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Chapter 1

Introduction

1.1 A Brief History

The discovery of irrational numbers is often attributed to the Ancients Greeks,
although it is impossible to be certain of many details. Pythagorus allegedly led a cult
who believed all numbers could be expressed as arithmetic ratios (fractions) and he is
fabled to have killed Hippasus of Metapontum, a disciple who proved the irrationality
of

√
2 [7].

However, irrationality may actually have been first discovered in the Vedic civilisation
of India and recorded in texts called the Shulba Sutras, written up to 300 years before
Pythagorus. Like the Pythagoreans, the Vedic civilisation did not separate ideas of
religiosity and mathematics, and it is possible that geometry was developed to meet the
needs of ritual. Nevertheless, the Sutras were the world’s first treatises on pure maths
[21]. This report will be slightly more up to date: the methods for proving irrationality
that I will look at were primarily developed by Hermite, Fourier, Niven and Beukers in
the nineteenth and twentieth century.

The discovery of transcendental numbers was comparatively recent. Euler was the first
to conjecture that certain class of numbers were transcendental in 1798, but it wasn’t
until the 1850s that Joseph Liouville found the first class of transcendental numbers.
Liouville’s work kick-started transcendental number theory and set the stage for a
Field’s medal winning discovery by Klaus Roth in 1955. I will be exploring this in
detail in Chapter 3.

1.2 Preliminaries

This content in this section should be familiar to most readers.

Definition 1.1 (Irrationality). A number is irrational if it cannot be written as a
fraction p/q, where p and q are coprime integers and q ̸= 0.

1



CHAPTER 1. INTRODUCTION 2

Throughout the rest of this report, unless otherwise stated, I will assume that all
fractions are written sensibly: that is, p, q are coprime, and q ̸= 0.

Definition 1.2 (Algebraic). An algebraic number (over the rationals) is one which is
the solution to a polynomial of finite degree with integer coefficients.

If α is algebraic, we can find a polynomial F (x) with integer coefficients such that
F (α) = 0. Equivalently, we can find a monic polynomial G(x) with rational coefficients
such that G(α) = 0.

Definition 1.3 (Minimal Polynomial). The minimal polynomial of α over a field K is
a monic polynomial G(x) in K[x] such that G(x) is irreducible over K and G(α) = 0.

Definition 1.4 (Degree). The degree of α over K is the degree of its minimal
polynomial over K.

If the field K is not specified, we will assume it it the rationals, Q.

Definition 1.5 (Transcendence). A transcendental number is one which is not
algebraic.

We say that the degree of a transcendental number is infinite.

All rational numbers are algebraic, but an irrational number could be either algebraic
or transcendental. For example,

√
2 is an algebraic number since it’s the solution to

f(x) = x2 − 2, and thus
√
2 has degree 2 over Q. The most famous transcendental

numbers are e and π, and I will prove their transcendence in the final chapter.

1.3 Impossible Integers: The Fundamental Contradiction

Throughout this report, we show that numbers are irrational (and later,
transcendental) by constructing integers which violate the “Fundamental Principle of
Number Theory”, i.e. that there is no integer between 0 and 1. This is done as follows:

• Assume our number, α, is rational in the form a/b .

• Define the numbers cn dependent on a, b, α, and natural numbers n. For example,
cn may come from the difference between α and a rational approximation to α.

• Show cn is an integer.

• Bound cn between 0 and an upper bound which depends on n, so that as n tends
to infinity, the upper bound tends to 0. This means that 0 < cn < 1 for large
enough n.

Technically, we only need the upper bound on n to tend to some 0 ≤ c < 1, however
every example in this report has the upper bound tending to 0.

Example 1.6. This is the most well-known proof for the irrationality of e and is
attributed to Joseph Fourier in [10]. As expected, we assume that e is a rational
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number a/b, and consider the rational approximations to e found by truncating its
Taylor series expansion:

pn
qn

=

n∑
i=0

1

i!
= 1 + 1 +

1

2!
+ ...+

1

n!
.

Now define

cn = n!

∣∣∣∣ab − pn
qn

∣∣∣∣ = 1

n+ 1
+

1

(n+ 1)(n+ 2)
+ ...

<
1

n+ 1
+

1

(n+ 1)2
+ ...

=
1

1− 1
n+1

− 1

=
1

n
.

If we choose n ≥ b, cn is an integer, as clearly qn = n!, so n! will cancel out the
denominators in cn. However, cn is non-zero since pn/qn ̸= e, and we showed it was
bounded above by 1/n < 1. So we have created an impossible integer and a
contradiction! Thus, e must be irrational.

Example 1.7 (Irrationality of π). Assume π = a/b, and for n a natural number, define
the functions:

fn(x) =
xn(a− bx)n

n!
,

Fn(x) = f(x)− f (2)(x) + f (4)(x)− ...+ (−1)nf (2n)(x).

These functions have some useful properties.

1. Fn(0) and Fn(π) are integers.

Proof. fn(x) has a zero of order n at x = 0, thus for i < n, f
(i)
n (0) = 0. Then for i ≥ n,

differentiating n times will produce a factor of n!, which cancels out the denominator of
f (i)(x), ensuring f (i)(0) is an integer for all i. Thus F (0) is an integer.

It is also clear from substituting that fn(x) = fn(a/b− x) = fn(π − x), from which is
follows that F (π) is also an integer.

2. fn(x) = Fn(x) + F
(2)
n (x).

This is evident after noting that as fn(x) is a polynomial of order 2n, any derivatives of
higher order than 2n must be 0.
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Next, we use basic calculus to find an integer.

d

dx
[F ′

n(x) sinx− Fn(x) cos(x)] = F ′′
n (x) sinx+ Fn(x) sinx

= fn(x) sinx,

by the second property. Thus,∫ π

0
fn(x) sinxdx = [F ′

n(x) sinx− Fn(x) cos(x)]
π
0

= Fn(π) + Fn(0).

is an integer, by the first property. Now, as before, we aim to bound this integer. The
integrand, fn(x) sin(x) is non-negative on the whole interval [0, π], and zero only at the
endpoints, so the integer can be bounded below by zero. We therefore have

0 <

∫ π

0
f(x) sinxdx =

∫ π

0

xn(a− bx)n

n!
sinxdx <

πnan

n!
,

by considering the maximum possible value for the integrand. However, for large n, n!
grows faster than any power of xn, and so for large enough n, we have that our integer
is bounded:

0 < Fn(0) + Fn(π) <
πnan

n!
< 1,

which is the contradiction.

That nifty proof for the irrationality of π was found by Ivan Niven in 1946, who
published it in a single page paper [20].

Auxiliary polynomials are another useful tool used in irrationality and transcendence
proofs. Auxiliary polynomial are functions that are constructed during proofs to have
many zeroes at different arguments, or to have zeroes of high order at certain
arguments ([24], page 223).

I presented Niven’s proof for the irrationality for π in the introduction as it is a simple
irrationality proof using a family of integrals and auxiliary polynomials. In the next
chapter, we will look at how more complicated families of integrals can evaluate to
integers and prove irrationality. Niven’s method of proof also has many similarities to
Hermite’s method for proving transcendence, which we will see in Chapter 5.



Chapter 2

Beukers’ Method for the
Irrationality of ζ(3)

2.1 Method and Motivation

2.1.1 The Zeta Function

The Riemann-zeta function is defined as

ζ(s) = 1 +
1

2s
+

1

3s
+

1

4s
+

1

5s
+ ...

=
∞∑
n=1

1

ns
.

For real values of s greater than 1, the zeta function converges. It is known that the
zeta function is irrational for even values of s, and also for s = 3. However, there is still
active work on the irrationality of the zeta function for odd s > 3.

For even values of s, ζ(s) is a rational multiple of πs, and since π is transcendental, ζ(s)
must be both irrational and transcendental. For example, ζ(2) can be calculated to be
π2/6, however we will prove its irrationality without using this fact, because it will help
us to prove ζ(3) is irrational.

Roger Apéry first proved the irrationality of ζ(3) in 1978 but as his proof was extremely
complicated, it was met with suspicion until Frits Beukers simplified it the next year.
We do not have a closed form expression for ζ(3) - it is sometimes referred to as
Apéry’s constant. It is also an open question as to whether ζ(3) is transcendental [19].

We are currently unable to use Beukers’ method to prove ζ(4) is irrational, which is
necessary to prove ζ(5) is irrational by the same method as ζ(3). In this chapter, I will
bring together work in [15], [13] and [5] to explain Beuker’s method for proving the

5



CHAPTER 2. BEUKERS’ METHOD FOR THE IRRATIONALITY OF ζ(3) 6

irrationality of ζ(3). First, we will see the core ideas of the method, and how we can
apply it to two simpler examples.

2.1.2 Beukers’ Method: An Overview

This chapter extends the ideas of impossible integers. Again, we want to find an integer
which is squeezed between 0 and 1 as its upper bound tends to 0. To do so, we use a
series of integrals.

• Define a series of integrals In with n a natural number so that:

In =

∫ 1

0
xnf(x)dx = An +Bnα

where An and Bn are rational numbers. If f(x) is non-negative between 0 and 1
and not the zero function, clearly the entire integrand is non-negative in the
interval, so |In| > 0.

• The Legendre polynomial of degree n satisfies Legendre’s differential equation:

(1− x2)
d2f(x)

dx2
− 2x

df(x)

dx
− n(n+ 1)f(x) = 0,

for − 1 < x < 1,

and can be written

Pn(x) =
1

n!

dn

dxn
xn(1− xn)

=
n∑

k=0

(−1)k
(
n

k

)(
n+ k

n

)
xk.

The second line makes it clear that Pn(x) is a polynomial with rational (in fact
integer) coefficients, so since integrals are linear, we have that

Jn =

∫ 1

0
Pn(x)f(x)dx = A′

n +B′
nα.

Thus Jn can also be written as a rational sum of 1 and α.

• The Legendre polynomials were chosen because one can easily perform integration
by parts with them. After performing integration by parts n times on Jn, we get
the equation

Jn =
(−1)n

n!

∫ 1

0
xn(1− x)n

dnf

dxn
dx. (2.1)

We use this to find an upper bound for Jn in the form CMn, such that M is less
than 1.
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• Now we follow the method explained in the introduction. Assume α = a/b, so α is
rational. Then

0 < |Jn| ≤ CMn

=⇒ 0 <
∣∣∣A′

n +B′
n

a

b

∣∣∣ ≤ CMn.

