
N-Mixture Models for Ecological Data

Fiona Wilson

1 Introduction

A common aim in ecological studies is to estimate the population of a species from survey

data. Often the data from surveys is count data because it is cheaper and easier to collect

than capture-recapture data. Count data can be collected by scientists and also from

citizen science projects which means there can be a lot of data collected for minimal cost.

The data is a count of how many individuals were seen at a particular site during the

survey and this survey is often repeated at different sites and times. There is no way to

know if the same individual is seen on multiple surveys or at multiple sites since these

are unmarked individuals. We also don’t know how many undetected animals were at the

site at the time, so for each survey there is an associated detection probability. A further

difficulty with this type of data is that the counts are often quite sparse with a lot of zero

values.

To estimate the true population size from the count data we can use N-mixture models

(Royle, 2004). These models estimate the population at different survey sites by treat-

ing the true population numbers as independent random variables and then a mixture

distribution models these random variables while taking into account the probability of

detecting an individual. There are different variations of this model and this report will

discuss the standard model, a model with open populations (Dail and Madsen, 2011), a

model with multiple states (Zipkin, Thorson, et al., 2014) and a spatial dependence model

(Zhao et al., 2017).

This report focuses on modelling species abundance (the number of individuals at

a site), however there are similar models available which measure species occurrence.

Occurrence just informs you of the presence or absence of a species at a site as explained

by Royle and Kéry, 2015. Estimating abundance requires more detailed data, but the

results can be more informative to understanding population dynamics.
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2 Standard N-Mixture Model for Sparse Data

2.1 Model Formulation

The standard N-mixture model proposed by Royle, 2004, is used when we have count

data for one species of animal at R different sites and each site is sampled T many times.

Let ni,t be the number of individuals counted at site i (for i = 1, ..., R) at time t (for

t = 1, ..., T ). In this standard model we assume that the population is closed so there are

no changes in the population size (i.e. no births, deaths or migration). We also assume

that the number of individuals at each site and time are independent binomial random

variables

ni,t ∼ Bin(Ni, p)

where Ni is the unknown total number of individuals at site i and p is the probability of

detection. For now we assume that p is constant across these sites and across individuals.

Later models will remove the assumptions of a closed population and constant probability

of detection.

The joint likelihood is given by

L({Ni}, p|{ni,t}) =
R∏
i=1

{
T∏
t=1

Bin(ni,t;Ni, p)

}

where Bin(ni,t;Ni, p) is the binomial likelihood and this can be maximised to find estimates

for the abundance parameters Ni and detection probability p. However, this can be quite

unstable because there are often a lot of zero counts and there are also a lot of parameters

to estimate, some of which may even be zero. This instability is addressed in more detail by

Olkin et al., 1981. To improve our estimates, we instead assume that Ni are independent

random variables and treat them as a nuisance parameter with prior distribution f(Ni;θ)

where θ can be a vector.

2.2 Prior Distributions

There are several commonly used distributions for Ni. The Poisson distribution is often

used in ecological settings because it assumes that animals are randomly distributed across

the site. However, if animals prefer to live in groups or if the habitat is variable across

the site, then the animals are more likely to be clustered instead of randomly dispersed.

This causes overdispersion in the data since the variance can be larger than the mean.
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In this situation, the negative binomial distribution may be more appropriate. Other

possible distributions include the zero inflated Poisson and zero inflated negative binomial

distributions. These can be appropriate if there are a lot of zero values in the data, more

than the expected number if modelled using a Poisson or negative binomial distribution.

For example, if one survey site was mostly inhabitable, then this would generate structural

zeroes instead of the expected sampling zeroes.

It is important to note that in general when selecting the appropriate distribution, it is

common to use the Akaike Information Criterion (AIC) or goodness of fit test to compare

the final models. However, there have been repeated studies with ecological data such as

those by Joseph et al., 2009, and Kéry et al., 2005, which show that these statistical tests

may select the negative binomial model, but the estimates then produced are not realistic

when you consider the ecological setting. This is still an issue today which does not have a

clear solution or explanation, and so most papers indicate that alongside these statistical

tests, appropriate knowledge of the ecological processes should be used to assess whether

estimates and predictions are realistic (Royle and Kéry, 2015).

