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Proving Irrationality with Rational Approximations

One method for showing a number, «, is irrational is by assuming it is rational a/b and defining a
series of rational approximations to a. We then define a series of integers ¢,, which violate the
"Fundamental Principle of Number Theory”: an impossible integer, bounded between O and 1.

For instance, consider rational approximations to e by truncating the power series of e:
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Suppose e= a/b. We create an integer for n > b by defining:
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Our integer ¢, will never be O, and is bounded between O and 1/n, which will clearly be less than
1 for large n. e Is therefore irrational!

Beukers' Method for Irrationality of ((3)

Beukers developed a more sophisticated method for proving the irrationality of real numbers.

1. Define a non-zero function f(x) such that the series of integrals:
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Iy, = / Py(x)f(z)dx = Ay + Bpa,
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where A,,, B,, are rational numbers, and F,, are the Legendre polynomials.
2. After performing integration by parts n times on I, we get the equation
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We use this to find an upper bound for I,, in the form CM", such that M is less than 1.
3. Now we follow a similar method to above. Assume a = a/b, so « is rational. Then
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Multiplying through by any denominators, we get an integer between O and some upper
bound, which is less than 1 for large n.

((s) is defined as > -2, n~°. For even s, {(s) is known to be rational functions of = and thus
transcendental, but less is known about ((s) for odd s, though ((3) is known to be irrational.
Beukers' refined Apery’s proof of this. He used
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and showed that A
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where d,, is the lowest common multiple of the first n natural numbers, and A,,, B;, are integers.
Assuming ((3) = a/b is rational, this leads us to the inequality

0 < |Apd2a + Bpb| < d2aM™ < a % 0.6".

where M is calculated to be around 0.03. This thus proves ((3) is irrational, as for large enough
n, we have an integer bounded between O and 1. However, it is an open question as to whether
((3) is transcendental.

The method above fails to prove ((5) is irrational, because although we can find an integral
Iy = ((5), the family I, are not combinations of rational numbers and ((5). However, Wadim
Zudilin showed that one of ((5), ¢(7), ¢(9) or ((11) must be irrational.

Approximation

How closely can we approximate a real number, a by rational numbers, p/q (where p, ¢ are always
coprime integers)? The rationals are infinitely dense on the line so if we don'’t limit the size of q,
we can let p/q get arbitrarily close to a. But what if the distance between « and p/q also depends
on g? Let us consider the equation:

1. Case 1: o = a/bis rational
There are only finitely many solutions. If p/q # «,
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since we have that aqg — bp is a non-zero integer. Therefore, we require ¢ < b, but for each g,

there will only be finite options for p. This realisation is why it is possible to prove « is
irrational using rational approximations.
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2. Case 2: « is irrational

Dirichet proved that in this case, there are infinite solutions. He used the pigeonhole
principal, giving a name to an idea which had been around for millennia.

The Approximation Exponent

For any a € R, define the approximation exponent u = u(«) as the smallest number so that for

any o > 0
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has only finitely many solutions.

Dirichet’'s Theorem is therefore equivalent to saying u(«) > 2 for any irrational a.

Number a u(a)
Rational a/b 1
Irrational algebraic number 2
7 2 < p(m) < 7.10320...
e 2
log 2 2 <p(log2) < 3.57455...
C(3) 2 < u(¢(3)) < 5.51389...
Champernowne constant 10
= (0.1234567891011...
Louiville Numbers 00

Liouville's Theorem (1844)

If o Is a real algebraic number with degree d, then for any rational g,
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where ¢(«) is some real constant that depends only on a.

Discovering Transcendental Numbers

Liouville’s Theorem can be proved using the minimal polynomial for «, F(x), and considering F'(p/q)
and using the mean value theorem. A simple corollary to it is that u(«a) < d for any algebraic « of
degree d. Combined with Dirichet's Theorem, this demonstrates that quadratic irrationals have
approximation exponent 2.

Over the next 100 years, mathematicians such as Thue, Siegel and Roth worked to reduce the
bound on u(a) for algebraic numbers, leading to Roth being awarded the Fields Medal in 1958 for
showing all algebraic numbers have approximation exponent 2. The proof involves constructing
multivariate auxiliary polynomials depending on 9, and finding a contradiction using the large
number of rational approximations of a.

Liouville has also given us a way to construct transcendental numbers! We want numbers that
can be approximated by rationals extremely well, so that u(a) = oo. Then by Liouville theorem, it
Is impossible for a to be the root of any polynomial of degree d < oo. For example:
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The approximations found by taking the first N terms in the series are extremely good, because
many Os follow each 1 in the decimal expansion of a, which allows us to prove u(«a) = co. Num-
bers of this type are called Liouville numbers. However, most transcendental numbers are not
Liouville numbers. For example, e and 7 have finite approximation exponent.

Transcendence of e

We can also use rational approximation to prove the transcendence of e in the following way:

1. Approximate e! for t > 1 by rationals by writing:
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where M, M; are integers and the error term, e, is small. For p a large prime, we choose:
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2. Assume e is algebraic, so it is the root of a polynomial P(x) with integer coefficients, ay.
> g ate! =0, with n > 1, ag,an # 0. Substituting our approximation in,

n n
0= Magy+ ZatMt -+ Zatet
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. We show that Magy + > ;" | axMy is a non-zero integer.

. Then we show ¢ is small enough that |> 0 aret| < 1.
This proves e is transcendental since the sum of a non-zero integer and a number with
absolute value less than 1 cannot be zero. Mag + > ;"1 atMy is an impossible integer. A
similar method proves 7 is transcendental.
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