Multiplying through by b and any denominators of A′
n and B′

n, we get an integer
between 0 and some upper bound. We then show that the upper bound
approaches 0 as n tends to infinity, creating an impossible integer.

2.1.3 An Arithmetic Aside

One complication we may find is that the denominator of B′
n grows with n. In fact in

the examples below, it is the lowest common multiple of the first n natural numbers,
which we write as dn. Therefore, we need a preliminary lemma which relies on the
well-known prime number theorem.

Theorem 2.1 (Prime Number Theorem). Let n be a positive integer and define
π(n) := #{p ≤ n : p is prime}. Then

π(n) ∼ n

log n
.

The prime number theorem is a key result of analytical number theory which tells us
that for large n, π(n) and n/ log n have the same asymptotic behaviour.

Lemma 2.2. For n a positive integer, dn ≤ nπ(n) ∼ en.

Proof. We have that

dn = lcm(1, 2, . . . , n) =
∏
p≤n

pm,

where p are primes and m is the maximal integer such that:

pm ≤ n

=⇒ m ≤ logp(n).

Then

dn ≤
∏
p≤n

plogp n =
∏
p≤n

n

= nπ(n) ∼ nn/ log(n) = en.
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Lemma 2.3. For a sum of fractions, where the denominators bi are all positive integers
bounded above by n, we can write

S =
∑
i

ai
bi

=
z

dn
,

where z is an integer, but z and dn are not necessarily coprime.

Proof. For any real integer 0 < bi ≤ n, we have that k× bi = dn for some integer k, and
so we can rewrite ai/bi as kai/dn. Then a sum of fractions, all with denominator dn,
can be written as z/dn.

2.1.4 Irrationality of log 2

It is possible to prove log(2) is irrational very quickly. If

log(2) =
a

b

=⇒ 2 = ea/b.

But in Chapter 5, we will show that er is in fact transcendental for all non-zero rational
numbers r, so this is a contradiction. However, we will show log(2) is irrational without
using this fact, in order to illustrate Beukers’ method. We let

f(x) =
1

1 + x
.

We then evaluate

I0 =

∫ 1

0
f(x)dx = [log(1 + x)]10 = log 2.

For n > 0, we perform the substitution u = 1 + x:

In :=

∫ 1

0
xnf(x)dx

=

∫ 2

1

(u− 1)n

u
du

=

∫ 2

1
un−1 − nun−2 +

(
n

2

)
un−3 − · · ·+ (−1)n−1n+

(−1)n

u
du

=

[
1

n
un − n

n− 1
un−1 +

(
n
2

)
n− 2

un−2 − · · · ± nu± log(u)

]2
1

=
zn
dn

± log(2),
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where zn is an integer, by Lemma (2.3), as all but the last term will integrate to a sum
of fractions with denominators less than n. The final term integrates to ± log(2). Thus

Jn =

∫ 1

0

Pn(x)

1 + x
dx =

An

dn
+Bn log(2),

with An and Bn integers.

Now we aim to bound Jn from above. By (2.1),

|Jn| =
1

n!

∣∣∣∣∫ 1

0
xn(1− x)n

dn

dxn
1

1 + x

∣∣∣∣
=

∣∣∣∣∫ 1

0
xn(1− x)n

1

(1 + x)n+1
dx

∣∣∣∣
≤ Mn

∣∣∣∣∫ 1

0

1

1 + x
dx

∣∣∣∣
= Mn log(2),

where M is defined as the maximum of x(1− x)/(1 + x) for x between 0 and 1, which
can be calculated to be 3− 2

√
2, or roughly 0.17. Additionally it is clear that the

integrand is non-negative over all 0 < x < 1, so |Jn| > 0.

Assuming log(2) = a/b is rational, and multiplying through by the denominators, we
get the inequality:

0 < |Jn| < Mn log(2)

=⇒ 0 < |An

dn
+Bn log(2)| < Mn log(2)

=⇒ 0 < |bAn + aBndn| < Mndna.

But from Lemma (2.2), we know that for large n, dn < en, and so

0 < |bAn + aBndn| < (eM)na < (0.5)na.

This upper bound will be less than 1 for some n, and as bAn + aBndn is the sum and
product of integers, this is a contradiction. Thus, log(2) is irrational.

2.2 Irrationality of ζ(2)

The following two proofs follow much of the structure of [15]. To prove the irrationality
of ζ(2), we choose

f(x) =

∫ 1

0

(1− y)n

1− xy
dy,
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for some natural number n. We want to show that we have rational An and Bn so that

In :=

∫ 1

0
xn
∫ 1

0

(1− y)n

1− xy
dydx

=

∫ 1

0

∫ 1

0

xn(1− y)n

1− xy
dydx

= An +Bnζ(2).

By expanding (1− y)n and splitting up this integral, we can see it is sufficient to show
that every

Ir,s :=

∫ 1

0

∫ 1

0
xrys

1

1− xy
dydx

has the required form, where 0 ≤ r, s ≤ n. We do this by considering three cases.

Note that, for x = y = 1, the integrand diverges. This means Ir,s is an improper
integral, and we should consider limits. I will show how this works for the first case.

Case 1: r = s = 0

For all three cases, we use the formula for an infinite geometric series to write

1

1− xy
=

∞∑
i=0

(xy)i =
∞∑
i=0

xiyi.

In our integral, x and y run between 0 and 1, and so the formula is valid for all values
of xy except (x, y) = (1, 1).

I0,0 = lim
ϵ→0+

∫ 1−ϵ

0

∫ 1−ϵ

0

1

1− xy
dydx

= lim
ϵ→0+

∫ 1−ϵ

0

∫ 1−ϵ

0

∞∑
i=0

xiyidydx

=

∞∑
i=0

lim
ϵ→0+

∫ 1−ϵ

0

∫ 1−ϵ

0
xiyidydx

=

∞∑
i=0

lim
ϵ→0+

[
1

(i+ 1)2
(xy)i+1

]1−ϵ,1−ϵ

0,0

=
∞∑
i=0

1

(i+ 1)2

= ζ(2). (2.2)

From now on, I will leave out the analytic details of the limits, which do not affect the
results.
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Case 2: r=s ̸= 0

Similar to above, we get:

Ir,r =

∫ 1

0

∫ 1

0
xryr

∞∑
i=0

xiyidydx

=

∫ 1

0

∫ 1

0

∞∑
i=r

xiyidydx

=

∞∑
i=r

1

(i+ 1)2

= ζ(2)−
r∑

i=1

1

i2
.

In fact, as every 1/i can be written as a fraction with denominator dr, we have that

r∑
i=1

1

i2
=

zr
(dr)2

for some integer zr, and thus
Ir,r = ζ(2)− zr

(dr)2
.

Case 3: r ̸= s

Finally, following the same method as above, we achieve that

Ir,s =

∞∑
i=1

1

(i+ r)(i+ s)
.

Using partial fractions, we can rewrite

1

(i+ r)(i+ s)
=

1

r − s

(
1

i+ s
− 1

i+ r

)
and so, assuming without loss of generality that r > s,

Ir,s =
1

r − s

∞∑
i=1

(
1

i+ s
− 1

i+ r

)
=

1

r − s

(
1

s+ 1
+

1

s+ 2
+ ...+

1

r

)
=

zr,s
(dr)2

,

for some integer zr,s, by Lemma (2.3) as all the denominators are clearly less than or
equal to r ≤ n.



CHAPTER 2. BEUKERS’ METHOD FOR THE IRRATIONALITY OF ζ(3) 12

From this, we can conclude that

Jn =

∫ 1

0

∫ 1

0
Pn(x)

(1− y)n

1− xy
dydx =

a′n
d2n

+B′
nζ(2)

where a′n and B′
n are both integers (not just rational)! In addition, we use (2.1) to find

|Jn| =
1

n!

∣∣∣∣∫ 1

0
xn(1− x)n

dn

dxn

(∫ 1

0

(1− y)n

1− xy
dy

)
dx

∣∣∣∣
=

1

n!

∣∣∣∣∫ 1

0
xn(1− x)n(1− y)n

∫ 1

0

∂n

∂xn

(
1

1− xy

)
dxdy

∣∣∣∣
=

∣∣∣∣∫ 1

0

∫ 1

0
(x(1− x)y(1− y))n

1

(1− xy)n+1
dxdy

∣∣∣∣ .
This is in the required form. Let M be the maximum of x(1− x)y(1− y)/(1− xy) for x
and y between 0 and 1, which can be calculated with differentiation to be around 0.09.
Thus by Equation 2.2

|Jn| ≤ Mn

∣∣∣∣∫ 1

0

∫ 1

0

1

1− xy
dxdy

∣∣∣∣
= Mnζ(2).

In addition, the integrand is positive over the entire range, and zero at the boundaries,
and thus Jn > 0. As I explained at the start of this chapter, we assume ζ(2) is a
rational a/b, and multiplying through the denominators b and d2n, we obtain an
inequality bounding an integer:

0 < |a′nb+B′
nd

2
na| < d2naM

n.

Using Lemma 2.2, we see that,

d2naM
n < a(Me2)n < a× 0.7n < 1

for large enough n. Therefore a′nb+B′
nd

2
na is an impossible integer, and ζ(2) is

irrational.

2.3 Irrationality of ζ(3)

For ζ(3), we choose

f(x) =

∫ 1

0

Pn(y)

1− xy
log(xy)dy.

To show that Jn is the sum of rational multiples of 1 and ζ(3), we will establish that

Ir,s := −
∫ 1

0

∫ 1

0

xrys log(xy)

1− xy
dxdy

is in this form for all 0 ≤ r, s ≤ n. As before, we consider three different cases:
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Case 1: r = s = 0

We use the geometric sum formula again to find:

I0,0 = −
∫ 1

0

∫ 1

0

log(xy)

1− xy
dxdy

= −
∫ 1

0

∫ 1

0
(log(x) + log(y))

∞∑
i=0

xiyidxdy

= −2

∫ 1

0

∫ 1

0
log(x)

( ∞∑
i=0

xiyi

)
dxdy

= −2
∞∑
i=0

(∫ 1

0
log(x)xidx

∫ 1

0
yidy

)
.