Using the chosen prior distribution for Ni, the likelihood is now

L(p, θ|{ni,t}) =
R∏
i=1


∞∑

Ni=maxt ni,t

(
T∏
t=1

Bin(ni,t;Ni, p)

)
f(Ni; θ)

 . (1)

To maximise this likelihood, usually we take the summation over a large K (instead

of an infinite summation), however in practice K should be chosen carefully to ensure

the resulting estimates have stabilised. This parameter sensitivity is highlighted in the

data analysis in Section 4. There are alternative forms of the likelihood in Section 2.4

which avoid the challenge of choosing an appropriate K. Given the maximum likelihood

estimates, the expected abundance can be estimated in several ways. If you just want to

estimate the total abundance across the whole location (not site-specific abundance), this

can be estimated simply using the area of the sites and the mean abundance per sample

unit estimated from the prior distribution. For example, if Ni has a Poisson distribution,

then λ̂ is the mean abundance per site and if there are R sites, then the estimated total

abundance of the sampled sites is just N = λ̂R. If instead we want to estimate the site-

specific abundance, we can use Bayes Theorem to estimate the posterior distribution of

Ni conditional on θ̂,

P(Ni = k|ni,1, ni,2, ..., ni,T , θ̂, p̂) =
P(ni,1, .ni,2, ..., ni,T |Ni = k, p̂)P(Ni = k; θ̂)∑∞
k=0 P(ni,1, ni,2, ..., ni,T |Ni = k, p̂)P(Ni = k; θ̂)

.
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This approach is known as the ‘plug-in’ empirical Bayes procedure. With this poste-

rior distribution, we can calculate the expected value for Ni at each site, as well as the

corresponding variance and confidence intervals.

2.3 Bayesian Approach

An alternative method is to use a fully Bayesian approach where you would also provide

priors for the model parameters p and θ as well as for Ni, though since it is likely that little

is known about these, vague priors can be used (Madsen and Royle, 2023). This approach

usually uses Markov Chain Monte Carlo (MCMC) simulation to generate a large sample

from the joint posterior distribution from which we can calculate point estimates.

One advantage of using this Bayesian approach is that it is easier to add random ef-

fects into the covariate models whereas for the maximum likelihood approach we have to

integrate over the random effects when computing the likelihood. Common R software

such as unmarked (Kellner et al., 2023; Fiske and Chandler, 2011) which is used later in

the data analysis can incorporate limited random effects, but it is not complete. However,

in general using maximum likelihood estimation is quicker and computationally more effi-

cient, especially with larger datasets, because we don’t have to iteratively sample from the

data. Furthermore, in practice the maximum likelihood based software currently available

to ecologists is easier to understand and input the data, whereas often the Bayesian ap-

proach requires more understanding of priors and posteriors to accurately input the data

and interpret the results.

2.4 Alternative formulations without an infinite sum

As mentioned previously, the exact likelihood given in equation 1 includes an infinite sum

and it can be difficult to truncate this sum as the population estimates can be sensitive to

the choice ofK. One alternative formulation used by Dennis et al., 2015, rewrites a Poisson

N-mixture model as a multivariate Poisson model (or equivalently replaces a negative

binomial N-mixture model with a multivariate negative binomial model). The explicit

form for a likelihood provided in their paper does not require K as there is no infinite

sum. However, this approach can be more computationally complex and so if we have

enough sampling times (from simulations done in the paper for the Poisson distribution,

enough times was generally T > 3), then the parameter estimates from the maximum

likelihood stabilise anyway.
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Another alternative is suggested by Haines, 2016, where she writes the likelihood in a

closed form using the generalized hypergeometric function. However, again this is com-

putationally complex to evaluate as not all programming languages have functions to

calculate it and instead it has to evaluated from the closed form.

