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1 Background

Changepoint detection is the problem of finding the points in an ordered dataset where the pa-
rameters of the underlying distribution shift abruptly. This problem has applications in genomics
[Olshen et al., 2004], environmental monitoring [Beaulieu et al., 2012] and economics
[Heßler et al., 2023]. It is possible to consider both online and offline changepoint detection; in offline
scenarios, it is assumed all the data is available for us to analyse, whereas in online scenarios, the
data is fed sequentially into the algorithm, with the aim of finding changepoints in real-time, and
accuracy has to be balanced with how long detection takes after the changes occurs. Through this
report, I will only consider offline changepoint detection.

If it is known that the data has at most one changepoint, the problem is relatively trivial in an
offline setting. Since there are only N−1 possible locations of the changepoint, where N is the length
of the data, it is possible to evaluate a test statistic at each datapoint to determine if and where the
changepoint occurs. However, if there is a maximum of k possible changepoints, there will be more
than N choose k possibilities, and it is probably not computationally feasible to calculate a statistic
for all of them.

There are generally two approaches taken with changepoint detection algorithms. The first ap-
proach uses dynamic programming to directly solve a global minimisation problem over all possible
number and locations of changepoints. Earlier methods taking this approach include Segment Neigh-
bourhood Search and Optimal Partitioning; recently methods such as PELT [Killick et al., 2012] and
FPOP [Maidstone et al., 2014] have managed to decrease computational cost by reducing (or “prun-
ing”) the number of possibilities that must be considered.

The second approach makes modifications to Binary Segmentation, the simplest method and,
according to [Killick et al., 2011], “the most established search algorithm within the changepoint
literature”. Binary Segmentation relies on repeatedly looking for single changepoints within the data.
In Section 2, we will establish the framework for modelling and solving changepoint problems and
discuss Binary Segmentation. In Section 3, we will examine two recent algorithms which modify,
before exploring Seeded Binary Segmentation in Section 4, which builds on both recent methods from
Section 3.

2 Modelling Changepoints and The First Detection Algorithm

2.1 Modelling Changepoints Using Test Statistics

Let us consider our data Y = {y1, y2, ..., yN}, and we wish to find the changepoints {τ1, ..., τk} where
the parameters of the distribution generating the data change. The data between changepoints, e.g.,
yτ1+1 : yτ2 are called segments, and the entire set of changepoints forms a segmentation of the
data.
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There are different options to quantify which segmentations fit the data better. For algorithms
based on dynamic programming, since they minimise globally, it is necessary to have a function which
determines the quality of any segmentation. Therefore, generally a model will be introduced and the
following penalised cost functions will be used:

kϕ(N)−
k+1∑
j=1

f(yτj−1+1 : yτj |Θ̂j),

where f is the log likelihood of the data given the parameters Θ, where Θ̂j is the maximum likelihood
estimators for that segment. The term kϕ(N) prevents overfitting by penalising segmentations with
more changepoints, since as the number of changepoints increases, it allows the likelihood to increase,
as there is more flexibility to match the data.

However, for binary segmentation methods, we only look for a single changepoint each time, so
different approaches can be taken. In general, the algorithms require a test statistic T (l, u)(s) where
1 ≤ l < u ≤ N to determine the best point to split the data within the interval [yl, yu], but there is
more variation in functions used between methods, with algorithms such as Narrowest Over Thresh-
old and Circular Binary Segmentation developing method-specific test statistics [Olshen et al., 2004]
[Baranowski et al., 2019]. We can view the problem of detecting a changepoint as a hypothesis test
[Killick et al., 2011]:

H0 : k = 0, no changepoint in [l, u]

H1 : k = 1, one changepoint in [l, u]

If the test statistic is above a certain pre-determined threshold A, the null hypothesis will be rejected
and the method will find a changepoint in [l, u]. The standard approach to constructing a test statistic
is through a generalised log likelihood ratio approach. Thus:

T (l, u)(s) = 2[f(y1:s|Θ̂1) + f(ys+1:N |Θ̂2)− f(y1:N |Θ̂3)]

That is, T (l, u)(s) is the maximum log likelihood of the data with a changepoint at s with the
maximum log likelihood of the data in the case of the null hypothesis subtracted. Then s∗ =
argmaxs:l≤s<u T (l, u)(s) is considered the best candidate for a changepoint, and corresponds to find-
ing the maximum likelihood estimator for the changepoint when fitting a piecewise constant function
with one discontinuity at s onto the data between l and u. If T (l, u)(s∗) > A, we would reject the
null hypothesis.

The generalised log-likelihood ratio can also be modified so the test statistic is recursive; that
is, for T (l, u)(s) can be calculated by using T (l, u)(s − 1), decreasing computational cost; this was
proposed by [Page, 1954] and is called the CUSUM statistic. If the non-changing parameters are not
known, the CUSUM statistic is sub-optimal compared to the likelihood ratio approach, however it
can be used optimally in certain settings [Granjon, 2014].