Integrating − log(x)xi by parts, and considering the limit as x → 0+, we achieve:

−
∫ 1

0
log(x)xidx = −

[
log(x)xi+1

i+ 1

]1
0

+
1

i+ 1

∫ 1

0
xidx

=
1

(i+ 1)2
,

and thus

I0,0 = 2
∞∑
i=0

1

(i+ 1)3
= 2ζ(3).

Case 2: r = s ̸= 0

We showed when proving the irrationality of ζ(2) that∫ 1

0

∫ 1

0

xryr

1− xy
dxdy =

∞∑
i=1

1

(i+ r)2
.

Now we perform the simple substitution r −→ r + t, for t some non-negative real
number, and differentiate with respect to t to get:∫ 1

0

∫ 1

0

1

1− xy

∂

∂t
(xy)t+rdxdy =

∂

∂t

∫ 1

0

∫ 1

0

(xy)t+r

1− xy
dxdy

=

∞∑
i=1

d

dt

1

(i+ r + t)2
.

Using that
d

dt
(at) = at log(a),
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we obtain ∫ 1

0

∫ 1

0

(xy)r+t

1− xy
log(xy)dxdy = −2

∞∑
i=1

1

(i+ r + t)3
.

Now set t=0:

Ir,r = −
∫ 1

0

∫ 1

0

(xy)r

1− xy
log(xy)dxdy = 2

∞∑
i=1

1

(i+ r)3

= 2

(
ζ(3)−

r∑
i=1

1

i3

)
= 2ζ(3)− zr

d3r
,

for an integer zr.

Case 3: r ̸= s

We apply the same method as above. Now using∫ 1

0

∫ 1

0

xrys

1− xy
dxdy =

1

r − s

(
1

s+ 1
+

1

s+ 1
+ · · ·+ 1

r

)
,

we substitute r −→ r + t and s −→ s+ t, and differentiate with respect to t to achieve:∫ 1

0

∫ 1

0

xr+tys+t log(xy)

1− xy
dxdy =

1

r − s

d

dt

(
1

s+ t+ 1
+

1

s+ t+ 2
+ · · ·+ 1

r + t

)
=

−1

r − s

(
1

(s+ t+ 1)2
+

1

(s+ t+ 2)2
+ · · ·+ 1

(r + t)2

)
.

Finally, setting t = 0,

Ir,s = −
∫ 1

0

∫ 1

0

xrys log(xy)

1− xy
dxdy =

1

r − s

(
1

(s+ 1)2
+

1

(s+ 2)2
+ · · ·+ 1

r2

)
=

zr,s
(dr)3

for some integer zr,s.

This has showed that

Jn :=

∫ 1

0
Pn(x)f(x)dx

=

∫ 1

0

∫ 1

0

Pn(x)Pn(y) log(xy)

1− xy
dxdy

=
An

d3n
+Bnζ(3),
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where An, Bn are integers. Now we wish to bound |Jn| using Equation (2.1). After
some tedious but elementary algebraic manipulation and calculus, we can achieve that

|Jn| =
∫ 1

0

∫ 1

0

∫ 1

0

(x− x2)n(y − y2)n(z − z2)

[(1− (1− z)x)(1− yz)]n+1

≤ Mn

∫ 1

0

1

((1− (1− z)x)(1− yz)
,

where here M is the maximum of

(x− x2)(y − y2)(z − z2)

(1− (1− z)x

for x, y, z all in the range [0,1], and can be evaluated to be 17− 12
√
2 < 0.03. Then as

before, we can assume ζ(3) = a/b and find

0 < |And
3
nb+Bna| < d3naM

n ∼ a(Me3)n < a× 0.6n.

This shows that ζ(3) is irrational.

2.4 Further Study

In [23], the authors describe ζ(5) as "surely irrational, in the everyday sense of the
word sure (like death and taxes)." Thus, we might hope to extend the ideas in this
proof to show ζ(s) is irrational for larger odd values of s. Following the same strategy
as for ζ(3), to show ζ(5) is irrational, we would first want to show it for ζ(4). To do
this, we search for a family of integrals such that I0 = ζ(4), and In is sum of rational
multiples of 1 and ζ(4). We can find:

ζ(4) =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

1− xy

(1− (1− xy)w)(1− (1− xy)v)
dxdydwdv

However, optimistically defining

f(x) =

∫ 1

0

∫ 1

0

∫ 1

0

1− xy

(1− (1− xy)w)(1− (1− xy)v)
dydwdv

does not work, because

Jn =

∫ 1

0
Pn(x)f(x)dx

cannot be bounded sufficiently well [13]. Huylebrock suggests in [14] that a good family
of integrals to consider is

In =

∫ 1

0

∫ 1

0

∫ 1

0

∫ 1

0

(1− xy)2n+1((1− x)x(1− y)y(1− w)w(1− v)v)n

((1− (1− xy)w)(1− (1− xy)v))n+1
dxdydwdv,
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because it is easy to bound

In ≤ Mnζ(4)

where M is the maximum in [0, 1]4 of

M =
(1− xy)2(1− x)x(1− y)y(1− w)w(1− v)v

(1− (1− xy)w)(1− (1− xy)v)

If we had that for all natural numbers n,

In =
An

d4n
+Bnζ(4),

where An, Bn were integers for all n, this would be sufficient to show ζ(4) was
irrational. However, unfortunately, this has only been shown to be true for n = 0, 1, 2,
and so a proof of the irrationality of ζ(4) and then ζ(5) is still unavailable.

However, progress has been made on the odd zeta values. It has been shown that
infinitely many ζ(2n+ 1) are irrational, and we won’t need to go far to find the next
irrational value, as Wadim Zudilin has shown that at least one of ζ(5), ζ(7), ζ(9) and
ζ(11) is irrational [28]. This number of odd zeta values required for one to be irrational
has been being lowered over the years, and it is conjectured that ζ(2n+ 1) is irrational
for all n [3].



Chapter 3

Approximation of Real Numbers
with Rationals

When we first defined irrational numbers, they were framed using negatives: they
cannot be written as a fraction. This chapter will allow us to define irrational numbers
positively, and then extend these ideas to discover transcendental numbers.

The problem we are considering is the approximation of a real number, called α, by
rational numbers, p/q. Our problem is initially uninteresting because the rationals
become infinitely close together as we “zoom in” (that is, they are dense in the reals).
Thus for any ϵ > 0, we can find infinite rational numbers such that∣∣∣∣α− p

q

∣∣∣∣ < ϵ,

by simply choosing any q > 1/ϵ and p = ⌈qα⌉ − 1. However, this method requires q to
get very large as ϵ approaches 0, and so it is more interesting to consider
approximations where we limit the size of q. For example, consider the inequality∣∣∣∣α− p

q

∣∣∣∣ < 1

q2
. (3.1)

3.1 The rational case

The next two sections follow Hardy and Wright [12], Chapter 11, however I have filled
in some details and added a proof of Proposition 3.2.

Proposition 3.1. If α is a rational number, a/b, there are only finitely many solutions
to Inequality 3.1.

Proof. Let α = a/b, and assume that p/q ̸= α. Then,∣∣∣∣α− p

q

∣∣∣∣ = ∣∣∣∣ab − p

q

∣∣∣∣ = ∣∣∣∣aq − pb

bq

∣∣∣∣ ≥ ∣∣∣∣ 1bq
∣∣∣∣ , (3.2)

17
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since we have that aq − bp is an integer, and cannot be equal to zero. This means that
we require q < b, so there are finite solutions for q. Then, for any fixed q, we need

|αq2 − pq| < 1,

so the only potential integer solutions for p are ⌈q2α⌉/q and ⌊q2α⌋/q. Thus, there can
only be a finite number of solutions to Inequality (3.1).

We can naturally generalise this.

Proposition 3.2. If α = a/b is a rational number, then 1 is the largest possible value
of µ so that there are infinite solutions for p/q to∣∣∣∣α− p

q

∣∣∣∣ < 1

qµ
.

Proof. By Inequality (3.2), for q to be a solution we require

b ≥ qµ−1.

If µ = 1, this simply equivalent to saying b ≥ 1, so there is no restriction on the number
of solutions. Otherwise we find

q < b1/(µ−1) if µ > 1,

q > b1/(µ−1) if µ < 1,

and, by the same argument as the previous proposition, for µ > 1 there can only be
finite solutions, whereas for µ < 1, the number of possible values of q is not
restricted.

Remark 3.3 (Angell [2], Section 3.4). Apéry’s original proof that ζ(3) is irrational
involved showing that there are infinitely many solutions to∣∣∣∣ζ(3)− p

q

∣∣∣∣ < 1

q1.03
.

The idea of finding the maximum possible value of µ so that Inequality (3.2) has
infinite solutions will reoccur later in this chapter to define concretely how well different
numbers can be approximated by rationals.

We now move onto the more interesting case: what happens when α is irrational?
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3.2 Dirichlet’s Idea

Theorem 3.4 (Dirichlet). If α is irrational, there are infinite solutions p/q to (3.1).

Proof. Let us assume α is irrational and suppose we are given a large integer, N . We
define the fractional part of α, (α), as

(α) = ⌈α⌉ − α.

Now consider the N + 1 numbers:

0, (α), (2α), ..., (Nα),

and the intervals: [
0,

1

N

)
,

[
1

N
,
2

N

)
, ...,

[
N − 1

N
, 1

)
.

By the pigeonhole principle, there must be at least one interval which contains two
points. Note that we cannot have that (iα) = (jα) for i ̸= j , as this implies iα and jα
differ by an integer. Then,

iα− jα = m,

α =
i− j

m
,

so α would be rational. Thus, for some integers i, j between 0 and N , with i ̸= j, we
have that

0 < (iα)− (jα) <
1

N

Then we can choose q = (i− j) ≤ N , and there is an integer p such that

|qα− p| < 1

N
,

which implies ∣∣∣∣pq − α

∣∣∣∣ < 1

qN
≤ 1

q2
.

This almost proves that there are infinite solutions to Inequality (3.1). If there were a
finite number of solutions, assume that p1/q1, p2/q2, . . . , pk/qk was a full list of
solutions. However, because α is irrational, and thus none of the solutions ps/qs are
equal to α, there exists a N such that∣∣∣∣psqs − α

∣∣∣∣ > 1

N
for s = 1, ..., k.