2.5 Adding covariates

When analysing population numbers across a large area, it is unlikely that each survey site

was exactly the same or that each survey was performed at the same time and in the same

conditions. There may be some underlying environmental factors which affect the number

of individuals living at a certain site or which affect the probability of detecting them

during a survey. To calculate more accurate abundance estimates, we want to include

these influences as covariates in our N-mixture model using link functions. If we are using

a Poisson N-mixture model we would add covariates to the estimation of λi if the sites vary

a lot and we believe this may impact the abundance. For example, changes in elevation,

forest cover and a bird’s route length were used in a study on willow tits (Parus montanus)

with data collected by the Swiss Breeding Bird Survey (Royle et al., 2005). It is common

to use a log link function of the form

log(λi) = β0 + β1xi

where xi is the value of a covariate at site i as this ensures that λi are positive.

Similarly, covariates can be added to pi,t if we believe the detection probability varies

due to factors such as the duration of the survey, the time of day or the weather. To

ensure that pi,t is in the range [0, 1] we use a logit function of the form

logit(pi,t) = α0 + α1xi,t

where xi,t is the value of the covariate at site i at time t. By modelling these as fixed

effects, we can still apply the maximum likelihood method as mentioned previously.

A different way to model the spatial variation in expected abundance in a Poisson

N-mixture model is to treat λi as a random variable. It is reasonable to assume it has

a Gamma distribution because this ensures λi is positive and it is a flexible distribution.

Then Ni has a negative binomial distribution (or Gamma-Poisson distribution) and so it

can be modelled as before (White and Bennetts, 1996).
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2.6 Non-identifiability

If there is only one sampling occasion, then we can have the problem of model non-

identifiability (Madsen and Royle, 2023). Assuming that Ni ∼ Poisson(λ) are indepen-

dent and identically distributed, then the marginal distribution of ni is now Poisson(λp)

where p is still the detection probability. Obviously if we had perfection detection (i.e.

p = 1) then we have no problem, but in practice when p < 1, the model is non-identifiable

because from our observations we only know λp instead of λ and p. However, Sólymos

et al., 2012, suggest a method to still use this data to produce abundance estimates in

certain circumstances. Though it hasn’t yet been proved, simulations suggest that if there

are continuous covariates, at least one of which is unique to either the abundance rate

or detection probability, then the model would be identifiable. This method calculates

the conditional likelihood function for the coefficients of the covariates to reduce the con-

founding and then produce abundance estimates. However, if there are no covariates or

only discrete covariates, then the model is still non-identifiable.

3 Model Extensions

3.1 Open Population

The models previously discussed assume that we have a closed population, however this

is often only a valid assumption if surveys are done on an isolated population over a short

period of time. If these models were used to estimate the abundance of open populations,

then the estimates are likely to be very biased because if the point count varies a lot, the

model will assume this is due to high non-detections or detections instead of a varying

population. This could indicate a lower probability of detection and so the estimates of

the total population would be too high. Instead we should use a dynamic model which

allows for a different population size at each time point. We discuss the model developed

by Dail and Madsen, 2011.

Again we assume there are R survey sites and T times of surveys. Let ni,t be the

number of individuals counted and let Ni,t be the true number of individuals at site i at

time t. We assume the point counts have the distribution

ni,t ∼ Bin(Ni,t, p)

and we need a joint prior for Ni,1, ..., Ni,T . We still assume that the population at the R
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sites are independent and that each animal detection is independent. Therefore we have

the joint likelihood function,

L(p, λ, γ, ω|{ni,t}) =
R∏
i=1

 ∞∑
Ni,1=ni,1

...
∞∑

Ni,T=ni,T

(
T∏
t=1

Bin(ni,t;Ni,t, p)

)
× f({Ni,1, ...Ni,T }; θ)

 .

