
Irrationality and Transcendencewith Rational Approximations
Jasmine Burgess
Supervised by Dan Evans

Proving Irrationalitywith Rational Approximations

One method for showing a number, α, is irrational is by assuming it is rational a/b and defining a

series of rational approximations to α. We then define a series of integers cn which violate the

”Fundamental Principle of Number Theory”: an impossible integer, bounded between 0 and 1.

For instance, consider rational approximations to e by truncating the power series of e:
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Suppose e= a/b. We create an integer for n ≥ b by defining:
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Our integer cn will never be 0, and is bounded between 0 and 1/n, which will clearly be less than

1 for large n. e is therefore irrational!

Beukers’ Method for Irrationality of ζ(3)

Beukers developed a more sophisticated method for proving the irrationality of real numbers.

1. Define a non-zero function f(x) such that the series of integrals:

In =
∫ 1

0
Pn(x)f (x)dx = An + Bnα,

where An, Bn are rational numbers, and Pn are the Legendre polynomials.

2. After performing integration by parts n times on In, we get the equation

In = (−1)n

n!

∫ 1

0
xn(1 − x)ndnf

dxndx.

We use this to find an upper bound for In in the form CMn, such that M is less than 1.

3. Now we follow a similar method to above. Assume α = a/b, so α is rational. Then

0 <
∣∣∣An + Bn

a

b

∣∣∣ ≤ CMn

Multiplying through by any denominators, we get an integer between 0 and some upper

bound, which is less than 1 for large n.

ζ(s) is defined as
∑∞

n=1 n−s. For even s, ζ(s) is known to be rational functions of π and thus

transcendental, but less is known about ζ(s) for odd s, though ζ(3) is known to be irrational.

Beukers’ refined Apery’s proof of this. He used

f (x) =
∫ 1

0

Pn(y)
1 − xy

log(xy) dxdy,

and showed that

In = An

d3
n

+ Bnζ(3),

where dn is the lowest commonmultiple of the first n natural numbers, and An, Bn are integers.

Assuming ζ(3) = a/b is rational, this leads us to the inequality

0 < |And3
na + Bnb| < d3

naMn < a ∗ 0.6n.

where M is calculated to be around 0.03. This thus proves ζ(3) is irrational, as for large enough
n, we have an integer bounded between 0 and 1. However, it is an open question as towhether

ζ(3) is transcendental.
The method above fails to prove ζ(5) is irrational, because although we can find an integral

I0 = ζ(5), the family In are not combinations of rational numbers and ζ(5). However, Wadim

Zudilin showed that one of ζ(5), ζ(7), ζ(9) or ζ(11) must be irrational.

Approximation

How closely can we approximate a real number, α by rational numbers, p/q (where p, q are always
coprime integers)? The rationals are infinitely dense on the line so if we don’t limit the size of q,

we can let p/q get arbitrarily close to α. But what if the distance between α and p/q also depends

on q? Let us consider the equation: ∣∣∣∣α − p

q

∣∣∣∣ <
1
q2.

1. Case 1: α = a/b is rational
There are only finitely many solutions. If p/q 6= α,∣∣∣∣α − p
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since we have that aq − bp is a non-zero integer. Therefore, we require q < b , but for each q,

there will only be finite options for p. This realisation is why it is possible to prove α is

irrational using rational approximations.

2. Case 2: α is irrational

Dirichet proved that in this case, there are infinite solutions. He used the pigeonhole

principal, giving a name to an idea which had been around for millennia.

The Approximation Exponent

For any α ∈ R, define the approximation exponent µ = µ(α) as the smallest number so that for

any δ > 0 ∣∣∣∣α − p

q

∣∣∣∣ ≤ 1
qµ+δ

has only finitely many solutions.

Dirichet’s Theorem is therefore equivalent to saying µ(α) ≥ 2 for any irrational α.

Number α µ(α)

Rational a/b 1

Irrational algebraic number 2

π 2 ≤ µ(π) ≤ 7.10320...
e 2

log 2 2 ≤µ(log 2) ≤ 3.57455...
ζ(3) 2 ≤ µ(ζ(3)) ≤ 5.51389...

Champernowne constant 10

= 0.1234567891011...
Louiville Numbers ∞

Liouville’s Theorem (1844)

If α is a real algebraic number with degree d, then for any rational
p
q ,∣∣∣∣α − p

q

∣∣∣∣ ≥ c(α)
qd

where c(α) is some real constant that depends only on α.

Discovering Transcendental Numbers

Liouville’s Theorem can be proved using theminimal polynomial forα, F(x), and considering F (p/q)
and using the mean value theorem. A simple corollary to it is that µ(α) ≤ d for any algebraic α of

degree d. Combined with Dirichet’s Theorem, this demonstrates that quadratic irrationals have

approximation exponent 2.

Over the next 100 years, mathematicians such as Thue, Siegel and Roth worked to reduce the

bound on µ(α) for algebraic numbers, leading to Roth being awarded the Fields Medal in 1958 for

showing all algebraic numbers have approximation exponent 2. The proof involves constructing

multivariate auxiliary polynomials depending on δ, and finding a contradiction using the large

number of rational approximations of α.

Liouville has also given us a way to construct transcendental numbers! We want numbers that

can be approximated by rationals extremely well, so that µ(α) = ∞. Then by Liouville theorem, it

is impossible for α to be the root of any polynomial of degree d < ∞. For example:

α =
∞∑

n=1
10−nn

.

The approximations found by taking the first N terms in the series are extremely good, because

many 0s follow each 1 in the decimal expansion of α, which allows us to prove µ(α) = ∞. Num-

bers of this type are called Liouville numbers. However, most transcendental numbers are not

Liouville numbers. For example, e and π have finite approximation exponent.

Transcendence of e

We can also use rational approximation to prove the transcendence of e in the following way:

1. Approximate et for t ≥ 1 by rationals by writing:

et = Mt + εt

M
,

where M, Mt are integers and the error term, εt, is small. For p a large prime, we choose:

M =
∫ ∞

0
xp−1e−x((x − 1)(x − 2)...(x − n))p

(p − 1)!
dx,

Mt = et
∫ ∞

t
xp−1e−x((x − 1)(x − 2)...(x − n))p

(p − 1)!
dx,

εt = et
∫ t

0
xp−1e−x((x − 1)(x − 2)...(x − n))p

(p − 1)!
dx.

2. Assume e is algebraic, so it is the root of a polynomial P(x) with integer coefficients, at.∑n
t=0 ate

t = 0, with n ≥ 1, a0, an 6= 0. Substituting our approximation in,

0 = Ma0 +
n∑

t=1
atMt +

n∑
t=1

atεt

3. We show that Ma0 +
∑n

t=1 atMt is a non-zero integer.

4. Then we show εt is small enough that |
∑n

t=1 atεt| < 1.
This proves e is transcendental since the sum of a non-zero integer and a number with

absolute value less than 1 cannot be zero. Ma0 +
∑n

t=1 atMt is an impossible integer. A

similar method proves π is transcendental.
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