However, from above we know we can find another solution p, q such that∣∣∣∣pq − α

∣∣∣∣ < 1

N
,

and so p/q is a solution not on the original list of solutions.
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Interestingly, although the idea of the pigeonhole principle has been around for
millennia, Dirichlet was the first to give it a name when he used it in this proof [11].

3.2.1 Hurwitz’s Improvement

Dirichlet’s theorem was later improved by Hurwitz.

Theorem 3.5 (Hurwitz). For any irrational α, if c ≤
√
5, there are infinite solutions to∣∣∣∣α− p

q

∣∣∣∣ < 1

cq2
(3.3)

However for any c >
√
5, there are only finitely many solutions.

This theorem can be proved by using continued fractions or Farey sequences. If c <
√
5,

we can demonstrate that at least one of any three consecutive convergents to the
continued fraction of α must satisfy Inequality 3.3. Then, since there are infinite
convergents to α, this shows that there are infinite solutions to Inequality 3.3. See [2],
pages 88-90, for a full proof with continued fractions.

The bound on c for infinite solutions is closely linked to the golden ratio,
ϕ = (

√
5 + 1)/2, which is significant for having a continued fraction form consisting

only of 1s.

3.3 Liouville’s Theorem

Liouville investigated numbers that can be approximated by rationals extremely well,
and showed that all irrational algebraic have a limit on how well they can be
approximated. Thus, by finding numbers that can be approximated by rationals
infinitely closely, Liouville constructed the first numbers which were proven to be
transcendental.

Theorem 3.6 (Liouville). If α is a real irrational number which is algebraic of degree
d, then for any rational p/q, ∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)

qd
(3.4)

where c(α) is some real constant that depends only on α.

When α is algebraic of degree 2, this follows from Hurwitz’s Theorem.

Proof (Liouville’s Theorem). This proof is based off the one given in Burger and Tubbs
[8], pages 15-17. We choose some p, q that satisfy Inequality (3.4) and let the minimal
polynomial for α over Q be F (x) = adx

d + ...+ a1x+ a0. Consider F (p/q). Since F (x)
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is irreducible over Q, it has no rational roots, so F (p/q) ̸= 0.∣∣∣∣F (p

q

)∣∣∣∣ = ∣∣∣∣ad(pq )d + ...+ a1(
p

q
) + a0

∣∣∣∣
=

∣∣∣∣adpd + ...+ a1pq
d−1 + a0q

d

qd

∣∣∣∣ = N

qd
≥ 1

qd
,

where N is some positive integer. This is clear as adpd + · · ·+ a0q
d is a non-zero integer.

We now find the exact value of |F (p/q)| by Taylor expanding about x = α). The higher
order terms vanish because F (k)(x) = 0 for k > d.∣∣∣∣F (p

q

)∣∣∣∣ =
∣∣∣∣∣

d∑
i=0

1

i!
F (i)(α)

(
α− p

q

)i
∣∣∣∣∣

=

∣∣∣∣∣(α− p

q
)

d∑
i=1

1

i!
F (i)(α)

(
α− p

q

)i−1
∣∣∣∣∣ ,

using that F (α) = 0. Assume |α− p/q| ≤ 1. If not, then putting c(α) = 1 is enough to
satisfy the inequality in Liouville’s Theorem. Then, by the triangle inequality,∣∣∣∣∣

d∑
i=1

1

i!
F (i)(α)

(
α− p

q

)i−1
∣∣∣∣∣ ≤

d∑
i=1

1

i!

∣∣∣∣∣F (i)(α)

(
α− p

q

)i−1
∣∣∣∣∣

≤ d×M(α),

where we set M(α) to be the maximum value of
∣∣F (i)(α)/i!

∣∣ for i between 1 and d.
M(α) cannot be zero, as F (x) is not a constant. This now implies that, for all
|α− p/q| ≤ 1, ∣∣∣∣F (p

q

)∣∣∣∣ = ∣∣∣∣α− p

q

∣∣∣∣
∣∣∣∣∣

d∑
i=1

1

i!
F (i)(α)

(
α− p

q

)i−1
∣∣∣∣∣ = N

qd

=⇒ N

qd
≤ d×M(α)

∣∣∣∣α− p

q

∣∣∣∣
=⇒

∣∣∣∣α− p

q

∣∣∣∣ ≥ N

d×M(α)qd
.

By setting c(α) to be the minimum of 1 and N/(d×M(α)), we get the required
result.

3.4 Thue, Siegel and Roth

The following two sections use results and definitions from Sally and Sally [24], and I
will summarise the explanation of Thue’s theorem given there. We can rewrite
Liouville’s Theorem to more closely resemble the structure of Dirichlet’s Theorem, and
to illuminate the following section.
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Corollary 3.7. If α is a real algebraic number with degree d and δ > 0, then∣∣∣∣α− p

q

∣∣∣∣ < 1

qd+δ

has only finitely many rationals solutions for p/q.

Proof. Assume there are infinite solutions p/q. As before, for any fixed q, p will be
bounded, so there must be infinite solutions for q, and so q is unbounded. Thus for any
δ > 0, we can find q such that

qδ >
1

c(α)
.

Then for this q, ∣∣∣∣α− p

q

∣∣∣∣ < 1

qdqδ
<

c(α)

qδ
,

contradicting Liouville’s Theorem.

Definition 3.8. For any α ∈ R, define the approximation exponent µ(α) = µ as the
smallest possible real number so that for any δ > 0∣∣∣∣pq − α

∣∣∣∣ ≤ 1

qµ+δ

has only finitely many solutions.

The approximation exponent measures how well a number can be approximated by
rationals. Using our new notation, we have

• If α is a rational number, µ(α) = 1, by Proposition 3.2.

• If α is an irrational number, by Dirichlet’s theorem, µ(α) ≥ 2.

• If α is an algebraic number of degree d, by Liouville’s theorem, µ(α) ≤ d.

• Thus if α is a quadratic irrational number, µ(α) = 2.

The obvious question to ask is if we can find the approximation exponent for
non-quadratic irrational algebraic numbers. This question challenged mathematicians
throughout the first half of the twentieth century, as various people worked to reduce
the upper bound on the approximation exponent for algebraic numbers. I have
converted the stages of their progress into the table on the next page.
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Mathematician Year Upper Bound on µ(α)

Liouville 1844 d
Thue 1909 d/2 + 1

Siegel 1921 2
√
d

Dyson 1947
√
2d

Roth 1955 2

Table 3.1: Upper Bound of the Approximation Exponent of Irrational Algebraic Numbers
of Degree d

The final discovery, Roth’s Theorem, resulted in Roth winning the Field’s Medal.
Combined with Dirichlet’s Theorem, this tells us that the approximation exponent of
irrational algebraic numbers is completely independent of their degree - it is always 2!

Roth’s Theorem is sometimes also called the Thue-Seigel-Roth Theorem to
acknowledge the work of Thue and Seigel. Thue first improved Liouville’s bound using
auxiliary polynomials.

In the proof of Liouville’s Theorem, we used a polynomial with a zero at α of order one,
so we might attempt to improve on Liouville’s result by using an auxiliary polynomial
with a zero at α of order h > 1. Suppose G(x) is such a polynomial with degree r ≥ h,
and follow the same strategy as in Liouville’s Theorem. We have that∣∣∣∣G(p

q

)∣∣∣∣ = N

qr

where again p, q are approximations to α and N is a positive integer. Then, using that
G(i)(α) = 0 for all i < h and Taylor expanding G(p/q) about x = α, we can get that∣∣∣∣G(p

q

)∣∣∣∣ =
∣∣∣∣∣
(
α− p

q

)h r∑
i=h

1

i!
G(i)(α)

(
α− p

q

)i−h
∣∣∣∣∣

≤ M(α)

∣∣∣∣α− p

q

∣∣∣∣h
so long as |α− p/q| < 1. Putting this together, we can achieve the bound∣∣∣∣α− p

q

∣∣∣∣ ≥ c(α)

qr/h
,

where c(α) =

(
N

M(α)

)1/h

.

Although this initially looks like an improvement on Liouville’s bound, in fact r/h ≥ d,
where d is still the degree of α. This is because, as α is a zero of G(x) of order h, F (x)h

must divide G(x), where F (x) is the minimal polynomial of α. Therefore r ≥ hd and it
is not possible to improve on Liouville’s Theorem by taking an auxiliary polynomial in
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one variable with α as a root of order greater than 1. We need a new idea for auxiliary
polynomials.

Thue’s brilliant idea was to consider an auxiliary polynomials in 2 variables, F (x, y),
where F (x, y) had integer coefficients and was in the form

F (x, y) = P (x) + yQ(x).

We also demand that F (x, α) has a zero of high order h at x = α. It is not clear that it
is possible to find such a polynomial, but we aim to find a condition on d so that it is.

Suppose that the overall degree of F (x, y) is n, which implies that deg(P (x)) ≤ n and
deg(Q(x)) ≤ n− 1, so there are at most 2n+ 1 non-zero coefficients, which we label as
{c1, c2, . . . , c2n+1}.

If F (x, α) has a zero of order h at x = α, then we have the system of h linear equations,
where the variables are the ci, given by:

F (α, α) = 0,
∂F

∂x
(α, α) = 0, . . . ,

∂(h−1)F

∂xh−1
(α, α) = 0.

Each linear equation has coefficients in Q[α], so, because α is algebraic of degree d, we
can rewrite the system as hd linear equations with rational coefficients.

If there are fewer linear equations than variables, then we will have a non-zero solution.
That is, if hd < 2n+1, then we can find a non-zero polynomial F (x, y) with coefficients
c1, c2, . . . , c2n+1 so F (x, y) has the required properties. Rearranging hd < 2n+ 1, we
can see that d/2 < r/h+ 1/2h is already reminiscent of Thue’s bound µ(α) < d/2 + 1.

Once we have the auxiliary polynomial F (x, y), the rest of Thue’s proof uses similar
ideas to Liouville, although the actual details are much more complex. It requires
taking approximations p1/q1 and p2/q2 to α and showing that

∂jF

∂xj

(
p1
q1

,
p2
q2

)
̸= 0,

for some j which depends only on α. Then by bounding this object from above in
terms of |α− p1/q1| and |α− p2/q2|, it is possible to create a contradiction.

The proof of Roth’s Theorem is still more complicated. It involves constructing
polynomials in m variables, where m is dependent on δ, as in Definition 3.8.