We simplify this by assuming that at a given site, the Markov property applies. That is,

for any t ≥ 2, we assume Ni,t only depends on Ni,t−1. We now have the joint prior,

f({Ni,1, ..., Ni,T }; θ) = f(Ni,1; θ)
T∏
t=2

f(Ni,t;Ni,t−1, θ)

where each f(Ni,t; θ) is the distribution of animals at site i and so can be one of the

distributions discussed in Section 2.2.

To model the dynamic population we introduce the random variables Si,t and Gi,t.

Let Si,t be the number of survivors, that is the number of animals that were at site i at

time t − 1 and were then still at the same site at time t. And let Gi,t be the number of

gains, that is the number of new animals who weren’t at site i at time t − 1, but who

were there at time t. We note that since we do not mark and identify individuals, we

cannot distinguish between different reasons for decreases in population (e.g. death or

emigration), nor between different reasons for increases (e.g. births or immigration). Now

let ω be the survival probability (this is usually the apparent survival probability since

individuals may enter and leave sites, but we are not tracking individuals, just the change

in the point count) and let γ be the arrival rate, then we have the conditional distributions

Si,t|Ni,t−1 ∼ Bin(Ni,t−1, ω)

Gi,t|Ni,t−1 ∼ Poisson(γ(Ni,t−1))

for t = 2, ...T and where γ(Ni,t−1) means that γ depends on Ni,t−1. Therefore given the

abundance at t− 1, the abundance at t is just the sum of these random variables,

Ni,t|Ni,t−1 = (Si,t +Gi,t)|Ni,t−1.

We assume that Si,t and Gi,t are independent and so we calculate the conditional proba-
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bility for Ni,t|Ni,t−1 as

P(Ni,t = k|Ni,t−1 = j) = Pj,k =

min(j,k)∑
c=0

P(Si,t = c|Ni,t−1 = j)P(Gi,t = k − c|Ni,t−1 = j)

for j, k = 1, 2, · · · . In this summation we are multiplying the probability of c survivors by

the probability of k − c gains given that the abundance at the previous time was j. We

sum over all possible c values to calculate the total conditional probability.

For simplicity, we now assume a Poisson prior on f(Ni,1; θ) and so we write the joint

likelihood as

L(p, λ, γ, ω|{ni,t}) =
R∏
i=1

 ∞∑
Ni,1=ni,1

...
∞∑

Ni,T=ni,T

{(
T∏
t=1

Bin(ni,t;Ni,t, p)

)

×e−λλNi,1

Ni,1!
·

T∏
t=2

PNi,t−1,Ni,t

}]
.

As with the standard N-mixture model, when maximising this likelihood we typically

choose a large finite K for the summation instead of using the infinite sumations. Again,

the choice of K can impact the estimates, so it needs to be chosen with care.

Similarly to the standard model, we will maximise the likelihood to find parameter

estimates and then use these to estimate the abundance. Analogously, we can either

estimate the total abundance across the sites or the site-specific abundance at each time

point. If we want the total abundance, we can recursively calculate it using

N̂.,1 = Rλ̂,

N̂.,t = ω̂N̂.,t−1 +Rγ̂.

On the other hand if we want to estimate the site-specific abundance at each time t we

can use the ‘plug-in’ empirical Bayes procedure again. We can use an improper prior

f(Ni,t) ∝ 1 (other more informative priors could work too, but they may not give a closed

form expression) and then we have

P(Nit = k|ni,t, p̂) =

(
k

ni,t

)
p̂ni,t+1(1− p̂)k−ni,t .
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We can estimate Ni,t by the mean of this distribution, so

E(Ni,t|ni,t, p̂) =
ni,t

p̂
+

1− p̂

p̂
.

This open population model is known as the generalised N-mixture model because it

can be reduced to the standard closed population model by setting the parameters ω = 1

and γ = 0. This is an advantage because it means the assumption of a closed (or open)

population can be tested using these nested models if there is a large number of sites,

R, as explained by Dail and Madsen, 2011. This is particularly useful because often the

closure assumption is made for point counts collected during one season due to biological

reasons, however this model provides a method to statistically test this assumption.

