Count

Citizen Science Butterfly Monitoring and Spatial Statistics

Citizen science

Citizen science (CS) refers to any scheme in which i
data is collected by volunteer members of the !
public. The UK Butterfly Monitoring Survey |
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(UKBMS), started in 1976, is a CS scheme where
volunteers count the number of butterflies of each dm
species encountered along a fixed route (transect)

in a Pollard walk. The transect data is collected

weekly between the start of April to the end of o rm  25m
September. The observation region in a Pollard  Fio e 1. A 5m3 Pollard walk
walk is an imagined 5m> observation box along box for observations.

the walker's path, see figure 1. CS presents challenges for statistical modelling,
including missing data and bias. However, CS gives us some of the most com-
prehensive and compelling evidence we have to inform conservation efforts.
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Neither capture nor recapture

The population is not closed throughout the survey period, and individuals are
not identified in the counts. Models based on capture-recapture in open popu-
lations, can be generalised to a stopover model for the UKBMS counts [2]. The
stopover model is parametrised by probabilities of entry, detection and retention.
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Stopover model

T' = number of sampling occasions.
= number of sites.
Y;; = count at site ¢ occasion j.

N; = the superpopulation at given site .

Bi j—1 = proportion of N; new to survey at time j (entry).
pi; = probability of detection at site i on occasion j.
qbg-g = probability of retaining an individual at site 7 from

7 to § + 1 given presence on a previous occasions.

The mean of the count, E[Y;;] = A;;, is given by
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Counts could be chosen to be
from a Poisson distribution so that
Yi; ~ Pois(A;;). The expression
for the mean in equation (1) is de-
rived by taking the sum over all
possible entry times of an individ-
ual detected at time ¢, weighted by
the probability of their retention.

The entry probabilities 8 can
be used to model arrival quanta
from distinct broods of butterfly
eggs over a season using a mixture
of B normal distributions.

In figure 2 we use two normal
distributions and take the probabilities to be the integral of the mixture density
between successive ordinates, and when 7 = 1 and I" use the tails. In place of T’
parameters for 3, we need only estimate the means and variances of the mixture
components. Restricting the entry parameters to lie on parametrised families of
curves thereby reduces the number of parameters to estimate.
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Figure 2: Entry modelled with normal mixture
with two components of unequal weights.
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In general take the mean count to be \;; = Nja;;, for any distribution
and arbitrary seasonality a;;. For a particular species, and consistent choices for
distribution and seasonality, the generalised abundance index (GAl) is then
the mean of the abundance estimates of the sites.
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Towards a more spatially representative average

We can re-weight the mean in (2) to account for the distance between sites. In
general, given data {Y'(x1), Y (x9),...,Y(xg)}, the problem is to infer Y (xq)
as a weighted sum,

S S
Y (xg) = Z w;Y (x;),  where Z w; = 1.
i=1 1=1

Ordinary kriging
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Figure 3: There is high uncertainty away from surveyed sites.

Kriging enjoys the desirable statistical property of minimising the mean-

squared error of prediction, though does make distributional assumptions on Y

[1]. Inverse distance weighting chooses weights in (3) such that w; dz._ﬁ,
using the Euclidean distance d; = d(xq,X;). That is, When 5 = 0, the mean is

obtained. In any case, we should exercise caution with extrapolation.

(@ p=0

54.2°N

54.1°N

54.0°N

53.9°N

Lat

53.8°N

53.7°N

53.6°N

53.5°N

3.0°W 2.8°W 2.6°W 24°W 2.2°W

Long

(c) =2.5

54.2°N

54.1°N

54.0°N

53.9°N

Lat

53.8°N

53.7°N

53.6°N

53.5°N

3.0°W 2.8°W 2.6°W 2.4°W 2.2°W
Long

Estimated
abundance

Lat

179.75

Estimated
abundance

300

Lat

200

100

(b)p=1

54.2°N

54.1°N

54.0°N

53.9°N

53.8°N

53.7°N

53.6°N

53.5°N

Estimated
abundance

300
200

100

3.0°W 2.8°W 2.6°W 2.4°W 2.2°W

Long

(d)B=5

54.2°N

54.1°N

54.0°N

53.9°N

53.8°N

53.7°N

53.6°N

53.5°N

Estimated
abundance

300

200

100

3.0°W 2.8°W 2.6°W 2.4°W 2.2°W
Long

Figure 4: (IDW) Further sites exert influence on the prediction as (3 increases.
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