3.5 Approximation Exponent of Transcendental Numbers

3.5.1 Liouville Numbers

Definition 3.9 (Liouville Numbers). A Liouville number is a (necessarily
transcendental) number α, such that µ(α) = ∞.
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If µ(α) = ∞, then α is clearly transcendental by Liouville theorem, as α cannot be the
root of any polynomial of degree d < ∞. To our disappointment, not all transcendental
numbers are Liouville numbers; in fact, most transcendental numbers, including our
favourites like e and π are not Liouville numbers.

Nevertheless, this gives us a way to construct our first transcendental numbers! We
require numbers that can be approximated by rationals extremely well. I found the
following Liouville number by tweaking the canonical example and proof given in [8],
Section 1.3.

Example 3.10. Consider:

α =

∞∑
n=1

10−nn
.

We can approximate α by truncating the series after N terms. This is a rational
number where the denominator, q(N), is 10N

N
. Then,∣∣∣∣∣α−

N∑
n=1

10−nn

∣∣∣∣∣ =
∞∑

n=N+1

10−nn
=

1

10(N+1)(N+1)
+

1

10(N+2)(N+2)
+ ...

<
1

10(N+1)(N+1)
+

1

10(N+1)(N+2)
+ ...

<
1

10(N+1)(N+1)
× 10N+1

10N+1 − 1

We have that the constant 10N+1/(10N+1 − 1) is largest when N takes its smallest
possible value, i.e N = 1. In addition, we use that (N + 1)N+1 > NN+1 for positive real
N . Thus we obtain ∣∣∣∣∣α−

N∑
n=1

10−nn

∣∣∣∣∣ < 100

99
× 1

10NN+1

=
100

99
× 1

q(N)N
.

This is enough to show that α is transcendental and a Liouville number. Considering
Liouville’s theorem, for any d, c(α)) > 0, let us take N large enough that
q(N)N−d > 100/(99× c(α)). Then:∣∣∣∣∣α−

N∑
n=1

10−nn

∣∣∣∣∣ < c(α)

q(N)d
.

Thus µ(α) = ∞.

From the example, it is clear that there are infinite Liouville numbers. This follows
from writing any real number in its (base 10) decimal form as a0 + 0.a1a2a3 . . . , where
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a0 is an integer and for i ≥ 1, ai is an integer between 0 and 9. Then

∞∑
n=1

an10
−nn

must also be a Liouville number.

3.5.2 Other Transcendental Numbers

It has been shown that, in terms of measure theory, almost all real numbers have
approximation exponent equal to 2 ([24], section 10). Most specific transcendental
numbers we know of have approximation exponent 2 or their approximation exponent is
not yet known; Liouville numbers are an exception, as is Mahler’s number, which we
look at next chapter. This section is based on Borwein and Borwein [6].

Approximation Exponent for e

We know µ(e) = 2 due to e having a very nice continued fraction representation.

Continued fractions are closely related to rational approximation, because the
convergents - that is, the rational numbers formed by terminating the continued
fraction before a plus sign - form a series of rational approximations. For example, the
first few convergents to e are 2, 3, 8/3, 11/4 and 19/7.

Bounding the Approximation Exponent with Beukers Integrals

Unfortunately, the continued fraction of π is less easy to work with, and we are unable
to use it to find µ(π) exactly. However we can find a bound on µ(ζ(2)) and then µ(π)
by using Beukers’ integrals from the previous chapter. I will briefly sketch out the ideas
now.

Theorem 3.11. Assume we have an infinite sequence of approximations {pn/qn},
which satisfy the following conditions.

1. For some δ > 0, ∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q1+δ
n

. (3.5)

2. The denominators qn form a monotonically increasing sequence such that

qn+1 = q1+γn
n

where γn is always positive and tends to 0 as n tends to infinity.

Then for sufficiently large q, either
p

q
=

pn
qn
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for some n, or there exists an ϵ > 0 such that∣∣∣∣α− p

q

∣∣∣∣ > 1

q1+1/δ+ϵ
.

I will not prove this here, but the proof is relatively simple: it involves choosing a qn so
that

1

2
qδn ≤ q <

1

2
qδn+1,

which is possible as qn must be unbounded, and using the triangle inequality (see [6]).

Our aim is use the Beukers’ Integrals to find a sequence of approximations to ζ(2)
which satisfy the conditions in Theorem 3.11. Recall that we have

0 < |Jn| =
∣∣∣∣∫ 1

0

∫ 1

0
Pn(x)

(1− y)n

1− xy
dydx

∣∣∣∣ = ∣∣∣∣Bnζ(2)−
an
d2n

∣∣∣∣ < Mnζ(2),

where Bn and an are integers and I have simplified the notation from the previous
chapter to remove dashes. We now define cn := dn

2Bn and divide through Bn to achieve∣∣∣∣ζ(2)− an
cn

∣∣∣∣ < Mnζ(2)dn
2

cn
<

1

cn1+δ
,

where

δ =
5 log(1 +

√
5)− logM

2 + 5 log(1 +
√
5)− 5 log(2)

− 1 ≈ 0.092.

While the value of δ looks very arbitrary, it can be derived by finding the exact value of
Bn. Then one can use Stirling’s formula and Lemma 2.2 to bound Mnζ(2)d2n in terms
of cn and show that cn satisfies both conditions of Lemma 3.11.

Therefore, for sufficiently large q, if∣∣∣∣α− p

q

∣∣∣∣ < 1

q1+1/δ+ϵ
, (3.6)

we must have that p = an and q = cn.

However, for large n, it is possible to achieve that∣∣∣∣ζ(2)− an
γn

∣∣∣∣ ≥ 1

c3n
>

1

c
1+1/δ
n

,

and so for some maximum q∗, there are no values q > q∗ satisfying Inequality 3.6. Thus
must only be a finite number of solutions and we can bound

µ(ζ(2)) ≤ 1 + 1/δ < 11.86.
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From this, we can immediately find a bound for µ(π). Because ζ(2) = π2/6, we have,
for sufficiently large q, ∣∣∣∣π − p

q

∣∣∣∣ = 1

|π2 + p/q|

∣∣∣∣π − p2

q2

∣∣∣∣
>

1

|π2 + p/q|
× 1

q2×11.86...

=
c(π)

q23.72
.

Using the argument from the proof of Corollary 3.7, this must imply that

µ(π) < 23.72.

In fact, mathematicians have been steadily decreasing the upper bound on µ(π) over
the past century. Karl Mahler was the first to bound µ(π) from above, showing that
µ(π) < 42 in 1953 (see [16]). He was also the first to construct a non-Liouville
transcendental number, which we will look at in the next chapter.

The most recent bound is µ(π) ≤ 7.10320534, due to Zudilin and Zeilberger in 2020
(see [29]) It is naturally conjectured that µ(π) = 2, and there is numerical evidence to
support this [9].



Chapter 4

Mahler’s Number

We now investigate a specific constant with approximation exponent between 2 and
infinity.

Definition 4.1. Mahler’s number in base 10 is M = 0.12345678910111213..., the
number formed by writing all the natural numbers in base 10 in the standard order,
after the decimal point.

This number is more often referred to as Champernowne’s constant after David
Champernowne, who introduced M in 1933 and showed it was normal in base 10; that
is, each digit appears with equal frequency in the decimal expansion of M (see [22]).
However, I choose to call it Mahler’s number as Mahler showed that M was
transcendental and investigated its approximation exponent [17].

We will explore two approaches to find rational approximations to M, and most of the
ideas will generalise to a class of numbers, M(g).

4.1 Some Naive Approximations

This section follows Burger and Tubbs [8], Section 1.6. We aim to find an infinite series
of rational approximations pn/qn to M. Our first approach is to consider the rational
numbers Mk, formed from writing the numbers with k digits in base 10 in order after
the decimal point. For example,

M1 = 0.123456789,

M2 = 0.1011121314....9899,

M3 = 0.100101102...999.

These are good approximations to the fractional parts of M, 109M, 10189M
respectively; for instance, we see that

|M−M1| <
1

109
.

29



CHAPTER 4. MAHLER’S NUMBER 30

The most obvious idea is to put pn/qn = Mn. Unfortunately, the denominator of Mn

grows too large; because there are 9n× 10n−1 digits in Mn, qn is on the order of 1010n .
If we let

M1 =
p1
q1

=
123456789

109
,

we only get ∣∣∣∣M− p1
q1

∣∣∣∣ < 1

q1
,

and these approximations are not even good enough to establish that M is irrational.

Instead, we will first approximate Mk by rationals with much smaller denominators.
We achieve this by noticing that Mk is formed of k character long strings of digit, each
formed by adding 1 to the previous one. Therefore (10k − 1)Mk is very closely
approximated by a decimal of period k, and thus by a fraction with denominator
10k − 1, which is a lot smaller than our previous qn!

This approach will give us an infinite series of approximations that satisfy∣∣∣∣α− pn
qn

∣∣∣∣ < 1

q4.5
. (4.1)

Example 4.2. Lets see how this works for M1. We have that

10M1 −M1 = 1.11111101 ≈ 10

9∣∣∣∣9M1 −
10

9

∣∣∣∣ < 0.000000101∣∣∣∣M1 −
10

81

∣∣∣∣ < 1

814.5

Since M and M1 agree to the first 9 decimal places, we also have that∣∣∣∣M− 10

81

∣∣∣∣ < 1

814.5

and we can take p1 = 10, q1 = 81.

We are able to repeat the same trick for any Mn to get an approximation pn/qn which
satisfies inequality 4.1. Thus this proves µ(M) ≥ 4.5, and by Roth’s Theorem, this
means M must be transcendental. However it is clear that 4.5 is a fairly arbitrary
constant, and we are able to find better approximations.

4.2 Amou’s Approximations

In 1976, Mahler found a series expansion for M in [17] and used this to show that
µ(M) ≤ 200/9, and then in 1989, Masaaki Amou built on Mahler’s work to find the
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exact value for µ(M) [1]. This section follows Amou’s proof, however I have
restructured it for clarity and proved several statements which he does not. The series
expansion for M, which is also used in Amou’s proof, is

M =
10

92
−

∞∑
n=1

un10
−En ,

where:

un =
102n − 10n + 1

(10n − 1)2
− 102n+1 − 10n + 1

(10n+1 − 1)2
,

En = 9

n∑
k=1

k10k−1 = 9(1 + 20 + 300 + ...+ n10n−1).