Despite the benefits of this model, there are still certain assumptions being made which

could be problematic. Firstly, we’ve assumed that the sites are independent. This is a

common assumption in our models, but may not be accurate if animals are forced to move

between sites. There are other models which model the spatial dependence of population

abundance such as that developed by Zhao et al., 2017.

Another assumption made is that Si,t and Gi,t are independent, however this assump-

tion is not necessary and was just a simplification. One model for dependence suggested

by Dail and Madsen, 2011, is to let Gi,t|(Si,t = s) be a Poisson random variable with mean

γ = seφ. This implies that if there are more survivors, there are also likely to be more

gains which could be reasonable if a species values safety in numbers or is in its breeding

season.

3.2 Multi-State Model

Another extension of the model is to include multiple states for a species, for example

stratifying the data into adults and juveniles, or males and females. This allows ecologists

to better understand the population structure and there may be covariates which are state

dependent, for example during breeding season males may be more visible while females

are brooding. One suggested approach to model these states was developed by Zipkin,

Thorson, et al., 2014, and is an extension of the open population model in Section 3.1.

Let ni,j,t be the number of individuals counted at site i in state j at time t. The states

could be quite specific such as male juveniles (j = 1), female juveniles (j = 2), male adults

(j = 3) and female adults (j = 4). Here we just consider two states juveniles (j = 1)

and adults (j = 2). We still assume that ni,j,t ∼ Bin(Ni,j,t, pj) where Ni,j,t is the true
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population at site i of state j at time t and pj is the probability of detecting an individual

who is of state j. We assume thatNi,j,1 has a standard distribution as mentioned in Section

2.2 such as Ni,j,1 ∼ Poisson(λj). We need to allow transitions between states because if

surveys are done over a long time period, individuals may develop from juveniles to adults.

Therefore the distribution of Ni,j,t for t ≥ 2 must also depend on these transitions.

As for the open population model, we consider random variables for the survivors (Si,1,t,

Si,2,t) and the gains (Gi,1,t), as well as one for the state transitions (Ti,j,t). For now we

assume that gains are due to births of juveniles instead of immigration of adults. So we

have,

Si,1,t ∼ Bin(Ni,1,t−1, ω1)

Si,2,t ∼ Bin(Ni,2,t−1, ω2)

Ti,1,t ∼ Bin(Si,1,t, φ)

Gi,1,t ∼ Poisson(γ(Ni,2,t−1))

where ω1 and ω2 are the state-specific survival probabilities, φ is the probability that a

surviving juvenile transitions to an adult, and γ is the arrival rate. Therefore the state-

specific abundances at a site i are

Ni,1,t = Gi,1,t + Si,1,t − Ti,1,t

Ni,2,t = Si,2,t + Ti,1,t.

The paper then used the Bayesian approach with MCMC to estimate the parameters.

We have considered just two states where individuals can only move from juveniles to

adults (they can’t move from adults to juveniles). More generally a transition matrix T

could be used to allow transitions between more states (such as an individual moving back

and forth between breeding and non-breeding states) and the model could also incorporate

states which can’t be transitioned between (such as male and female). Further, it can

be extended to include immigration, whereas currently our model just includes gains to

juvenile counts from births. This could be included by adding another gain random

variable Gi,2,t ∼ Poisson(γ2) for example as done by Sirén et al., 2024.

Another important addition to the model discussed by Zipkin, Sillett, et al., 2014, is

that sometimes an individual may be observed, but the surveyor can’t determine which

state the individual is in. However, this imperfect observation is still useful information

to include in a model as they contribute to the overall population. The proposed method
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is to model these uncertain counts separately and use both probabilities of detection as

well as probabilities of correctly classifying an individual when defining the point count

distributions. For example, we would also include ni,3,t which is the number of individuals

of unknown age and add a probability c for being able to correctly classify an individual.