For example, let us consider the following simple setting of univariate Gaussian means, where the
CUSUM statistic will commonly be used. Our data is modelled as:

Yi = fi + ϵi, i = 1, ..., N,

where f is a one-dimensional, piecewise constant function with discontinuties at {τ1, ..., τk} and the
random noise ϵ is i.i.d standard Normal. It is generally possible to accurately estimate the variance
of noise using methods such as median absolute deviation, so this is a reasonable assumption.

In this case, the CUSUM statistic is as follows:

T (l, u)(s) =

√
u− s

(u− l)(s− l + 1)

s∑
i=l+1

Yt −

√
s− l + 1

(u− l)(u− s)

u∑
i=s+1

Yt.
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2.2 Binary Segmentation

Binary Segmentation is an intuitive and commonly used algorithm for changepoint detection, proposed
by Scott A.J. and Knott M. (1974) [Scott and Knott, 1974], which works as follows;

1. Find s∗ = argmaxs:1≤s<N |T (1, N)(s)| by evaluating the test statistics for all data points. If
|T (1, N)(s∗)| > A, where A is a threshold, then add s∗ to the list of estimated changes-points.
Otherwise, the algorithm is finished.

2. Split the data into {y1, ..., ys∗} and {ys∗+1, ..., yN} and repeat the previous stage for the two
sets.

3. Continue looking for changepoints and splitting the data until every segment has the maximum
test statistic for a changepoint under the threshold.

Using the CUSUM test statistic or generalised likelihood-ratio statistic, the first stage of Binary
Segmentation involves finding a maximum likelihood estimator for a single changepoint in the data,
so, if there is more than one changepoint, this is essentially model misspecification and can lead to
extreme mistakes. This is particularly likely in settings where the signal has discontinuities that
cancel out, by first increasing then decreasing, for example. Additionally, Binary Segmentations is
only consistent if changepoints are more than N3/4 apart, even when the size of the jump is bounded
away from zero [Fryzlewicz, 2014].

The biggest advantage to Binary Segmentation is its computation efficiency, which is of or-
der O(N log(N)). Dynamic programming based methods typically have computation efficiency of
maximum order O(N2), although, while this is still the worst case scenerio for PELT and FPOP,
they generally much quicker than this, and FPOP can be competitive with Binary Segmentation
[Maidstone et al., 2014].

3 Algorithms Using Random Intervals

Wild Binary Segmentation [Fryzlewicz, 2014] and Narrowest Over Threshold [Baranowski et al., 2019]
are two similar methods designed to improve the statistical properties of binary segmentation, al-
though they do compromise on computational cost.

If there is only one changepoint in the data, which is sufficiently far from the endpoints, so there
are data before and after the function changes, the test statistic is likely to correctly identify the
changepoint. The intuition behind both Wild Binary Segmentation and Narrowest Over Threshold
is that if we look for changepoints over different subintervals of the data, it is probable that some
intervals will only contain one changepoint which is not close to the endpoints of the intervals, making
it easy to detect and leading to a high test statistic at those points.

Both methods begin as follows, requiring a pre-determined interval number M , test statistic
T (l, u)(s) and a threshold A:

1. Form M random intervals from the data [lm, um] where m = 1, ...,m by drawing the lower and
upper limits uniformly, independently and with replacement from {1, ..., N}. One should choose
M to be as large as computationally feasible; increasing M reduces the effect of randomness on
the resulting estimated changepoints and results in greater expected accuracy at the expense of
computational cost.

2. In each of the M intervals, find the best candidate for a changepoint s∗ and the corresponding
value of the test statistic T (lm, um)(s∗). If the value of the test statistic is less than the threshold
A, discard this interval.

3



3. Select one of the candidate changepoints with test statistic over the threshold to add to the list
of estimated changepoints. The two methods differ in their selection criterion.

4. Discard any interval which contains the estimated changepoint. This is necessary so the same
changepoint is not found in slightly different locations.

5. Continue selecting changepoints and discarding intervals which contain them until there are no
intervals left. The list of estimated changepoints is then returned.

If the selection criterion is greedy and the candidate changepoint with the highest test statistic is
chosen, then this algorithm is called Wild Binary Segmentation. Generally, the CUSUM statistics
is used for this method, as it works best for the univariate Gaussian setting.

Alternatively, the Narrowest Over Threshold method selects the candidate changepoint that
was found over the narrowest interval - that is, where um − lm is smallest. This method is appli-
cable to settings other than piecewise constant functions; for example, it can detect changes in the
gradient of an underlying function or variance of the random noise better than Binary Segmentation
or Wild Binary Segmentation. This is because in these settings, large intervals containing multiple
changepoints may result in the test statistic incorrectly identifying points as changepoints with a high
corresponding test statistic and so Wild Binary Segmentation and Binary Segmentation selects them
as true changepoints.

Both methods perform better in settings with fewer changepoints [Fryzlewicz, 2020]. As the
number of changepoints increases while M remains fixed, there is a decreasing probability that there
is a suitable interval to detect every changepoint, but since it is hard to calculate the true number of
changepoints, it may not be clear whether it is necessary to increase M in order for the methods to
be accurate. Additionally, increasing M can drastically increase computational cost, meaning that it
may not be feasible to choose a very large M “just in case”.