This series expansion has links to the numbers M1,M2,M3, . . . defined in the
previous section: we saw that 10/81 closely approximated M1 and M. The full
derivation is tedious but elementary; it is explained step-by-step in [22].

As in the proof of the irrationality of e in Example 1.6, we find rational approximations
to M by truncating its series expansion. We define:

Dn =
n∏

k=1

(10k − 1)2 = 92 × 992 × (10n − 1)2,

Bn = Dn+110
En ,

An = Bn

(
10

92
−

n∑
k=1

uk10
−Ek

)
,

Rn =

∞∑
k=n+1

uk10
−Ek .

By these definitions, we have that ∣∣∣∣M− An

Bn

∣∣∣∣ = Rn.

Note that An, Bn are integers. For Bn, this is clear. For An, when k ≤ n, the factors of
(10k − 1)2 and (10k+1 − 1)2 in the denominator of uk are cancelled out by Dn+1, and
the powers 10−Ek become non-negative powers when multiplied by 10En .

However, An and Bn are not necessarily coprime. We choose rational approximations
to M by putting

An

Bn
=

pn
qn

where now pn, qn are coprime.
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4.2.1 Asymptotic Behaviour

We first study the asymptotic behaviour of our various sequences as n tends to infinity.

Theorem 4.3. We have the bound

gcd(An, Bn) ≤ Dn+110
n.

Proof. From the definitions of An and Bn, we have that

An

Bn
=

10

92
−

n∑
k=1

uk10
−Ek

=
An−1

Bn−1
− un

10En
.

Multiplying through by Bn and substituting in the definition of Bn, we achieve

An = An−1(10
n+1 − 1)210En−En−1 − unDn+1.

The first term is a multiple of 10n+1, since

En − En−1 = 9n10n−1 > n+ 1.

We write the second term as

unDn+1 =

(
102n − 10n + 1

(10n − 1)2
− 102n+1 − 10n + 1

(10n+1 − 1)2

) n∏
k=1

(10k − 1)2

=
(
(102n − 10n + 1)(10n+1 − 1)2 − (10n − 1)2(102n+1 − 10n + 1)

)
Dn−1.

We can see that if we expanded the brackets, the unit terms would cancel out, so the
lowest power of 10 left would be 10n. Since Dn is a product containing no factors of 10,
this means that the second term is a multiple of 10n but not 10n+1.

Thus An is likewise divisible by 10n but not 10n+1. Finally, we compute

gcd(An, Bn) = gcd(An, Dn+110
En) ≤ Dn+110

n.

Corollary 4.4. We can write
qn = 10En(1+αn),

where αn → 0 for n → ∞.

Proof. From the definition of qn, we have that

qn =
Bn

gcd(An, Bn)
≥ Dn+110

En

Dn+110n
= 10En−n.
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We also have the obvious bound that qn ≤ Bn. Putting the bounds together, we have
that

10En−n ≤ qn ≤ Dn+110
En < 10En+n(n+1),

qn = 10En(1+αn),

where αn is some number that between −n/En and n(n+ 1)/En. By the squeezing
theorem, αn → 0 as n → ∞, because En grows much faster than n.

Theorem 4.5. For large n, we can write

Rn = 10−En+1(1+βn),

where βn → 0 from above.

Proof. As n tends to infinity, a power of 102n will dominate a power of 10n, therefore

lim
n→∞

un =
102n

102n
− 102n+1

102n+2
= 1− 1

10
=

9

10
.

Using this,

lim
n→∞

Rn =
∞∑

k=n+1

9

10
10−Ek

=
9

10
10−En+1

= 10−En+1(1+βn),

since the higher terms in Rn will exponentially damped. We need define β(n) by:

10−En+1βn =
9

10
.

The exponent −En+1βn must be almost zero (to be precise, log (9/10) = 0.0045...).
Since En+1 is large, we require βn to be positive but small. Then as En clearly tends to
infinity as n → ∞, we must have that βn → 0.

Theorem 4.6. As n goes to infinity, En+1/En tends to 10.

Proof. We first evaluate En. We have

En =

n∑
k=0

k10k−1 =

n−1∑
k=0

(k + 1)10k.



CHAPTER 4. MAHLER’S NUMBER 34

Thus, using the finite geometric sum formula, we achieve

10En − En =
n∑

k=0

k10k −
n−1∑
k=0

(k + 1)10k

= n10n −
n−1∑
k=0

10k

= n10n − 10n − 1

10− 1

=⇒ En =
9n10n − 10n + 1

81
.

Therefore, the fraction En+1/En can be rewritten as

En+1

En
=

∑n+1
k=1 k10

k−1∑n
k=1 k10

k−1
= 1 +

(n+ 1)10n∑n
k=1 k10

k−1

= 1 +
81(n+ 1)10n

9n10n − 10n + 1
.

In the limit:

lim
n→∞

En+1

En
= 1 + lim

n→∞

81(n+ 1)10n

9n10n

= 1 + 9 lim
n→∞

n+ 1

n
= 10.

When taking limits, we reduced the size of the denominator, so En+1/En approaches 10
from above: that is for any finite value of n, En+1/En > 10.

4.2.2 Approximation Exponent

Now we can combine everything to get a bound on the approximation exponent!

|qnM− pn| = Rnqn

For large n, we substitute in our limits for Rn, qn, and the ratio of adjacent terms En

to get that

|qnM− pn| = 10En(1+αn) × 10−En+1(1+βn)

≤ 10En(1+αn) × 10−10En

= 10−9En × 10Enαn

≤ q−9
n .

Now we simply divide the inequality by qn to get for large n, we have that:∣∣∣∣M− pn
qn

∣∣∣∣ ≤ q−10
n ,
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or equivalently that there are infinite solutions to∣∣∣∣M− p

q

∣∣∣∣ < 1

q10
,

which immediately tells us that µ(M) ≥ 10.

Compared to the previous section, this bound is clearly less arbitrary.

Theorem 4.7. For any δ > 0, ∣∣∣∣M− p

q

∣∣∣∣ < 1

q10+δ
(4.2)

has only finite solutions, and thus µ(M) = 10.

Proof. This is clear from the asymptotic behaviour of the functions we defined.
Because αn and βn tend to zero and En+1/En tends to 10 as n tends to infinity, we can
modify the proof of the previous theorem to see∣∣∣∣M− pn

qn

∣∣∣∣ ∼ 1

q10n
.

Thus for any δ > 0, only finitely many pn/qn can satisfy 4.2.

4.3 Generalisations

Mahler’s constant can be generalised to different bases [1].

Definition 4.8. For g ≥ 2 a positive integer, M(g) is the number in base g formed by
writing all the natural numbers in base g in the standard order after the decimal point.

Example 4.9.

• Clearly, M = M(10).

• For g = 3, we have M(3) = 0.12101112202122...3.
We can also write M(3) in base 10, although it loses the clear pattern:
M(3) = 0.5989581675384...

The series expansion and subsequent approximations and analysis can easily to
generalised to M(g) for g ≥ 3 by simply replacing any incidents of 10 with g, and 9
with g − 1. This leads to

µ(M(g)) = g,

for all g ≥ 3, which implies the following theorem.

Theorem 4.10. For any positive integer n, we have a real number α so that µ(α) = n.

For g = 2, slightly more work has to be done, however it is possible to show that
µ(M(2)) = 2, and additionally that M(2) is transcendental.



Chapter 5

Hermite’s Method for
Transcendence

Although M is a very interesting number, it is not naturally occurring; we do not find
it in other formulae. Similarly, while Liouville showed that a class of numbers are
transcendental, he had to construct his examples to have the required properties. The
first naturally occurring number to be proved to be transcendental was e, by Hermite in
1873, and in 1882, Lindemann used Hermite’s method to show π was also
transcendental.

These proofs both use auxiliary polynomials to create a contradiction, and the following
ingenious method to demonstrate an integer is non-zero.

• Assume we have a number written in the form

Cp = c0,p +
n∑

i=1

ci,p,

where p is a large prime which we define later, and ci,p are all integers.

• We show that the sum of ci,p for i between 1 and n is always divisible by p.

• We next show that c0,p can be written as a product of factors, where none of the
factors are dependent on p. Thus by choosing p to be larger than all of the factors
of c0,p, we ensure that c0,p cannot be divisible by p.

• Therefore Cp is the sum of two numbers where only one is divisible by p and
therefore p cannot divide Cp. Then, since 0 is divisible by p, this means C cannot
be zero!

5.1 Transcendence of er

Theorem 5.1 (Hermite). Euler’s constant, e, is transcendental.

36
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Because µ(e) = 2, we cannot use the approximation exponent to show that e is
transcendental.

Proof. This proof is based on the one given by [26], although I restructured it so we get
the standard contradiction. We start by assuming e is algebraic, that is, it is the root of
a polynomial with integer coefficients, at:

n∑
t=0

ate
t = 0, with n ≥ 1, a0, an ̸= 0. (5.1)

We approximate et for t ≥ 1 by rationals in the following way:

et =
Mt + ϵt

M
,

where M,M1,M2, ...,Mn are integers, chosen so that the correction term, ϵt/M , is
small. We can then substitute into Equation (5.1) to get

a0 +

n∑
t=1

at

(
Mt + ϵt

M

)
= 0

=⇒ Ma0 +
n∑

t=1

atMt = −
n∑

t=1

atϵt. (5.2)

We define M,Mt, and ϵt as follows:

M =

∫ ∞

0
xp−1e−x ((x− 1)(x− 2)...(x− n))p

(p− 1)!
dx,

Mt = et
∫ ∞

t
xp−1e−x ((x− 1)(x− 2)...(x− n))p

(p− 1)!
dx,

ϵt = et
∫ t

0
xp−1e−x ((x− 1)(x− 2)...(x− n))p

(p− 1)!
dx,

where p is a large prime. It is clear that Mt + ϵt = etM as required by the definition of
M,Mt and ϵt, however we need to show that M,Mt are integers.

5.1.1 Evaluating M and Mt

We aim to show that M and Mt are integers and then that the left hand side of
Equation (5.2) is a non-zero integer. We start with a simple preliminary proposition.