However, by increasing the number of parameters to determine, this can increase the

amount of data required to provide identifiable estimates.

3.3 Spatial Model

In the original open population model, we assumed that we could not distinguish between

different increases (births and immigration) or between different decreases (deaths and

emigration) in counts. However, the model proposed by Zhao et al., 2017, separates these

causes and uses the spacing of survey sites to model the migration of animals between

them. We partition the local area such that each survey site is in just one partition. We

say that two sites are adjacent if their partitions share a side and we believe that animals

are more likely to move between adjacent sites. We still assume that ni,t ∼ Bin(Ni,t, pi)

where Ni,t is the true population at site i (for i = 1, ..., R) at time t and pi is the probability

of detecting an individual at site i. We assume that Ni,1 has a standard distribution as

mentioned in Section 2.2 such as Ni,1 ∼ Poisson(λ). We now model the true survival, the

reproduction, the emigration and the immigration by the following random variables for

t ≥ 2:

Si,t ∼ Bin(Ni,t−1, ω) where ω is the survival rate

Ri,t ∼ Poisson(γ(Ni,t−1)) where γ is the reproduction rate

Ei,t ∼ Bin(Si,t, κ) where κ is the rate of emigration

Ii,t ∼ Poisson

 R∑
j=1

wi,jEj,t

 where wi,j are the weights of the movements

There are different options for the weights, however the proposed method is

wi,j =
1

nadj
j

if sites i and j are adjacent

wi,j = 0 otherwise
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where nadj
j is the number of sites adjacent to site j. With this model the abundance at

each site i and time t is given by

Ni,t = Si,t +Ri,t − Ei,t + Ii,t.

In the paper by Zhao et al., 2017, they again used a Bayesian approach to estimate the

parameters via MCMC.

The assumption in this model that individuals only move between adjacent sites is more

likely to be appropriate for species with limited mobility and if sites are sufficiently far

apart. If animals frequently move large distances, this would be an inaccurate assumption.

In future models, instead of just allowing movement between adjacent sites, other forms

of connectivity could be used when we have knowledge of the landscape. For example,

if there are well-trodden paths or migration routes between sites, then animals would be

more likely to move between these sites even if the distance is greater.

3.4 Other Extensions

There are yet more extensions to the standard N-mixture model available, however they

will not be discussed in detail here. For example, there are multi-species models which

take into account the correlations between species (Mimnagh et al., 2022). There are

also models which include temporary emigration when individuals leave and then re-enter

survey sites (Chandler et al., 2011). Most of the dynamic models discussed here were

available as multi-season models where k surveys were conducted for each year t (usually

to ensure robust design they required k > 1).

4 Data Analysis

As part of a conservation project in 2022, count data was collected by the author during

animal surveys in three sites in the Lokobe National Park on Nosy Be, Madagascar. The

three sites were Ampasipohy which is part of a local tribes’ land and was surveyed on 7

days, and Kindro and Ramy which are the different trails in the main national park and

were both surveyed on 9 days, however across the full data set there are 13 survey days

as different sites were surveyed on different days. The data was collected on herpetofauna

and for this report we consider the count data for the brown mantella frog (Mantella

ebenaui) and the Nosy Be plated lizard (Zonosaurus subunicolor).
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To estimate the number of individuals at each survey site using the standard N-mixture

model discussed in Section 2.1, we used the package unmarked in R from Kellner et al.,

2023, and Fiske and Chandler, 2011. Ideally each site would have been surveyed on every

survey day resulting in 13 time points for all sites, however they weren’t, due to time and

manpower constraints which is a common issue in ecological data. However, the R package

used can manage unbalanced datasets which may have missing data for certain sites.

Figure 1: Plots showing the estimated total populations as K varies

First we consider the brown mantella frog dataset. For this data, the means and

variances of our count data at each site were quite similar, so we used a Poisson distribution

to model the total number of species at each site. We also checked whether a zero inflated

Poisson was more appropriate by fitting both models, however using the AIC to compare

model fits we determined that the Poisson model was most appropriate. We selected

the parameter K = 50 since for choices of K above 40 the total abundance stabilises as

shown in the first plot of Figure 1. We used the pcount function to model our data.

