: simple feedforward neural
network with time as an additional input to each layer.

» High dimensional /complex distributions: try to use domain
knowledge - e.g. convolutional networks work well for image
data.
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(b) Diffusion samples
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Summary

m Deep diffusion models learn to gradually transform noise into
data via an SDE.

m They seem to be better at matching distributions/ producing
diverse samples than GANs, and their training is more stable.

m However, sampling is slow compared to GANs as we need to
simulate hundreds of steps to approximate the reverse
diffusion, each of which requires evaluation of the score
network.
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Further Research

m Impact of choice of diffusion, improving slow sampling from
diffusion models.

m Conditional generation - generating scenarios likely to result in
accidents.

m Explore links to approximate Bayesian computation - CARLA
as a black-box generative model.

m Potential data issues - relatively small number of existing
examples, some elements of the scenario data may be discrete.
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Any Questions?
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