Proposition 5.2.
∫∞
0 xme−xdx = m!.
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Proof. Integrating by parts, we achieve that∫ ∞

0
xme−xdx = [−xme−m]∞0 +m

∫ ∞

0
xm−1e−xdx

= m

∫ ∞

0
xm−1e−xdx = m!

∫ ∞

0
e−xdx = m!.

Next we rewrite the polynomial in the integrand of M and Mt:

[(x− 1)...(x− n)]p = xpn + ...+ (−1)n(n!)p

= (−1)n(n!)p +
n∑

i=1

bix
ip,

where the coefficients of the polynomial, bi, are integers. M is thus an integer since it
can be written as

M = (−1)n(n!)p
∫ ∞

0

e−xxp−1

(p− 1)!
dx+

∫ ∞

0

e−xxp−1

(p− 1)!

n∑
i=1

bix
ipdx

= (−1)n(n!)p +
n∑

i=1

bi
(ip+ p− 1)!

(p− 1)!
,

using the previous proposition. The second term is clearly divisible by p, because,
expanding the factorials, we have that

(ip+ p− 1)!

(p− 1)!
= p(p+ 1) . . . (ip+ p+ 1).

We now choose p so that p > n, and thus the first term, (−1)n(n!)p cannot be divisible
by p. This is because n! is formed from multiplying numbers 1 ≤ n < p, and since p is
prime, it has no factors less than itself.

Therefore M is not divisible by p, and by also choosing p > a0, we further ensure that
a0M is not divisible by p.

We evaluate Mt similarly. Making the substitution y = x− t, Mt becomes∫ ∞

0
(y + t)p−1e−y ((y + t− 1)(y + t− 2)...y...(y + t− n))p

(p− 1)!
dy.

Remembering that n is the degree of the minimal polynomial for e, and that t runs
between 1 and n, we know that t− n ≤ 0 so there must be a factor of y in the
polynomial. The powers of y in the polynomial run between 1 and (np+ p− 1), with
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coefficients, ci/(p− 1)!, where ci is an integer for all i. That is:

Mt =

∫ ∞

0

e−y

(p− 1)!

np+p−1∑
i=1

ciy
idy

=

np+p−1∑
i=1

ci
(ip+ p+ 1)!

(p− 1)!

=

np+p−1∑
i=1

cip(p+ 1)...(p+ 1 + ip).

Thus, Mt is an integer divisible by p, and, using the trick explained at the start of this
chapter,

Ma0 +
n∑

t=1

atMt

is a non-zero integer.

5.1.2 Bounding the Integer

Using Equation (5.2), if we had that, for large enough p,∣∣∣∣∣
n∑

t=1

atϵt

∣∣∣∣∣ < 1, (5.3)

then e must be transcendental by our standard contradiction, as a non-zero integer
cannot have absolute value less than 1.

To prove that ϵt can be made small enough that Equation (5.3) holds, we consider
bounds:

ϵt = et
∫ t

0
xp−1e−x ((x− 1)(x− 2)...(x− n))p

(p− 1)!
dx

< ettp
∫ t

0

((x− 1)(x− 2)...(x− n))p

(p− 1)!
dx.

Clearly the polynomial ((x− 1)(x− 2)...(x− n)) has finite values for x between 0 and t,
so we can let U be the maximal absolute value of ((x− 1)(x− 2)...(x− n)) for x in this
range. Then,

|ϵt| <
ettp+1Up

(p− 1)!
= ett× (tU)p

(p− 1)!
.

Note t is some fixed number between 0 and n, but p can be any prime larger than n.
As we make p larger, (p− 1)! grows faster than any power of p, so ϵt approaches 0.
Thus we can choose p such that (5.3) holds and e is transcendental.
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Corollary 5.3. For any non-zero rational number r, er is a transcendental number.

Proof. I prove this using basic Galois theory with results from [25]. Let r = a/b, and
assume that er is algebraic, and let d be the degree of its minimal polynomial over Q.
Then,

[Q(er)] : Q] = d < ∞.

Clearly, ea = (er)b is in the field extension Q(er), so we define the polynomial

f(x) = xa − ea ∈ Q(er). (5.4)

Since e is a root of f(x), we have that

[Q(e) : Q(er)] ≤ a

[Q(e)] : Q] ≤ ad < ∞

by the Tower Theorem. But this says that e has finite degree over Q, or equivalently
that e is algebraic, a contradiction to the previous section. Note this proof breaks down
if r = a = 0 because Equation (5.4) becomes the zero polynomial. Thus er is
transcendental for rational r ̸= 0.

5.2 The Transcendence Of π

5.2.1 Symmetric Polynomials

The next section fuses the proofs of the transcendence of π in [25] and [2]. First, we
need to develop some more Galois Theory.

Definition 5.4. A symmetric polynomial in n variables, f(x1, x2, . . . xn), is a
polynomial such that

f(τ(x1, . . . xn)) = f(x1, x2, . . . xn)

for all τ ∈ Sn.

Example 5.5. Let
f(x1, x2, x3) = x1x2x3 + x1 + x2 + x3

It is clear that any permutation of {x1, x2, x3} will not change f(x1, x2, x3).

We introduce the elementary symmetry polynomials in n variables, which can be
thought of as the building blocks of symmetric polynomials:

e1 = x1 + x2 + ...+ xn

e2 = x1x2 + x1x3 + ...+ xn−1xn
...

en = x1x2 . . . xn.
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Definition 5.6. The elementary symmetric polynomials in n variables are, for
0 < k ≤ n,

ek(x1, . . . xn) =
∑

1≤i1<···<ik≤n

xi1xi2 . . . xik

with ek = 0 for k > n.

Theorem 5.7. Any symmetric polynomial in n variables can be expressed as a
polynomial in the elementary symmetric polynomials.

Corollary 5.8. If we have a polynomial F (t)

F (t) = tn + cn−1t
n−1 + . . . c0,

such that F (t) has roots {x1, . . . xn}, then any symmetric polynomial in {x1, . . . xn} can
be expressed in terms of the coefficients {cn−1, . . . , c0}.

Proof. We write F (t) as:

F (t) = cn[(t− x1)(t− x2) . . . (t− xn)]

= cn[t
n − e1t

n−1 + e2t
n−2 · · ·+ (−1)nen]

Therefore, we can express the elementary symmetric polynomials in {x1, . . . , xn} as

ek = (−1)kcn−k

and any symmetric polynomial in {x1, . . . , xn} can written in terms of these coefficients
by Theorem 5.7.

5.2.2 Lindemann’s Proof

Theorem 5.9 (Lindemann). π is a transcendental number.

Proof. In order to prove this, we must consider complex transcendental numbers as well
as real ones. We assume π is an algebraic number. Then, since i is algebraic (as it is a
root of f(x) = x2 + 1), iπ must be algebraic as well.

Now consider the minimal polynomial for iπ over the rationals and label the roots of it
α1 = iπ, α2, . . . , αn, counted with multiplicity, so the degree of π over the rationals is n.
Then:

(eiα1 + 1)(eα2 + 1) . . . (eαn + 1) = 0, (5.5)

by Euler’s identity:
eiπ + 1 = 0.
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Expanding (5.5), all the terms will be in the form eβs where s is a subset of
{1, 2, . . . , n},

βs =
∑
k∈S

αk.

and we put β∅ = 0. For example, we have the term

eα1 × eα2 × 1× 1× · · · × 1 = eα1+α2 = eβ{1,2} .

There are 2n different subsets of {1, 2, . . . , n}, and thus 2n different βs values. However,
the βs terms are not necessarily distinct, as different combinations of αk might sum to
the same number. We relabel the non-zero values of βs as β1, β2, ...βr with multiplicity.
Then (5.5) becomes

0 = eβ1 + ...+ eβr + e0 + ...+ e0

= eβ1 + ...+ eβr + k, (5.6)

where k is an integer greater than 1, since β∅ = 0. We create a polynomial with roots
which are the non-zero sums βs:

θ̃(z) =

r∏
i=1

(z − βi).

Now the coefficients of θ̃ are elementary symmetry polynomials in the sums βi. Because
we can permute {αk} without changing the set of non-zero sums, the coefficients of θ̃
can also be written as elementary symmetric polynomials in α1, ...αn.

But the elementary symmetric polynomials of {α1, ...αn} are nothing more than plus or
minus the coefficients of the minimal polynomial of iπ, which are rational!

Therefore θ̃ has rational coefficients. By multiplying by a suitable constant, we create a
polynomial θ(z) with integer coefficients with β1, ...βr as roots:

θ(z) = crz
r + cr−1z

r−1 + ...+ c0

where the degree of θ(z) is r = 2n − k. We now define

f(z) =
cr

rpzp−1(θ(z))p

(p− 1)!
,

F (x) = f(z) + f ′(z) + ...+ f (pr−p−1)(z)

Iβ =

∫ β

0
f(z)eβ−zdz,

where p is a large prime.

Similarly to in Example 1.7, where we proved the irrationality of π, we can see that

F ′(z)− F (z) = −f(z),
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and thus
d

dz
[F (z)eβ−z] = −f(z)eβ−z.

Because f(z)eβ−z is an entire function, the value of Iβ is independent of the contour
taken, and so

Iβ = F (0)eβ − F (β).

Now we consider the object which will eventually be proved to be our impossible
integer:

J :=
r∑

i=1

Iβi
= F (0)

r∑
i=1

eβi −
r∑

i=1

F (βi)

= −kF (0)−
r∑

i=1

pr+p−1∑
j=1

f (j)(βi)

= −kF (0)−
∞∑
j=0

r∑
i=1

f (j)(βi), (5.7)

using 5.6 and the fact that f (n)(z) = 0 for n ≥ pr + p. Note that the second term is
actually a finite sum, since f(z) is a polynomial.

Evaluating J

Consider
1

crrp

r∑
i=1

f (j)(βi). (5.8)

Since f(z) has zeroes of order at least p at every z = βi, if j < p, f (j)(βi) = 0.

Then for j ≥ p, differentiating p times will create a factor of p!. After dividing by
(p− 1)! in the denominator of f(z), f (j)(z) will be a polynomials with integer
coefficients which are all multiples of crrpp (as f(z) also contains a factor of crrp).