Figure 2 shows the posterior distributions of the species abundance at each site. These

distributions show the uncertainty in our abundance estimates and how this varies by site.

The estimates for site 2 are the most certain, but it still has a low probability of being

the true abundance. This is a common challenge with count data, particularly for small

datasets where there is more variation in the data.

The expected abundances and 95% confidence intervals are included in Table 1 and the

overall estimated probability of detection was 0.219. From the posterior distributions and

the table, clearly there are wide confidence intervals for these estimates due to the limited

count data available. More surveys would be needed to reduce these confidence intervals.
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Figure 2: The posterior distributions for the true abundance of brown mantella frogs at
site1 (Ampasipohy), site2 (Kindro) and site3 (Ramy)

Mean 95% Confidence Interval

Ampasipohy 22.72 (18,28)
Kindro 7.55 (5,11)
Ramy 15.56 (12,20)

Table 1: The estimated true abundance of brown mantella frogs at each site

We also added a covariate to the probability of detection using the logit link. It was

the number of minutes after sunrise when we started the survey. We thought this may

have impacted the results because the temperatures can get very warm in the middle of

the day which might decrease the chance of seeing these frogs as they seek shade when it

is hottest. However, the estimated abundance for each site was very similar (in fact the

confidence intervals were exactly the same) and when we calculated the AIC values, the

model with covariates had an AIC value of 118.62 and the model without covariates had

119.69. This was not a significant difference and so the time after sunrise did not seem to

have a significant impact on the probability of detection.

We then tried to repeat this analysis with the Nosy Be plated lizard data. The vari-

ances of the count data were much higher than the means, so we wanted to use a negative
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binomial distribution. However, when choosing the value of K, the total population esti-

mate didn’t stabilise for K = 1000 and instead just increases as K increases as shown in

the second plot in Figure 1. This suggests that any estimates from this model would be

inaccurate as they are entirely dependent on the value of K chosen. This is likely due to

the small amount of data available and thus its large variance. This is the problem when

survey data is collected on a small-scale, any estimates are very sensitive to the choice

of parameters. We again tried fitting it with the time after sunrise covariate to see if

this improved the issue, however K still didn’t stabilise. To produce accurate abundance

estimates, more data is needed.

5 Conclusions

In the last 20 years there has been a lot of development of different N-mixture models to

estimate species abundance from count data. It is becoming more and more important

to accurately understand animal population numbers if we want to implement correct

measure to protect them. There is also a lot of public support for such surveys, so involving

the public to collect the count data is a valuable resource and much cheaper than running

capture-recapture surveys. After the first N-mixture model was developed, there have

been many proposed extensions, however in practice many ecologists still use the standard

model, so work needs to be done to make other models and coding packages more accessible

to them.

As mentioned throughout this report, all of these models have their limitations and

points for further development. For example, the standard model is reliant on the choice

of parameter K which, if not chosen carefully, will significantly change the population

estimates. For some of the more complicated models, a Bayesian approach was suggested,

however this again requires better understanding of priors and posteriors to make best use

of the model. There could also be further work on spatial dependence models, especially

if there is local environmental knowledge available.

There is also a need for new models to be developed which combine existing ideas. For

example, developing a multi-season model which also includes the correlations between

multiple species. Although, this report focused on models just using count data, if a

model was developed to combine count data with capture-recapture data, this could further

improve abundance estimates. Capture-recapture data is expensive to collect, but when

it is available, it can provide more accurate population estimates, so it would be beneficial

to have a model which can use both types of data to estimate species abundance.
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The continued development of N-mixture models which better reflect the true bio-

logical processes will allow ecologists to make more accurate estimates from incomplete

survey data. This is increasingly important as we focus on understanding and protecting

biodiversity.
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