4 Seeded Binary Segmentation

Seeded Binary Segmentation [Kovács et al., 2022] builds on the Wild Binary Segmentation and Nar-
rowest Over Threshold methods by changing Step 1 of the previous methods.The disadvantage to
these methods is that due to the randomness of interval selection it is expected there will be many
intervals of length O(N). Not only do longer intervals require more computational effort to search for
the candidate changepoint, they are less likely to contain only one changepoint and so are less useful
than shorter intervals. The idea of Seeded Binary Segmentation is to deterministically create inter-
vals with fewer large intervals, significant overlaps between intervals of a fixed size and the shortest
intervals around the length of the minimum segment size. Thus, for each changepoint, there will be
an interval where it is not close to the endpoint and is the only changepoint in that interval, while
constructing fewer intervals than in the previous methods. This also makes Seeded Binary Segmen-
tation robust to the number of changepoints; regardless of the number of changepoints, there will be
a suitable interval for each changepoint’s detection, and increasing the number of changepoints won’t
increase computational cost.

Concretely, for a given decay parameter a ∈ [12 , 1), and 1 ≤ k ≤ ⌈− loga(N)⌉, we define the kth

layer as the collection of nk intervals with approximate length lk, with approximate sk shift between
intervals as

Ik =

nk⋃
i=1

{[⌊(i− 1)sk⌋, ⌈(i− 1)sk + lk⌉]}

4



where

nk = 2⌈a1−k⌉ − 1, lk = Nak−1, sk =

{
0 if k = 1,

(N − lk)/(nk − 1) otherwise

and the total collection of intervals is the union of all the layers. If it is known that the minimum
length of segments is some l, the layers where lk < l do not need to be calculated or used. However, if
all layers are used, the final layer will contain n⌈− loga(N)⌉ ≈ 2N −1 intervals of length O(1). Both the
greedy selection method employed by Wild Binary Segmentation and the narrowest over threshold
selection detailed above can be used, with the narrowest over threshold selection allowing the Seeded
Binary Segmentation algorithm to be applied in more complicated settings.

The computational cost of Seeded Binary Segmentation primarily depends on the total length of
all of the intervals, as the method requires calculating the test statistic for each point in each interval.
Due to rounding to integer values, an upper bound for the interval length of the kth layer is lk + 2,
and we can bound the total length as follows:

⌈− loga(N)⌉∑
k=1

nk(lk + 2) =

⌈− loga(N)⌉∑
k=1

(Nak−1 + 2)(2⌈a1−k⌉ − 1)

≤
⌈− loga(N)⌉∑

k=1

(Nak−1 + 2)(2a1−k + 1)

=

⌈− loga(N)⌉∑
k=1

2N + 2 + 4a1−k +Nak−1

≤ ⌈− loga(N)⌉(2N + 2 + 4a1−⌈− loga(N)⌉ +N) since ak−1 is decreasing in k

≤ ⌈− loga(N)⌉(7N + 2) = O(N log1/a(N)) = O(N log(N)).

This means that the computational cost of Seeded Binary Segmentation can be competitive with
Binary Segmentation, while improving its accuracy.

The threshold A determines whether a potential changepoint is considered significant enough.
While it is possible to derive an approximate value of A for a given significance level using asymptotic
theory [Gupta and Chen, 1996], Kovacs S. et al suggest calculating the set of changepoints with
different values of A and then optimising over the possible sets using an Information Criterion to
further improve accuracy. In this is done, the computational cost of Seeded Binary Segmentation
will be O(N log(N)) if using greedy selection or O(N2 log(N)) if using the narrowest over threshold
selection.

5 Conclusions

We have examined four methods for detecting changepoints: binary segmentation and three methods
which build upon it. Binary segmentation is computationally fast but inaccurate, and struggles in
settings other than changes in mean with Gaussian noise. Both Wild Binary Segmentation and Nar-
rowest Over Threshold improve the statistical properties of Binary Segmentation while compromising
on computational efficiency; in addition, the Narrowest Over Threshold algorithm is applicable to
a wider range of settings. Finally, Seeded Binary Segmentation reduces their computational cost,
while maintaining the improved accuracy, and can be used with greedy or narrowest over threshold
selection methods, allowing it to be used in a wide range of settings.

There are several extensions that could be done to explore this area further. Firstly, we could
explore Wild Binary Segmentation 2, which was proposed in [Fryzlewicz, 2020] and is also designed to
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improve on Wild Binary Segmentation. Wild Binary Segmentation 2 remains fairly specific to the uni-
variate Gaussian means setting, and there is no investigation of how it works in other settings. Another
algorithm based on Binary Segmentation is Circular Binary Segmentation ([Olshen et al., 2004]),
which is specifically designed to detect changes in DNA sequence copy number. Secondly, it would
be desirable to perform a simulation study using different datasets to demonstrate the strength and
weaknesses of the algorithms discussed.
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