Thus 5.8 is a symmetric polynomial in β1, . . . βr with integer coefficients divisible by p.
So, by Corollary 5.8, 5.8 can be written as a polynomial with coefficients divisible by p
in the elementary symmetric polynomials, that is:

1

crrp

r∑
i=1

f (j)(βi) = g (e1, e2, ...er)

= g

(
−cr−1

cr
,
cr−2

cr
, ...,±c0

cr

)
.

Then, since
deg(g) ≤ deg(f (j)) ≤ deg(f)− j ≤ pr,
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multiplying by cr
rp will clear all the denominators in g, meaning that

r∑
i=1

f (j)(βi)

is an integer divisible by p.

Evaluating F (0) Using the argument about f (j)(z) from the previous section, and
the fact that z = 0 is a root of f(z) of order exactly p− 1, we can find that

f (j)(0) =


0, if j < p− 1

c0
pcr

rp, if j = p− 1

a multiple of p, if j > p− 1.

This implies that

F (0) =
∞∑
i=0

f (j)(0)

= c0
pcr

rp +Np,

where N is some integer. Thus, using 5.7 we can write

J = −kc0
pcr

rp +N ′p,

where N ′ is another integer. Now we can choose p to be larger than the absolute values
of c0, cr and k; this means kc0cr

rp cannot contain a factor of p. Therefore, J is an
integer not divisible by p, and is thus non-zero.

Bounding J

We now aim to bound J from above. Recall that

Iβi
=

∫ βi

0
f(z)eβi−zdz =

cr
rp

(p− 1)!

∫ βi

0
zp−1(θ(z))peβi−zdz

and, since the value of Iβi
is independent of the contour taken, we assume that z takes

the values βit for t between 0 and 1.

Now let C be the maximum absolute value of the coefficients of θ(z), that is:

C = max{|c1|, |c2|, ..., |cr|}.

Then we bound

|θ(z)| ≤
r∑

j=0

|cj ||z|j

≤ C
r∑

j=0

|βi|j = C(1 + |βi|)r
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for z = βit with t between 0 and 1. Additionally, we bound∣∣∣eβi−z
∣∣∣ = eRe (βi−z)

≤ e|Re (βi)|.

This all implies

|Iβi
| ≤ cr

rp

(p− 1)!
× |βi|p × Cp(1 + βi)

rp × e|Re (βi)|

=
[cr

r × βi × C(1 + |βi|)r]p × e|Re (βi)|

(p− 1)!

=
Ai ×Bi

p

(p− 1)!

where Ai and Bi are independent of p. Then

|J | =

∣∣∣∣∣
r∑

i=1

Iβi

∣∣∣∣∣ ≤
r∑

i=1

|Iβi
|

≤ 1

(p− 1)!

r∑
i=1

(Ai ×Bi
p)

≤ A×Bp

(p− 1)!

where

B = max{B1, B2, . . . Br}
A = rmax{A1, A2, . . . Ar}

As we have seen before, for large p, (p− 1)! will grow faster than any power, and the
upper bound on J will tend to 0. By our standard contradiction, π is transcendental.

5.2.3 The Original Direction of Proof

In fact, the direction of Lindemann’s proof was reversed [2]. He first showed the more
general theorem:

Theorem 5.10 (Lindemann). If α is any non-zero algebraic number, then eα is
transcendental.

Proving this theorem is more involved than our proof for the transcendence of π and e,
and requires more Galois Theory. However it then has the immediate corollary that iπ
and thus π must be transcendental, since we have that

eiπ = −1.

This is the underlying reason for the similarities between the transcendence proof of e
and π.
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5.3 Squaring The Circle

We started this report by discussing irrational numbers in antiquity, so it is satisfying
to end the report by using our previous results to answer a problem from Ancient
Greece. This section follows [25], Chapter 7.

The Ancient Greeks were interested in ruler and compass construction. In particular,
they wanted to construct a square with the same area as a given circle using only an
unmarked straight edge and a pair of compasses. This problem was known as "squaring
the circle", and we will show that it is impossible.

We can reformulate this problem. Given a set of distinct points P0 in R2, we consider
the operators:

• Ruler: Draw a straight line passing through any 2 points in P0.

• Compasses: Draw a circle with a centre at any point in P0 and radius ω, where
ω is a distance between two points in P0.

Definition 5.11 (Constructable Numbers). We can construct a point from P0 in one
step if it is at the intersection of any two lines or circles drawn using the operators
above. A point r ∈ R2 is constructable from P0 if there is a finite sequence
r1, . . . , rn = r in R such that the point ri can be constructed in one step from the set
P0 ∪ {r1, . . . , ri−1}.

We now realise K0 as the minimal field extension of Q containing all the x and y
coordinates of the points in P0.

Example 5.12. If P0 = {(1, 2), (3,
√
2), (

√
5, 0)}, then

K0 = Q(
√
2,
√
5).

If a point ri has coordinates (xi, yi), we define Kj as the minimal field extension of
Kj−1 containing (xi, yi), that is

Ki = Ki−1(x1, y1).

We thus have a tower of subfields:

Q ⊆ K0 ⊆ K1 ⊆ · · · ⊆ Kn ⊆ R,

since all coordinates x and y are in R.

Lemma 5.13. With the notation above, xi and yi each have at most quadratic degree
over Kj−1.

The coordinates (xi, yi) could have been formed in 3 ways: at the intersection of 2 lines,
2 circles, or a circle and a line. Finding the intersection between them is equivalent to
solving simultaneous equations, which leads to an equation in (xi, yi) of at most
quadratic degree over Kj−1.
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Theorem 5.14. For any constructable point r = (x, y) ∈ R2, both x and y are
algebraic numbers with degree a power of 2 over K0.

Proof. The previous lemma states that

[Kj−1(xi) : Kj−1] = 1 or 2,

for all 1 ≤ i ≤ n, and similarity for yi. Therefore

[Ki : Ki−1] = [Ki−1(xi, yi)) : Ki−1] = 1, 2 or 22.

By the Tower Theorem, this implies that

[Kn−1 : K0] = 2m

for some natural number m, and so both x and y have degrees of either 2m or 2m+1

over K0 and are thus algebraic over K0.

Corollary 5.15. It is impossible to square the circle.

Proof. Constructing a square with the same area as a unit circle is equivalent to the
point (

√
π, 0) being constructable from P0 = {(0, 0), (1, 0)}.

In this case, we have K0 = Q and, if it is possible, by the previous lemma,
√
π must be

algebraic over Q with degree 2m for some natural number m. This then implies π is
algebraic, but by Theorem 5.9, it is not.
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Discussion

We have now built several methods and criteria for proving numbers are irrational or
transcendental, and applied them to many significant numbers. In particular, we have
seen classes of transcendental numbers, such as Liouville numbers and M(g), which
have different properties.

However transcendental number theory is a huge topic and, with more time and space,
I could have explored many more areas. For example, a natural extension of this work
would be continued fractions, as the continued fraction form of real numbers is closely
linked to their approximation exponent. I also would have liked to examined more
methods to proving the transcendence of numbers, such as Mahler’s method, which uses
functional equations and automata. In addition, I would like to briefly highlight some
open questions in transcendental number theory.

6.1 Linear Independence of Transcendental Numbers

Considering I proved the irrationality of e and π in the introduction, using only
school-level mathematics, it is perhaps surprising that there is no proof that e+ π and
eπ are irrational. We can be sure that at least one of these number is irrational by
considering the quadratic polynomial with roots e and π:

f(x) = (x− e)(x− π) = x2 − (e+ π)x+ eπ.

Because we have seen that e and π are transcendental, f(x) cannot have rational
coefficients, and thus at least one of e+ π and eπ is irrational. If we could prove that e
and π are linearly independent over the rational numbers, then immediately e+ π
would be irrational.

Although this has so far alluded us, in 1993, Masayoshi Hata showed that the numbers
log 2 and π are linearly independent over Q. He did this using a type of rational
approximation called Hermite-Pade rational approximation. Apéry and Beukers’ proof

48
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of the irrationality of ζ(3) is closely related to Hermite-Pade rational approximation,
and can in fact be reformulated in terms of it [3].

Additionally in 1885, Weierstrass generalised Lindermann’s Theorem (Theorem 5.10). I
state the version reformulated by Baker in [4], Chapter 1.

Theorem 6.1 (Weierstrass). If α1, . . . , αn are distinct algebraic numbers, then
eα1 , . . . , eαn are linearly independent over the algebraic numbers.

6.2 Beukers-Lite Integrals for Irrationality and Periods

Proving the irrationality of specific naturally occurring, real constants is often highly
difficult, and numbers like e and π are very much the exception. As we explored earlier,
attempts to prove the irrationality of ζ(5) have so far not been successful.

Anther number which has resisted efforts to prove its irrationality is Catalan’s constant
C, which arises naturally in combinatorics:

C =
∞∑
k=0

(−1)k

(2k + 1)2
.

Wadim Zudilin discovered that C can be written as an integral:

C =
1

8

∫ 1

0

∫ 1

0

x−1/2(1− y)−1/2

1− xy
dxdy.

Using this, he constructed Beuker’s-like series of double integrals, which come close to
proving the irrationality of C. Zudilin’s ideas have inspired other mathematicians to
tweak Beukers’ integral to attempt to prove the irrationality of other constants such as
Euler-Mascheroni’s constant, γ (see [23]), which is a number closely linked to the zeta
function, defined below.

γ = lim
n→∞

(
− log n+

n∑
i=1

1

i

)

=

∫ ∞

1

(
1

⌊x⌋
− 1

x

)
dx. (6.1)

We can generalise the ideas of the report to define periods (this final part draws on
[27]).

Definition 6.2 (Periods). A period is a number which can be expressed as an integral
of an algebraic function over an algebraic domain.

Periods are a class of numbers between the algebraic numbers and the transcendental
numbers: all algebraic numbers are periods.

We have seen that ζ(2), ζ(3), and ζ(4) can be written as integrals of algebraic functions
over a domain in the form [0, 1]n, and are therefore periods. In fact, ζ(s) is a period for
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all integer values of s where it is defined. Unsurprisingly, due to the links between the
zeta function and π, we also have that π is a period, specifically:

π =

∫ 1

0

4

1 + x2
dx.

In addition, Zudilin’s discovery tells us that C is a period, however it is not known
whether γ is: note that the floor function is not an algebraic function so 6.1 does not
satisfy the definition for γ to be a period. It is also an open question whether e is a
period!
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